
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:8, 2009

961

Free Flapping Vibration of Rotating Inclined 
Euler Beams

Chih-Ling Huang, Wen-Yi Lin, and Kuo-Mo Hsiao 

Abstract—A method based on the power series solution is 
proposed to solve the natural frequency of flapping vibration for the 
rotating inclined Euler beam with constant angular velocity.  The 
vibration of the rotating beam is measured from the position of the 
corresponding steady state axial deformation.  In this paper the 
governing equations for linear vibration of a rotating Euler beam are 
derived by the d'Alembert principle, the virtual work principle and the 
consistent linearization of the fully geometrically nonlinear beam 
theory in a rotating coordinate system.  The governing equation for 
flapping vibration of the rotating inclined Euler beam is linear 
ordinary differential equation with variable coefficients and is solved 
by a power series with four independent coefficients.  Substituting the 
power series solution into the corresponding boundary conditions at 
two end nodes of the rotating beam, a set of homogeneous equations 
can be obtained.  The natural frequencies may be determined by 
solving the homogeneous equations using the bisection method.  
Numerical examples are studied to investigate the effect of inclination 
angle on the natural frequency of flapping vibration for rotating 
inclined Euler beams with different angular velocity and slenderness 
ratio.

Keywords—Flapping vibration, Inclination angle, Natural 
frequency, Rotating beam. 

I. INTRODUCTION

OTATING beams are often used as a simple model for 
propellers, turbine blades, and satellite booms.  Rotating 

beam differs from a non-rotating beam in having additional 
centrifugal force and Coriolis effects on its dynamics.  The free 
vibration frequencies of rotating beams have been extensively 
studied [1-12].  However, the vibration analysis of rotating 
inclined beam is rather rare in the literature [8, 11, 12].  To the 
authors’ knowledge, the natural frequency for very slender 
rotating inclined beam at high angular velocity is not reported 
in the literature.  The objective of this paper is to derive the 
correct governing equations for linear flapping vibration of a 
rotating inclined Euler beam, and investigate the effects of 
inclination angle and slenderness ratio on the natural frequency 
of rotating Euler beams.   The equations of motion for rotating 

Euler beam are derived by the d'Alembert principle and the 
virtual work principle.  In order to capture all inertia effect and 
coupling between extensional and flexural deformation, the 
consistent linearization [13, 14] of the fully geometrically 
non-linear beam theory [14, 15] is used in the derivation.  A 
method based on the power series solution is proposed to solve 
the natural frequency.  Numerical examples are studied to 
investigate the effect of inclination angle and slenderness ratio 
on the natural frequency of flapping vibration for rotating 
inclined Euler beams with different angular velocity.  

II. FORMULATION

A. Description of Problem  
Consider an inclined uniform Euler beam of length L rigidly 

mounted with an inclination angle  on the periphery of rigid 
hub with radius R rotating about its axis fixed in space at a 
constant angular velocity  as shown in Fig. 1.  The 
deformation displacements of the beam are defined in a rotating 
rectangular Cartesian coordinate system which is rigidly tied to 
the hub.  The origin of this coordinate system is chosen to be 
the intersection of the periphery of the hub and the centroid axis 
of the undeformed beam.  The 1X  axis is chosen to coincide 
with the centroid axis of the undeformed beam, and the 
and 3X  axes are chosen to be the principal directions of the 
beam cross section at the undeformed state. 

2X

The direction of the  axis is coincident with the axis of 
the rotating hub.  Thus, the angular velocity of the hub may be 
given by 

3X

}00{  (1) 

where the symbol { } denotes a column matrix, which is used 
through the paper. 

Here it is assumed that the beam is only deformed in 
the 21 XX  plane.  Thus only axial and flapping vibrations are 
considered.  Note that the axial and flapping vibrations are not 
coupled and can be analyzed independently.  It is well known 
that the beam sustains a steady state deformations 
(time-independent displacement) induced by constant rotation 
[16].  In this study, the vibration (time-dependent displacement) 
of the beam is measured from the position of the steady state 
axial deformation, and only infinitesimal free vibration is 
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considered.  Here the engineering strain and stress are used for 
the measure of the strain and stress. It is assumed that the 
strains are small and the stress-strain relationships are linear. 

(a)

(b)
Fig. 1 A rotating inclined beam (a) Top view, (b) Side view

B. Kinematics of Euler Beam 
Let P (see Fig. 2) be an arbitrary point in the rotating beam, 

and Q be the point corresponding to the beam cross-section of P
on the centroid axis.  The position vector of point P in the 
undeformed and deformed configurations may be expressed as 

}{0 zyxRr  (2) 

iirzytxvytxux er }cos),(sin),({  (3) 
),()(),( txuxutxu s  (4) 

where t is time,  is the steady-state axial deformations 
induced by constant rotation,  and  are the 
infinitesimal displacements of point Q in the 1X  and 2
directions, respectively, caused by the free vibration, 

)(xus
),( txu ),( txv

X

),( tx  is the infinitesimal angle of rotation of the cross 
section passing through point Q about the  axis, caused by 
the free vibration,  ( ) are unit vectors in the 
directions.

3X

ie i 3,2,1 iX

Fig. 2 Kinematics of deformed beam

From (3) and the definition of engineering strain, making use 
of the assumption of small strain, and using the approximation 

xv,sin  and 1cos , the engineering strain in the 
Euler beam may be approximated by 

xxxx yvvu ,
2

,, 2
1  (5) 

C. Equations of Motion 
The equations of motion for rotating inclined Euler beam are 

derived by the d'Alembert principle, the virtual work principle 
and the consistent first order linearization of the fully 
geometrically non-linear beam theory [14].  Fig. 3 shows a 
portion of the deformed centerline of the beam.  Here the 
generalized displacements are chosen to be u , v, and 
defined in (3).  The corresponding generalized forces are ,

, and 
1F

2F M , the forces in ,  directions, and moment 
about  axis.  , , and  (j = a, b) in Fig. 3 denote 

the values of , , and 

1X 2X

jM3X jF1

2F
jF2

1F M  at section j.

Fig. 3 Free body of a portion of deformed beam

For linear elastic material, the virtual work principle may be 
written as 

ntiext WW  (6) 

b
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abab V
t

V
t

int dVdVEW rr  (8) 

where extW  and intW  are the virtual work of the external 

forces and the internal stresses, respectively, b
a)(  is the value 

of ( ) at section b minus the value of ( ) at section a, u , v
and  are the virtual displacements,  is the variation of 
given in (5), E is Young’s modulus,  is the volume of the 
undeformed beam between section a and section b.  The 
differential volume dV may be expressed as dV = dAdx, where 
dA is the differential cross section area of the beam, 

abV

 is the 
density, r  is the variation of r  given in (3), and 

is the absolute acceleration.  The symbol (
.
)

denotes differentiation with respect to time t.

22 / dtrdr

The exact expression of intW may be very complicated.  
However, due to the assumption of infinitesimal vibration, the 
quantities , v, and u  defined in (3) and (4), and their 
derivatives with respect to x and t are all infinitesimal quantities.  
For linear vibration analysis only the terms up to the first order 
of infinitesimal quantities are required.  All terms up to the first 
order of infinitesimal quantities in intW  are retained.  Note 
that the steady state axial deformations in (4) and its 
derivatives with respect to x are small finite quantities, not 
infinitesimal quantities, and are all retained as zeroth order 
terms of infinitesimal quantities. 

)(xsu

From (3) and (5), using the approximation xv, , and 
retaining all terms up to the first order of infinitesimal 
quantities, r and  may be approximated by 

}0{ ,, xx vyvvyur  (9) 

xxxxx vyvvu ,,,,  (10) 

The second time derivative of r in (3) may be expressed as  

iiiiAO rr eerrr )(2)()(  (11) 
}0sincos{ RRAOr  (12) 

where  and is given in (1). 3,2,1i
From (1), (3), (11) and (12), using the approximation 

xv, ,  in (11) may be approximated by r

sin22)(2

)cos(2

,

,,

Rzvyu
v

yvuxRvyu

x

xx
r  (13) 

Substituting (5), (7)-(10) and (13) into (6), using ,

and retaining all terms up to the first order of infinitesimal 
quantities, and then equating the terms in both sides of (6) 

corresponding to the same generalized virtual displacements, 
one may obtain 

A
dA 0y

)]cos([ 2
,1 uxRuAF x  (14) 

vAF x,2  (15) 

)( ,
2

,,,,2 xxxxx vvIvuEAMF  (16) 

xxEIvM ,  (17) 

xuEAF ,1  (18) 

where  is the moment of inertia of the 

cross-section.  (14)-(16) are equations of motion and (17) and 
(18) are constitutive equations. 

A
dAI 2y

Substituting (18) into (14), and substituting (15) and (17) 
into (16), one may obtain 

)]cos([ 2
, uxRuAuEA xx  (19) 

vAvvIvuEAEIv xx,xxxxx,xxxx )()( ,
2

,,,  (20) 

The boundary conditions for a rotating Euler beam with 
fixed end at x = 0 and free end at x = L are given by

0),0(,0),0(,0),0()0( , tvtvtuu xs  (21) 

0),(,0),(,0),( 21 tLFtLMtLF

D. Steady-State Axial Deformation 
For the steady-state axial deformations, )(),( xutxu s ,

0),(),( txvtxu .  Thus (19) and (21) can be reduced to

)cos(2
, sxxs uxREu  (22) 

0)0(su , 0)(, Lu xs  (23) 

Let

ELk  (24) 

where  is a dimensionless angular velocity.  If k 1k  , the 
steady-state axial deformation , which satisfies (22) and 
(23), may be may be approximated by [9] 

)(xus

])
2

cos(
2

cos
6

[)(
223

2

2
xLRLxRx

L
kxus  (25) 

The maximum value of the steady state axial strain 
corresponding to the axial deformation given in (25) occurs at 
the root of the beam and may be expressed as  

)5.0cos()0( 2
,max rku xs  (26) 
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LRr /  (27) 

where  is the radius of the rotating hub. R

E. Free Vibration 
The vibration of the rotating beam is measured from the 

position of the steady-state axial deformation.  From (4), (19), 
(20) and (22), the governing equations for free vibration may 
be expressed as 

0
2

, u
E

u
E

u xx  (28) 

v
EI

Avv
E

vu
I
Av xx,xxxxxs,xxxx )()( ,

2
,,,  (29) 

It can be seen from (28) and (29) that the axial vibration and 
the flapping vibration are not coupled and can be solved 
independently.

Let  denote the natural frequency of rotating beam and 

ELK /  (30) 

denote a nondimensional natural frequency.
From (28) (30)and boundary conditions in (21), the natural 

frequency and vibration mode of rotating beam corresponding 
to the axial vibration may be expressed as  

2122 )( kaK  (31) 
)/sin( LaxuR  (32) 

where 2/)12( na ,  is the axial vibration mode.  Ru
For convenience, the following nondimensional variables 

are used: 

5.0/ Lx ,
L
uLuUU s

sss /)( , LvVV /)(  (33) 

IAL /2  (34) 

where ,Lx0  is the slenderness ratio of the beam.  
From (29), (33) and (34), the dimensionless governing 

equations of free vibration may be expressed as  

0

)(
22

,

2
,,

2
,

2
,

2
,

V
E

LV
E
L

VUVkUV ss
 (35) 

]375.0cos5.0)5.0cos(5.0[ 22
, rrkU s  (36) 

We shall seek a solution of (35) in the form  

tieVtV R )(),(  (37) 

where 1i , and  is the natural frequency to be 
determined  

Introducing (37) into (35), one may obtain  

0)2()( ,,
2

, RRRR eVVcbVdcbV  (38) 

225.0 kb  (39) 

)5.0cos(22 rkc

)375.0cos5.0(2222 rkkKd

22Ke

F. Power Series Solution 
The solution of (38) can be expressed as a power series in the 

independent variable :

0

)(
n

n
nR CV  (40) 

where  are undetermined coefficients. nC
Substituting (40) into (38) and equating coefficients of like 

power of , we obtain the recurrence formula  

4n
4

1j
jn

j
nn CAC ,  (41) 

01
nA ,

1
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dAn  (42) 

21
)3(3

nnn
ncAn

321
)]4)(3([4

nnnn
nnbeAn

From (41), It can be seen that only , ,  and  are 
independent constants in (40), and ( ) can be rewritten 
as

0C

n n
1C

4
2C 3C

C

3

0i
i

n
in CYC ,  (43) 4n

4,3,2,1,0,
4

1
niYAY

j

jn
i

j
n

n
i  (44) 

jiif
jiif

Y j
i 0

1
, 0, 1, 2, 3 (45)ji,

Substituting (43) into (40), one may obtain  
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CE )()( t
RV  (46) 
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}{ 3210 CCCCC  (48) 
From boundary conditions given in (21), and (16), (17), (25), 

(36), (37) and (46), one may obtain a set of homogeneous 
equations expressed by

0CK )(K  (49) 

2

22
22

2,
2

2

1

1
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EIK
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EE
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K (50)

where K  is a matrix, denotes 44 )(KK K is a function of K,
, , , and ,EE ,EE ,EE 5.01 and 5.02

denote the values of the nondimensional coordinates  at two 
end nodes for the rotating beam. 

For a nontrivial , the determinant of the matrix C K  must be 
equal to zero.  The values of K which make the determinant 
vanish are called eigenvalues of matrix K  and give the natural 
frequencies of the rotating Euler beam through K in Eq. (30).  
The bisection method is used here to find the eigenvalues. 

III. NUMERICAL EXAMPLES

To demonstrate the accuracy of the proposed method and to 
investigate the effect of inclination angle on the natural 
frequency of rotating inclined Euler beams with different 
angular velocity and slenderness ratio, several numerical 
examples are studied.  Here the following cases are considered: 

, 1.0, , and , 15, 30, 45, 60, 
75, 90. 

5.0r 06.0,03.0,0k 0)(

From (26), one may obtain 0054.0max , the maximum 
steady axial strain occurred at the root of the beam for all cases 
studied.

The axial and lateral vibration modes are not coupled here.  
For convenience, let  and  denote the ith dimensionless 
natural frequencies of lateral and axial vibration, respectively.  
From (31), it is noted that  are functions of the 
dimensionless angular velocity k only, and from (35) and (36), 
it is noted that  are functions of slenderness ratio 

iK a
iK

a
iK

iK , the 
dimensionless angular velocity k, the dimensionless radius of 

the rotating hub r, and the inclination angle .
From (31), the first three dimensionless natural frequency of 

axial vibration corresponding to the dimensionless angular 
velocity 0, 0.03, 0.06 may be obtained and given as 

follows: 1.57080, 1.57051, 1.56965, 4.71239,

4.71229, 4.71201, and 7.85398, 7.85392, 7.85375.  As 

expected, the value of decreases slightly with the increase 
of k.

k
aK1

aK2

aK3
a
iK

Tables 1-6 present dimensionless natural frequencies 
(iK i

i

1-5) for the rotating inclined beam with different 
slenderness ratio.  It can be seen from Tables 1-6 that the values 
of  corresponding to the same K  increases with increase of 
k and r, but decreases with increase of .  However, when 

, the values of  corresponding to the same 90 iK and k
are identical for different r.  These results may be explained by 
the centrifugal stiffening effect and (36).  As can be seen from 
(36) that the centrifugal force increases with increase of k and r,
but decreases with increase of .  However,  for 
all values of r.

090cosr

It can be seen from Tables 1-3 and 4-6 that the centrifugal 
force, which is proportional to , has stronger effect on the 
lower .  For 

2k
iK  50, the effect of the centrifugal force on 

(  is negligible.  However, for iK )4i 500, the effect of 
the centrifugal force on  is still remarkable.  It indicates that 
the effect of the centrifugal force on  increases with 
increase of 

5K

iK
.

IV. CONCLUSIONS

In this paper, the correct governing equations for linear 
vibration of a rotating inclined Euler beam are derived.  The 
vibration of the beam is measured from the position of the 
steady-state axial deformation, and only infinitesimal free 
vibration is considered.  The equations of motion for rotating 
Euler beam are derived by the d'Alembert principle, the virtual 
work principle and the consistent linearization of the fully 
geometrically non-linear beam theory.  The governing equation 
for linear flapping vibration of rotating beam is solved by a 
power series with four independent coefficients.  Substituting 
the power series solution into the corresponding boundary 
conditions at two end nodes of the rotating beam, a set of 
homogeneous equations can be obtained.  The natural 
frequencies may be determined by solving the homogeneous 
equations using the bisection method. 

The results of numerical examples show that the effect of the 
centrifugal force on the natural frequencies corresponding to 
lateral vibration mode decreases with increase of the inclination 
angle, but increases with increase of the slenderness ratio for 
the inclined rotating Euler beam. 
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TABLE 4
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

( 0.1r , 50 )

k 1K 2K 3K 4K 5K
0 0˚ 0.07026 0.43786  1.21530  2.35176 3.82644

0.03 0˚ 0.08609 0.45294  1.23056  2.36753 3.84241
15˚ 0.08582 0.45265  1.23025  2.36721 3.84209
30˚ 0.08499 0.45180  1.22937  2.36629 3.84115
45˚ 0.08367 0.45045  1.22796  2.36482 3.83965
60˚ 0.08191 0.44868  1.22613  2.36290 3.83770
75˚ 0.07981 0.44661  1.22399  2.36067 3.83542
90˚ 0.07749 0.44438  1.22168  2.35826 3.83298

0.06 0˚ 0.12153 0.49536  1.27507  2.41411 3.88986
15˚ 0.12075 0.49431  1.27391  2.41288 3.88860
30˚ 0.11842 0.49121  1.27052  2.40927 3.88488
45˚ 0.11462 0.48623  1.26510  2.40351 3.87897
60˚ 0.10946 0.47966  1.25799  2.39597 3.87125
75˚ 0.10312 0.47188  1.24965  2.38716 3.86223
90˚ 0.09583 0.46338  1.24062  2.37766 3.85252

TABLE 2
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

( ,5 100.0r )

k 1K 2K 3K 4K 5K
0 0˚ 0.03515  0.21999  0.61460  1.20047 1.97618 

0.03 0˚ 0.05477  0.24099  0.63621  1.22305 1.99933 
15˚ 0.05455  0.24072  0.63591  1.22274 1.99900 
30˚ 0.05391  0.23991  0.63504  1.22181 1.99804 
45˚ 0.05287  0.23863  0.63365  1.22033 1.99650 
60˚ 0.05148  0.23694  0.63183  1.21839 1.99450 
75˚ 0.04981  0.23497  0.62971  1.21614 1.99217 
90˚ 0.04796  0.23282  0.62742  1.21371 1.98966 

0.06 0˚ 0.09036  0.29495  0.69649  1.28804 2.06696 
15˚ 0.08984  0.29407  0.69542  1.28684 2.06570 
30˚ 0.08830  0.29146  0.69228  1.28334 2.06199 
45˚ 0.08580  0.28725  0.68724  1.27774 2.05607 
60˚ 0.08241  0.28166  0.68060  1.27041 2.04833 
75˚ 0.07828  0.27500  0.67278  1.26179 2.03927 
90˚ 0.07358  0.26765  0.66425  1.25247 2.02949 

TABLE 5
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

( 0.1r , 100 )

k 1K 2K 3K 4K 5K
0 0˚ 0.03515 0.21999  0.61460  1.20047 1.97618 

0.03 0˚ 0.06080 0.24888  0.64484  1.23231 2.00894 
15˚ 0.06041 0.24835  0.64426  1.23168 2.00829 
30˚ 0.05925 0.24679  0.64254  1.22984 2.00637 
45˚ 0.05735 0.24429  0.63980  1.22690 2.00332 
60˚ 0.05477 0.24099  0.63621  1.22305 1.99933 
75˚ 0.05160 0.23709  0.63199  1.21856 1.99467 
90˚ 0.04796 0.23282  0.62742  1.21371 1.98966 

0.06 0˚ 0.10442 0.31976  0.72703  1.32243 2.10361 
15˚ 0.10352 0.31813  0.72500  1.32012 2.10114 
30˚ 0.10085 0.31332  0.71900  1.31333 2.09387 
45˚ 0.09644 0.30549  0.70933  1.30242 2.08224 
60˚ 0.09036 0.29495  0.69649  1.28804 2.06696 
75˚ 0.08271 0.28214  0.68117  1.27103 2.04899 
90˚ 0.07358 0.26765  0.66425  1.25247 2.02949 

TABLE 3
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

( ,5 500.0r )

k 1K 2K 3K 4K 5K
0 0˚ 0.00703  0.04407  0.12338  0.24173 0.39954 

0.03 0˚ 0.04141  0.10696  0.20338  0.33491 0.50166 
15˚ 0.04113  0.10637  0.20251  0.33382 0.50038 
30˚ 0.04031  0.10462  0.19996  0.33057 0.49661 
45˚ 0.03897  0.10178  0.19581  0.32532 0.49054 
60˚ 0.03714  0.09793  0.19023  0.31831 0.48248 
75˚ 0.03488  0.09323  0.18347  0.30988 0.47287 
90˚ 0.03228  0.08787  0.17586  0.30051 0.46227 

0.06 0˚ 0.08087  0.19752  0.33807  0.51095 0.71403 
15˚ 0.08030  0.19629  0.33616  0.50834 0.71076 
30˚ 0.07863  0.19262  0.33047  0.50060 0.70105 
45˚ 0.07590  0.18663  0.32119  0.48797 0.68523 
60˚ 0.07217  0.17849  0.30857  0.47083 0.66386 
75˚ 0.06755  0.16847  0.29305  0.44980 0.63775 
90˚ 0.06219  0.15692  0.27518  0.42570 0.60804 

TABLE 1
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

( ,5 50.0r )

k 1K 2K 3K 4K 5K
0 0˚ 0.07026 0.43786 1.21530 2.35176 3.82644

0.03 0˚ 0.08191 0.44868 1.22613 2.36290 3.83770
15˚ 0.08176 0.44854 1.22598 2.36274 3.83754
30˚ 0.08133 0.44811 1.22553 2.36228 3.83707
45˚ 0.08064 0.44742 1.22483 2.36154 3.83632
60˚ 0.07973 0.44653 1.22391 2.36058 3.83534
75˚ 0.07866 0.44550 1.22284 2.35947 3.83420
90˚ 0.07749 0.44438 1.22168 2.35826 3.83298

0.06 0˚ 0.10946 0.47966 1.25799 2.39597 3.87125
15˚ 0.10902 0.47911 1.25740 2.39535 3.87061
30˚ 0.10773 0.47751 1.25568 2.39353 3.86874
45˚ 0.10565 0.47495 1.25293 2.39063 3.86577
60˚ 0.10288 0.47160 1.24934 2.38684 3.86190
75˚ 0.09954 0.46765 1.24514 2.38242 3.85738
90˚ 0.09583 0.46338 1.24062 2.37766 3.85252

TABLE 6
DIMENSIONLESS FREQUENCIES FOR ROTATING BEAM

( 0.1r , 500 )

k 1K 2K 3K 4K 5K
0 0˚ 0.00703 0.04407  0.12338  0.24173 0.39954 

0.03 0˚ 0.04882 0.12287  0.22694  0.36528 0.53741 
15˚ 0.04835 0.12185  0.22543  0.36332 0.53507 
30˚ 0.04695 0.11883  0.22093  0.35747 0.52814 
45˚ 0.04463 0.11384  0.21353  0.34791 0.51686 
60˚ 0.04141 0.10696  0.20338  0.33491 0.50166 
75˚ 0.03730 0.09827  0.19072  0.31891 0.48317 
90˚ 0.03228 0.08787  0.17586  0.30051 0.46227 

0.06 0˚ 0.09585 0.23062  0.38939  0.58102 0.80246 
15˚ 0.09491 0.22853  0.38614  0.57658 0.79684 
30˚ 0.09208 0.22227  0.37643  0.56331 0.78005 
45˚ 0.08740 0.21190  0.36037  0.54136 0.75232 
60˚ 0.08087 0.19752  0.33807  0.51095 0.71403 
75˚ 0.07249 0.17920  0.30967  0.47232 0.66572 
90˚ 0.06219 0.15692  0.27518  0.42570 0.60804 
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