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0    at    0,  ww x L
x

∂
= = =

∂         (2) 
 

b) For cantilever beam (clamped-free) the end conditions 
are:    

 

0    at   0ww x
x

∂
= = =

∂         (3) 
2 3

2 3 0    at    w w x L
x x

∂ ∂
= = =

∂ ∂  
 

c) For simply supported beam (pinned-pinned) the end 
conditions are: 

 
2

2 0   at   0,ww x L
x

∂
= = =

∂         (4) 
 

d) For clamped-simply supported (pinned) beam the end 
conditions are: 

 

0    at    0ww x
x

∂
= = =

∂        (5) 
2

2 0    at   ww x L
x

∂
= = =

∂  
 
Now, free vibration analysis of the beams with variable 

stiffness resting on elastic foundations will be formulated. 
A solution is assumed as the following form to formulate 

the analysis of the presented problem by the separation of 
variables: 

 

( ), ( ) i tw x t W x e ω=
                (6) 

 
whereω is the circular frequency for the vibration. Substituting 
(6) into (1), equations of motion becomes as follows: 

 
2 2

2
2 2( )d d WEI x kW A W

dx dx
ρ ω

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠   (7) 
 
This equation can be rearranged as: 
 

( )
( )

( )
( )

( )
( )

( )
( )

4 3 2 2

4 3 2 2
2 0

EI x EI x k x A xw w w w
w

x EI x x EI x x EI x EI x t
ρ′ ′′∂ ∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

(8) 

 
where ( )′  denotes total derivative with respect to x. The 
governing equation is now rewritten in a non-dimensional 
form. This procedure is provided from [1] in which a constant 
stiffness beam was analyzed. The notation is maintained in 
this study for the comparison purposes. The non-dimensional 
parameters for the Euler-beam on the Winkler foundation are 

defined as [1]. 
 

4

,    ,    ,    x W kL Ax W
L L EI k

ρλ ω ω= = = =
 (9) 

 
Using these parameters, non-dimensional form of the 

equations and formulation procedures are explained in the 
following sections. 

III. HOMOTOPY PERTURBATION METHOD 
Homotopy Perturbation Method [14]-[19] that is an 

analytical approximate solution technique can be considered 
as one of the most applied method for nonlinear problems. The 
HPM provides an analytical approximate expression as the 
solution for the problems which are continuous in the solution 
domain. The technique is applied to an equation of the form 
L(u)+N(u)=ƒ(r), r Ԗ Ω with boundary conditions B(u,∂u/∂n)=0, 
r Ԗ Г where L is a linear operator, N is a nonlinear operator, B 
is a boundary operator, Γ is the boundary of the domain Ώ, 
and ƒ(r)is a known analytic function. HPM, defines a 
homotopy as v(r,p)=Ω×[0,1]→R which satisfies the following 
inequalities: 

 
0)]()()([)]()()[1(),( 0 =−++−−= rfvNvLpuLvLppvH (10) 

 
or 

 
0)]()([)()()(),( 00 =−++−= rfvNpupLuLvLpvH (11) 

 
wherer Ԗ Ω  and p Ԗ [0,1] is an imbedding parameter, u0is an 
initial approximation which satisfies the boundary conditions. 
From (10), (11), we have: 
 

0)()()0,( 0 =−= uLvLvH                 (12) 
 

0)()()()1,( =−+= rfvNvLvH         (13) 
 

The changing process of p from zero to unity is that of 
v(r,p) from u0 to u(r). In topology, this deformation L(v)-L(u0) 
and L(v)+N(v)-ƒ(r) are called homotopic. The method 
expresses the solution of (10), (11) as a power series in p as 
follows: 

 
2 3

0 1 2 3 ...v v pv p v p v= + + + +    (14) 
 
The approximate solution ofL(u)+N(u)=ƒ(r),r Ԗ Ω can be 

obtained as:  
 

0 1 21
lim ...
p

u v v v v
→

= = + + +      (15) 

 
The convergence of the series in (15) has been proven 

in[14]-[19].  
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IV. HPM FORMULATION 
In this study, α linearly varying stiffness is assumed for the 

beam considered. The linear variation of stiffness is due to the 
linearly varying and is formulated as: 

 

( ) ( )0 1b x b xα= −
           (16) 

 
where the dimension of α is [1/L]. By the use of variable 
width, both cross-sectional area and flexural stiffness becomes 
as:  
 

( ) ( ) ( )0 01 1A x b h x A xα α= − = −
    (17) 

( ) ( ) ( )
3

0 01 1
12
hEI x Eb x EI xα α= − = −

   (18) 
 

whereA0 and I0 are the cross-sectional area and moment of 
inertia of the section at the origin, respectively. Inserting (17), 
(18) into (8): 
 

( )
( )

( )
4 3 2

0 0
4 3 2

0 0 0

2 0
1 1

k xEI Aw w ww
x EI x x EI x EI t

α ρ
α α

⎛ ⎞∂ ∂ ∂
− + + =⎜ ⎟∂ − ∂ − ∂⎝ ⎠ (19) 

 
This equation can be rewritten as: 
 

( )4 3 2
0

4 3 2
0 0

1 12 0
1 1

k x Aw w ww
x x x EI x EI t

ρα
α α

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ − ∂ − ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ (20) 
 

employing (6); 
 

( ) ( ) ( ) 20

0 0

2 0iv k x AW x W x W W
EI EI

ραξ ξ ω′′′− + − =
(21) 

 
Equation (24) can be made non-dimensional in view of (9) 

as follows: 
 

( ) ( )( )2
2 0

iv
W x W x Wαξ λ ξ ω′′′− + − =

(22) 
 
where 

4
0

0

,    ,    ,    Ax W kLx W
L L EI k

ρλ ω ω= = = =
(23) 

 

( ) 1    ,               
1

x L
x

ξ α α
α

= =
− (24) 

 
By the application of HPM, following iteration algorithm is 

obtained: 
 

0 0 0iv ivW u− =          (25) 
 

( ) ( )( )2
1 0 0 02 0iv ivW u x W x Wαξ λ ξ ω′′′+ − + − =

 
 

( ) ( )( )2
1 12 0   ,     2iv

n n nW x W x W nαξ λ ξ ω− −
′′′− + − = ≥

 

V. SOLUTION PROCEDURE 
A cubic polynomial with four unknown coefficients can be 

chosen as initial approximation. There exist four boundary 
conditions, i.e., two at each end of the column, due to the end 
supports of the beam in the presented problem. Hence, the 
initial approximation is: 

 
3 2

0W Ax Bx Cx D= + + +       (26) 
 
Twenty iterations are conducted through the analysis 

procedure and four boundary conditions for each case are 
rewritten by using the solution for displacement of the beam. 
Each boundary condition produces an equation containing four 
unknowns due to the initial approximation. These boundary 
conditions in non-dimensional form are: 

Clamped-Clamped beam: 
 

0    at   0,1 dWW x
dx

= = =
      (27) 

 
Clamped-Free (Cantilever) beam:   
 

0   at   0dWW x
dx

= = =
     (28) 

2 3

2 3 0   at   1d W d W x
dx dx

= = =
 

 
Pinned-Pinned (Simply supported) beam: 
 

2

2 0   at   0,1 d WW x
dx

= = =
     (29) 

 
Clamped-Pinned beam:  
 

0    at   0 dWW x
dx

= = =
     (30) 

2

2 0   at   1d WW x
dx

= = =
 

 
Hence, four equations in four unknowns may be written 

with respect to the boundary conditions of the problem. These 
equations can be represented in matrix form as follows: 
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( ) { } { }0M Aω =⎡ ⎤⎣ ⎦        (31) 
 

where {A}=‹ABCD›T. For a nontrivial solution, determinant 
of coefficient matrix must be zero. Determinant of coefficient 
matrix yields a characteristic equation in terms of �ω. 
Positive real roots of this equation are the normalized free 
vibration frequencies for the case considered. 

VI. NUMERICAL RESULTS  

A. Constant Stiffness Case 
As the first example Euler beam of constant stiffness, (i.e. 

EI is constant), with different boundary conditions is 
investigated. For the sake of comparison, all the values are set 
to unity such as I=E=A=ρ=1, hence λ=1, according to 
previous studies [7]. Both algorithms given for linear and 
exponential variations lead to constant stiffness when α=0.  

In Table I, first three normalized free vibration frequencies 
for simply supported (pinned-pinned) beam are compared with 
HPM results in the literature and the exact solution. Excellent 
agreement is observed for HPM with the exact solution.  

 
TABLE I 

NORMALIZED FREE VIBRATION FREQUENCIES OF SIMPLY SUPPORTED BEAM 
RESTING ON WINKLER FOUNDATION 

Method ω1 ω2 ω3 ω4 ω5 
HPM  9.92014 39.4911 88.8321 157.9168 246.7421 

DTM [1] 9.92014 39.4911 88.8321 - - 
DQEM[7] 9.92014 39.4913 89.4002 - - 

Exact 
Solution [1] 9.92014 39.4911 88.8321 - - 

 
The first five natural frequencies for clamped-clamped 

beam and cantilever (clamped-free) beam are presented in 
Tables II and III, respectively.  

 
TABLE II 

NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-CLAMPED BEAM 
RESTING ON WINKLER FOUNDATION 

Method ω1 ω2 ω3 ω4 ω5 
HPM [9] 22.3956 61.6809 120.908 199.862 298.557 
DTM[1] 22.3733 61.6728 120.903 199.859 298.556 

DQEM [7] 22.3956 61.6811 120.910 199.885 298.675 
 

TABLE III 
NORMALIZED FREE VIBRATION FREQUENCIES OF CANTILEVER BEAM 

RESTING ON WINKLER FOUNDATION 
Method ω1 ω2 ω3 ω4 ω5 
HPM [9] 3.65546 22.0572 61.7053 120.906 199.862 
DTM [1] 3.65546 22.0572 61.7053 120.906 199.862 

DQEM [7] 3.65544 22.0572 61.7057 120.911 199.894 
 
Excellent agreement is observed for HPM with previous 

available results for both cantilever and clamped-clamped 
beams. Clamped-pinned beam was only included in [9]. 
Hence, only HPM results are tabulated for this case in Table 
IV. 

 
 
 
 

TABLE IV 
NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-PINNED BEAM 

RESTING ON WINKLER FOUNDATION 
Method ω1 ω2 ω3 ω4 ω5 
HPM [9] 15.451 49.975 104.253 178.273 272.033 

 
As one can see, perfect agreement is obtained for constant 

stiffness case. This issue is mainly due to constant coefficient 
governing equation. In the following sections, variable 
stiffness cases are investigated. 

B. Linearly Varying Stiffness 
A number of case studies are conducted with respect to 

parameter a, and the results are given in Tables V-VIII below.  
 

TABLE V 
NORMALIZED FREE VIBRATION FREQUENCIES OF CANTILEVER BEAM 

RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL 
STIFFNESS 

α 0.00 0.10 0.20 0.30 0.40 0.50 
ω1 3.65546 3.77785 3.91814 4.08113 4.27363 4.50571 
ω2 22.0572 22.2779 22.5271 22.8129 23.1475 23.5506 
ω3 61.7053 61.9182 62.1616 62.4458 62.7867 63.2104 
ω4 120.9061 121.1194 121.3645 121.6528 122.0024 122.4434
ω5 199.8620 200.0755 200.3213 200.6117 200.9661 201.4172

 
TABLE VI 

NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-PINNED BEAM 
RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL 

STIFFNESS 
α 0.00 0.10 0.20 0.30 0.40 0.50 

ω1 15.4506 15.5615 15.6801 15.8069 15.9427 16.0879 

ω2 49.9749 50.0781 50.1878 50.3052 50.4316 50.5685 

ω3 104.2525 104.3556 104.4655 104.5836 104.7121 104.8544 

ω4 178.2725 178.3756 178.4853 178.6036 178.7333 178.8785 

ω5 272.0328 272.1358 272.2455 272.3640 272.4944 272.6418 
 

TABLE VII 
NORMALIZED FREE VIBRATION FREQUENCIES OF CLAMPED-CLAMPED BEAM 
RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL 

STIFFNESS 
α 0.00 0.10 0.20 0.30 0.40 0.50 
ω1 22.3956 22.3922 22.3777 22.3477 22.2958 22.2120 
ω2 61.6809 61.6752 61.6541 61.6114 61.5380 61.4183 
ω3 120.9075 120.9009 120.8775 120.8302 120.7485 120.6144
ω4 199.8620 199.8549 199.8302 199.7803 199.6939 199.5512
ω5 298.5572 298.5499 298.5243 298.4729 298.3834 298.2351

 
TABLE VIII 

NORMALIZED FREE VIBRATION FREQUENCIES OF SIMPLY-SUPPORTED BEAM 
RESTING ON WINKLER FOUNDATION WITH LINEARLY VARYING FLEXURAL 

STIFFNESS 
α 0.00 0.10 0.20 0.30 0.40 0.50 
ω1 9.9201 9.9217 9.9210 9.9170 9.9084 9.8932 
ω2 39.4911 39.4928 39.4970 39.5047 39.5166 39.5340 
ω3 88.8321 88.8340 88.8398 88.8511 88.8697 88.8986 
ω4 157.9168 157.9189 157.9257 157.9389 157.9612 157.9966
ω5 246.7421 246.7443 246.7516 246.7661 246.7907 246.8302
 
Variations of normalized free vibration frequencies (�ω) 

with respect to non-dimensional variation parameter�α for 
each beam are also given in Figs.2-6. 
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Fig. 2 Variation of normalized first mode frequency with respect to 

normalized variation coefficient 
 

 
Fig. 3 Variation of normalized second mode frequency with respect 

to normalized variation coefficient 
 

 
Fig. 4 Variation of normalized third mode frequency with respect to 

normalized variation coefficient 
 

 
Fig. 5 Variation of normalized fourth mode frequency with respect to 

normalized variation coefficient 
 

 
Fig. 6 Variation of normalized fifth mode frequency with respect to 

normalized variation coefficient 

VII. CONCLUSION 
In this study, HPM is introduced for the free vibration 

analysis of variable stiffness non-uniform Euler beams on 
elastic foundations. As a demonstration of application of the 
method, firstly constant stiffness uniform Euler beam is 
considered and HPM results are comparison with the available 
results. HPM has produced results in excellent agreement with 
the previously available solutions that encourage the 
application of the method for variable stiffness non-uniform 
Euler beams. To represent a variation in stiffness, a 
rectangular beam with varying width is considered. The 
analyses areexpanded for variable stiffness cases. HPM also 
produced reasonable results for the vibration of variable 
stiffness Euler beams which show the efficiency of the 
method. In the case of variable stiffness, the governing 
equation becomes a differential equation with variable 
coefficients, and it is not easy to obtain analytical solutions for 
these types of problems. However, HPM would produce 
reasonable results after performing some iterations with the 
method. The results obtained in this study point out that the 
proposed method is a powerful and reliable method in the 
analysis of the presented problem. 
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