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     Abstract—The present paper considers the steady free 
convection boundary layer flow of a viscoelastics fluid with constant 
temperature in the presence of heat generation. The boundary layer 
equations are an order higher than those for the Newtonian (viscous) 
fluid and the adherence boundary conditions are insufficient to 
determine the solution of these equations completely. The governing 
boundary layer equations are first transformed into non-dimensional 
form by using special dimensionless group. Computations are 
performed numerically by using Keller-box method by augmenting 
an extra boundary condition at infinity and the results are displayed 
graphically to illustrate the influence of viscoelastic K, heat 
generation γ , and Prandtl Number, Pr parameters on the velocity 
and temperature profiles. The results of the surface shear stress in 
terms of the local skin friction and the surface rate of heat transfer in 
terms of the local Nusselt number for a selection of the heat 
generation parameter γ  (=0.0, 0.2, 0.5, 0.8, 1.0) are obtained and 
presented in both tabular and graphical formats. Without effect of the 
internal heat generation inside the fluid domain for which we take 
 γ = 0.0, the present numerical results show an excellent agreement 
with previous publication. 
 
     Keywords—Free Convection, Boundary Layer, Circular 
Cylinder,  Viscoelastic Fluid, Heat Generation 

I. INTRODUCTION 
ATURAL convection has been the subject of research for 
many years due to its importance in the understanding of 

phenomena appearing in nature and their extensive 
engineering applications. Studies on the natural convection 
boundary layer flow past a horizontal cylinder have been 
conducted by several researchers. For example, Saville and 
Churchill [1] investigated the laminar natural convection 
boundary layer flow near horizontal cylinders and vertical 
axisymmetric bodies. Merkin [2] studied the natural 
convection boundary layer flow over a cylinder of elliptic 
cross section. Besides that, a study related to this topic was 
also carried out by Lien et al. [3] by examining the free 
convection heat transfer of micropolar fluid near a horizontal 
permeable cylinder at a non-uniform thermal condition while 
Bhattacharyya and Pop [4] studied the free convection heat 
transfer from an elliptical cylinder in micropolar fluids. 
Mansour et al. [5] studied the coupled heat and mass transfer 
in the magnetohydrodynamic flow of micropolar fluid on 
circular cylinders with uniform heat and mass flux, while 
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Cheng [6] studied the natural convection heat and mass 
transfer from a horizontal cylinder of elliptic cross section in 
micropolar fluid. In addition, Hossain et al. [7] examined the 
effect of thermal radiation on natural convection over 
cylinders of elliptic cross section. 

In recent years, the natural convection in viscoelastic fluids 
was investigated due to the applications these materials have 
in industry and geophysics. In the linear stability problem of 
viscoelastic fluids, only overstable convection was 
investigated as their stationary motion is identical to that of 
Newtonian fluids. Jitchote and Robertson [8] used a 
perturbation method to analyze the viscoelastic second order 
fluid flow in curved pipes of circular cross section for the case 
where the second normal stress difference is non-zero, as a 
model of polymeric liquid. Ariel and Teipel [9] investigated 
the laminar two-dimensional viscoelastic flow near a 
stagnation point using the orthogonal collocation point method 
with Laguerre polynomials. Meanwhile, the natural 
convection of a viscoelastic fluid with deformable free surface 
was studied by L.A. DaÂvalos-Orozco and E. V. Luis [10]. It 
was found that for different values of the Galileo number and 
relaxation times that are large enough, the curves of the 
critical Rayleigh numbers are lower than those of stationary 
convection and those of overstability of the Newtonian fluid 
with deformable free surface. When the lower surface is rigid, 
maxima in the curves of criticality against the relaxation time 
are found. Rasmussen and Hassager [11] used the Lagrangian 
Integral Method to model the classical problem of unsteady 
viscoelastic flow from a sphere in a cylinder. Conversely, 
Wood [12] investigated the unsteady start-up helical flows for 
Oldroyd-B and upper-convected Maxwell fluids in straight 
pipes of circular and annular cross-section.In chemical 
engineering systems, viscoelastic flows arise in numerous 
processes in chemical engineering systems. Such flows 
possess both viscous and elastic properties and can exhibit 
normal stresses and relaxation effects. Recently, the numerical 
study of transient free convective mass transfer in a Walters-B 
viscoelastic flow with wall suction was investigated by T. B 
Chang et al. [13]. Velocity was found to increase with a rise in 
viscoelasticity parameter with both time and distances close to 
the plate surface. An increase in Schmidt number and a 
separation from the plate was also observed to significantly 
decrease both velocity and concentration in time. Increasing 
species of Grashof number boosted the flow velocity at all 
times and caused a significant rise primarily near the plate 
surface.A large number of physical phenomena also involve 
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natural convection that is driven by heat generation. Vajravelu 
and Hadjinicolaou [14] investigated the heat transfer 
characteristics in a laminar boundary layer flow of a viscous 
fluid over a linearly stretching continuous surface with viscous 
dissipation/frictional heating and internal heat generation, in 
which they considered the volumetric rate of heat generation, 

3'''[ / ]q w m  as; 
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for T T
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where 0Q  is the heat generation constant. The above relation is 
valid for the state of some exothermic processes having T∞  as 
the onset temperature. Furthermore, Chamkha and Issa [15] 
studied the effect of the heat generation or absorption and 
thermophoresis on a hydromagnetic flow with heat and mass 
transfer over a flat plate, while Mendez and Trevino [16] 
studied the effects of the conjugate conduction-natural 
convection heat transfer along a thin vertical plate with non-
uniform heat generation. Motivated by the work above, this 
paper investigates the problem of free convection boundary 
layer flow of viscoelastics fluid past a horizontal circular 
cylinder with the constant temperature in the presence of heat 
generation. The results obtained herein are compared with the 
solutions by Merkin [17] and Molla [18] with the publications 
titled free convection boundary layer on an isothermal 
horizontal circular cylinders and natural convection flow from 
an isothermal horizontal circular cylinder in presence of heat 
generation respectively, in order to verify the accuracy of the 
present results. 

II.  PROBLEM FORMULATION 
The problem studied is the steady free convection boundary 

layer flow for an isothermal horizontal circular cylinder placed 
in a viscoelastic fluid. Figure 1 illustrates the geometry of the 
problem and the corresponding coordinate system. It was 
assumed that the constant temperature of the surface of the 
cylinder is wT , and that of the ambient fluid is ∞T , where 

wT T∞> corresponds to a heated cylinder (assisting flow) and 

∞<TTw corresponds to a cooled cylinder (opposing flow), 
respectively. The physical configuration considered is as 
shown in Fig. 1. 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 1 Physical model and coordinate system 

 
Under the usual Bousinesq and boundary layer 
approximations, the equations for mass continuity, momentum 
and energy took the following form: 
 
Continuity equation: 
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Where ( vu, ) are the velocity components along the axes and 
the velocity outside the boundary layer, while T, ρ, g, β, μ, k0, 
and α  are the fluid temperature, density, gravitational 
acceleration, coefficient of thermal expansion, dynamic 
viscosity, vortex viscosity and thermal diffusivity of the fluid 
respectively. 
 
Below are the following non-dimensional variables: 
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Substitution (5) into (1) to (3) led to the following non-
dimensional equations: 
 
Continuity equation: 
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Subject to the boundary conditions                                                                                                                                                                          
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Where Gr = g β ( TW – T∞ ) a3 / v2 is the Grashof number and 
was denoted with the viscoelastic parameter, K as  

                                  

5/2
0

2
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,

k
K

a
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III. SOLUTION PROCEDURES 
In order to solve (6) to (8) according to the boundary 

condition (9), the following variables were assumed: 
                ( , ), ( , )xf x y x yψ θ θ= =                              (10)                                                                                                                              

Where ψ is the stream function defined as:                                                                        

               ,u v
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                                          (11)                                                                                                                             

By substituting (10) and (11) into (6) to (8), the following 
equations were obtained: 
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With respect to the following boundary conditions 
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At the lower stagnation point of the cylinder,  , (12) to (14) 
was reduced to the following ordinary differential equation:  
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where primes denote the differentiation with respect to y .  
 
The physical quantities of principal interest are shearing stress 
and the rate of heat transfer in terms of skin friction coefficient 

fC  and the Nusselt number Nu respectively, which can be 
written as: 
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Using the variables (5) and the boundary condition into (18) 
resulted in the following: 
 

1/ 4 ''( ,0)fC Gr xf x=                                                              (19)                   
                                                       (20)              

 
The results of the velocity and temperature distributions were 
then calculated respectively from the following relations 

, ( , )fu x y
y

θ θ∂
= =

∂
                      

IV. RESULT AND DISCUSSION 
The systems of Equations (16) and (17) were solved 

numerically for some values of the heat generation 
(0.0,0.2,0.5,0.8,1.0)γ =  and viscoelastic parameter K, using 

the implicit finite-difference method known as Keller-box 
method that was very well described in the book by Cebeci 
and Bradshaw [19]. In this paper, the case in question is when  

1/ 4 ( ,0)NuGr xθ− = −
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the Prandtl number Pr  is 0.7 and 1. The present results for 
the skin friction coefficient 1/4

fC Gr  and the local Nusselt 

number, 1/4 NuGr  were also compared with those of Merkin 
[17] and Molla [18] in order to validate the numerical results 
obtained. The comparison showed that the numerical solutions 
(see Table I and II) obtained by the present authors concurs 
very well with those of previous authors.  

 
TABLE I 

COMPARISON OF THE PRESENT NUMERICAL RESULTS FOR LOCAL SKIN 

FRICTION WITH THOSE MERKIN [17] AND  MOLLA [18] AT 0γ = FOR PR =1.0 

 
TABLE II 

COMPARISON OF THE PRESENT NUMERICAL RESULTS FOR LOCAL NUSSELT 

NUMBER WITH THOSE MERKIN [17] AND  MOLLA [18] AT 0γ = FOR PR =1.0 

 
Besides that, the comparison of the present results with 

those of previous works on skin friction and heat transfer 
variation was illustrated as shown in Fig. 2, while the 
comparison on velocity and temperature profile can be seen in 
Figure 3; both illustrations show a strong assent between the 
comparisons. The present authors are therefore confident that 
the present results are very accurate. 

The variation of local skin friction and local Nusselt number 
with various values of heat generation 

(0.0,0.2,0.5,0.8,1.0)γ =  with the fixed values of K = 1 and  
Pr = 1 are illustrated in Fig.  4(a) and 4(b). From these figures, 
it can be seen that an increase in heat generation parameter, γ , 
leads to an increase in the local skin-friction coefficient and 
decrease on the local Nusselt number. This is expected as the 
heat generation mechanism creates a layer of hot fluid near the 

surface, which subsequently causes the rate of heat transfer 
from the surface to decrease. Owing to enhanced temperature, 
both the viscosity of the fluid and the corresponding local 
skin-friction coefficient increased. A similar trend was also 
observed by Molla [22] on the study of natural convection 
flow from a horizontal circular cylinder with uniform heat flux 
in the presence of heat generation. Fig. 6 illustrates the 
variation of local skin friction and heat transfer with various 
values of viscoelastic parameter, which indicated that both 
local skin friction and heat transfer decreased with an increase 
of K. 

The effect of Pr on the local skin friction and heat transfer is 
illustrated by Fig. 8(a) and 8(b), which shows that an increase 
in the value of Prandtl number leads to an increase in both the 
value of the rate of heat transfer and the local skin-friction. 
The absolute maxima of the local skin-friction may also be 
observed to shift toward the middle of the surface. Fig. 9(a) 
and 9(b) shows the distribution of velocity and temperature 
profile respectively, whereby an increase of Prandtl number is 
shown to decrease the velocity distribution, while the opposite 
trend was observed for the temperature profile. 

Since there are numerous detailed profiles of the transient 
velocity and temperature fields, the velocity and temperature 
distributions at the lower stagnation point were given at Pr = 1 
with various values of heat generation coefficient and 
viscoelastics parameter, K. These are illustrated in Fig. 4 and 9 
respectively. Based on Fig. 5(a) and 5(b), it was noticed that 
the fluid velocity increases with γ  as it contributed to the 
acceleration of the flow and enhanced the level of local skin-
friction coefficient at the same time. On the other hand, the 
temperature profile increased gradually and at 0.5γ ≥  it 
exceeded the level of surface temperature (θ  = 1), along with 
some critical levels of temperature appearing close to the 
surface of the cylinder. For 1.0γ =  the fluid temperature 
nearly doubled the surface temperature.  

Based on Fig. 7(a), it was noticed that, for 1γ =   the 
velocity distributions decreased when the value of viscoelastic 
parameter, K was increased. The values of these profiles are 
lower for a viscoelastic fluid than for a Newtonian fluid 
( K 0= ). Therefore, the thickness of the velocity boundary 
layer for a viscoelastic fluid is higher than for a Newtonian 
fluid. Meanwhile, the opposite behaviour was observed for the 
temperature profiles as shown in Fig. 7(b). This figure shows 
that the decrease of the velocity and increase of the 
viscoelastics parameter have a similar trend with the vertical 
free flows (see Katagiri [23]). This behavior reflects the 
coupling of the energy equation to the momentum equation 
through the temperature dependent body forces. 

 

 
 

X 

1/ 4
fC Gr  

Merkin 
[17] 

Molla  
[ 18] 

Series solutions 
by Molla [18] 

Present 
result 

0.0 0.0000 0.0000 0.0000 0.000000 
π /6 0.4151 0.4145 0.4144 0.412366 
π /3 0.7558 0.7539 0.7544 0.751733 
π /2 0.9579 0.9541 0.9550 0.955196 
2π /3 0.9756 0.9696 0.9701 0.977381 
5π /6 0.7822 0.7739 0.7824 0.786216 

 
 

X 

1/ 4NuGr−  

Merkin 
[17] 

Molla 
[18] 

Series solutions 
by Molla [18] 

Present 
result 

 0.0 0.4214 0.4241 0.4216 0.421411 
π /6 0.4161 0.4161 0.4164 0.416371 
π /3 0.4007 0.4005 0.4009 0.401111 
π /2 0.3745 0.3740 0.3751 0.375214 
2π /3 0.3364 0.3355 0.3389 0.337486 
5π /6 0.2825 0.2812 0.2923 0.283199 
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Fig. 2 (a)  Comparison of skin-friction for different values 

of γ  with Pr = 0.7 
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Fig. 2 (b) Comparison of heat transfer for different values 

of γ  with Pr = 0.7 
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Fig. 3 (a) Comparison of velocity distribution for different 
values of γ  with Pr = 0.7 
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Fig. 3 (b) Comparison of temperature distribution for  

     different values of γ  with Pr = 0.7      
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Fig. 4 (a) Variation of the local skin friction for different  

values of γ at Pr = 1 and 
K=1
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Fig. 4. (b) Variation of the local heat transfer for different 
values of γ at Pr = 1 and K=1 
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Fig. 5 (a) Velocity distribution for different values of γ at 

Pr = 1 and K=1 
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Fig. 5 (b) Temperature distribution for different values of 

γ  at Pr = 1 and K=1 
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Fig. 6 (a) Variation of the local skin friction fC  for  

various value of K at 1γ = and Pr=1 
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Fig. 6 (b) Variation of the local heat transfer coefficient    

wQ  for various value of K at 1γ = and Pr 
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Fig. 7 (a) Velocity distribution for different values of K at 
1γ = and Pr = 1 
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Fig. 7 (b) Temperature distribution for different values of 

K at 1γ = and Pr = 1 
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Fig. 8 (a) Variation of the local skin friction for different 

values of Pr at 1γ =  and K=1 
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Fig. 8 (b) Variation of the local heat transfer for different values of 

Pr = 1 at 1γ =  and K=1 
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Fig. 9 (a) Velocity distribution for different values of Pr 

at 1γ = and K=1 
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Fig. 9 (b) Temperature distribution for different values of 

Pr  at 1γ = and K=1 

V. CONCLUSION 
The steady free convection boundary layer flow of an 

incompressible viscoelastic fluid past an isothermal 
horizontal circular cylinder has been investigated 
numerically in this paper. The governing boundary layer 
equations were transformed into a non-dimensional form 
and the resulting nonlinear system of partial differential 
equations was solved numerically using the Keller-box 
method. 

This paper has revealed how the parameter K, and the 
Prandtl number, Pr affect the flow and heat transfer 
characteristics. From the present investigation, the 
following conclusions can be drawn:  

1. An increase in the value of Pr leads to a decrease 
of both the wall temperature distribution (x)  
and the velocity distribution '( )f x  

2. An increase in the value of Prandtl number leads 
to an increase in the value of the rate of heat 
transfer, while the opposite effect applies for the 
local skin-friction. 

3. An increase in heat generation parameter,γ , 
leads to an increase in the local skin-friction 
coefficient and decrease on the local Nusselt 
number.  

4. In the presence of heat generation, the velocity 
distributions decrease when the value of 
viscoelastic parameter, K increases. The values 
of these profiles are lower for a viscoelastic fluid 
than for a Newtonian fluid ( K 0= ). 

5. Velocity distributions decrease when the value of 
viscoelastic parameter, K is increased while the 
opposite behaviour is observed for the 
temperature profiles. 

6. When the viscoelastics parameter, K increases it 
reduces both the values of skin friction and heat 
transfer (local Nusselt number). 
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