International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

Free and Open Source Licences, Software
Programmers, and the Social Norm of Reciprocity

Luke McDonagh

Abstract—Over the past three decades, free and open source
software (FOSS) programmers have developed new, innovative and
legally binding licences that have in turn enabled the creation of
innumerable pieces of everyday software, including Linux, Mozilla
Firefox and Open Office. That FOSS has been highly successful in
competing with 'closed source software' (e.g. Microsoft Office) is
now undeniable, but in noting this success, it is important to examine
in detail why this system of FOSS has been so successful. One key
reason is the existence of networks or communities of programmers,
who are bound together by a key shared social norm of 'reciprocity’.
At the same time, these FOSS networks are not unitary — they are
highly diverse and there are large divergences of opinion between
members regarding which licences are generally preferable: some
members favour the flexible ‘free’ or 'no copyleft' licences, such as
BSD and MIT, while other members favour the ‘strong open’ or
'strong copyleft' licences such as GPL. This paper argues that without
both the existence of the shared norm of reciprocity and the diversity
of licences, it is unlikely that the innovative legal framework
provided by FOSS would have succeeded to the extent that it has.

Keywords—Open source,
networks.

software, licences, reciprocity,

I. INTRODUCTION

A.Free and Open Source Software (FOSS) Licensing
Systems

N the online world, any alternative to the traditional

copyright licensing system must endeavour to serve the
underlying purposes of copyright while not restricting the
workings of the internet. The subject of this article is one such
alternative, the free and open source licensing system. The
development of ‘free’ and ‘open source’ licensing has
occurred over the past thirty years, during a period of intense
debate about the role of intellectual property rights in the
online era [1]. Indeed, within the current political and
economic sphere, there is little consensus regarding the issue
of how broad intellectual property protection should be with
respect to new forms of computer software and operating
systems. In this respect it is notable that FOSS programmers
typically object to the traditional ‘closed’, and ‘for-profit’,
licensing model of copyright [2]. This objection is typically
founded upon the argument that intellectual property law fails
to adequately facilitate the processes of cultural innovation
within the context of software development [3]. For instance,
adherents of FOSS tend to hold the belief that the ‘closed
code’ model of software development is unduly restrictive and
that it put too much power in the hands of corporate entities

Dr Luke McDonagh is with the City Law School, City University of
London, London, UK (e-mail: luke.mdonagh@city.ac.uk).

[4]. Crucially, many software programmers seek to develop
their software works in a collaborative, online environment.
Providing access to the source code is vital in order to allow
programmers to improve and modify the software in
accordance with their own needs. It is within this context that
the first FOSS licences were developed [5]. The development
of the licences was therefore a necessary achievement in order
to further a novel, practical goal - to ‘open’ up software
development to all potential contributors.

The well-known NGO 'the Open Source Initiative' has
stated that ‘open source’ has the goals of facilitating free
redistribution, allowing open access to the source code,
allowing the distribution of derived works under the same
terms, protecting the integrity of the author's source code, and
preventing the licences from restricting other software
programs. There are two fundamental principles of ‘open
source’: (1) users ought to be able to use open source software
for any purpose; (ii) users ought to be able to modify and
distribute the software without the need for prior authorisation
from the initial developer [5]. Nonetheless, Westkamp has
noted that finding ways to regulate this ethos within the law is
not a straightforward matter [6]. For this reason, as detailed
further below, there are many different types of free and open
source licences, and the terms of each licence depend upon
whether the licence is a ‘permissive’ or ‘restrictive’ open
source licence.

The FOSS system of licensing works alongside copyright,
rather than replacing it. At a basic level, open source has been
described as ‘a legal construct for cooperation and trade in
intellectual property’ [7]. It takes advantage of the fact that in
certain contexts some authors may not wish to avail of all of
the rights which arise automatically under [8]. In this vein,
Kelty has stated that alternative licensing systems ‘rely on the
existence of intellectual property” in order to maintain
creativity e.g. within a network ‘even as they occupy a
position of challenge or resistance to the dominant forms of
intellectual property’ [9]. Similarly, Dixon has remarked that
there is ‘real ingenuity’ concerning the way open source
licences have the ability ‘to both reinforce the prevailing legal
regime of copyright and to undermine it’ [10].

FOSS licence drafters attempt to ‘bend’ the traditional
copyright licensing system so that it can be better tailored to
suit the individual creator - the software programmer. In fact,
it is only because of the underlying copyright protection that
the authors/programmers have the capability to license the
programs contractually. This is an innovative tactic, and it
holds several advantages over the position of pursuing a legal
amendment e.g. via lobbying. For one thing, it saves time,

2475

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

money and effort on the part of the programmers.
Furthermore, as detailed further below, the alternative
licensing solution also can better satisfy a great diversity of
views on the subject. Within the FOSS system a number of
different licences can be created, whereas a single amendment
to copyright might actually end up being overly permissive or
unduly restrictive to the needs of some programmers.

In the case of a software program featuring ‘open’ source
code, any programmer is free to access the code and to modify
the program. In other words, keeping the source code ‘open’
facilitates collaborative creation. As detailed below, in order
to enable ‘open source’ collaboration, individual authors
choose to license the economic and moral rights over their
works in a flexible way, with the goal of allowing other
programmers the freedom to use, modify and improve the
programs without fear of breaching the laws of copyright.
Furthermore, as described below, there is a normative
foundation underpinning the legal framework of open source
licences. However, the terminology of FOSS is not settled.
Within FOSS discourse there is also much discussion of the
terminology of the licences themselves. To some extent there
is a divide between supporters of ‘free’ licences and
supporters of ‘open’ licences. The term ‘copyleft’ is used
widely, but can mean different things in different contexts.

B. Exploring the Diversity of FOSS Licences

To date, around 100 FOSS licences have been approved by
the Open Source Initiative, a non-governmental organisation
which aims to make the world of open source licensing
accessible and comprehensible both to programmers who seek
to utilize the licences and to users of open source software.
The open source licences themselves range from being
‘permissive’ licences featuring very few restrictions, such as
the Apache licence and the Berkeley Software Distribution
licence (BSD), to ‘restrictive’ licences, such as the GNU GPL
version 3. There are also licences, such as the Mozilla Public
Licence (MPL) and Eclipse, which aim to provide a balance
between these two extremes. Microsoft has even drafted its
oven open source licences, which have been approved by the
Open Source Initiative (OSI). The European Union also now
has its own official open source licence, the European Union
Public Licence (EUPL).

The reason for the prevalence of different licences is that
software programmers form a diverse group. Different groups
of open source programmers may favour different licences.
Some programmers tend to favour the ‘permissive’ licences,
while other programmers favour the ‘restrictive’ licences.
Furthermore, individual programmers may also undertake
varying different types of activities. For instance, a
programmer may engage in commercial activities with respect
to some programs, while at the same time he or she may also
work on other programs in a non-commercial capacity. For
this reason, a programmer potentially has the freedom under
the open source model to utilise one type of open source
licence for commercial activities and another type of licence
for non-commercial activities. For instance, if a software
programmer intends to create a program, the programmer

would like other programmers to be able to modify and
improve it, he or she may find that a number of licences will
allow this effectively. However, the need for distinct licences
becomes clear if additional terms are required by the
programmer. For example, if the programmer wishes to allow
others to modify and improve the work, and he or she does not
mind what the other programmers may do with the modified
work, commercially or otherwise, a permissive-type licence
such as the Apache licence or the Berkeley Software
Distribution licence (BSD) would probably be the best option.
These types of licence give complete freedom to the later user/
contributor/distributor regarding use and distribution of the
work. The code can even be integrated into ‘closed’ programs
under and distributed commercially under this type of licence.
On the other hand, if the programmer wishes to prevent others
from any commercial use of the modified, or ‘derivative’,
work, and the programmer wants the code to remain open, a
restrictive licence such as GPL version 3 would be preferable.
Under GPL version 3, all derivative content and ‘linked’
works must feature open code and the programs cannot be
distributed commercially. Other licences tend to fall in
between these two extremes. An example of this is the Mozilla
Public Licence (MPL), which allows any distributions of
modified code to be kept ‘closed’, and therefore potentially
more commercially viable, as long as the original program’s
source code remains ‘open’. There is therefore a great
diversity of OS licences. This enables programmers to pick
and choose the terms of their licences.

As noted above, under the open source model, each
individual programmer has the ability to license his or her
authored programs in line with his or her own individual
wishes. However, in a case where the programmer is seeking
to make contributory modifications to an existing open source
program, he or she may be restricted in distributing a modified
version of the program under the terms of the original open
source licence. If the open source licence under which the
original was distributed was a ‘permissive’ licence, the new
contributor will not face much by way of licence term.
Typically, the contributor would only be required to make
accessible the terms of the original licence. However, if the
open source licence under which the original work was
distributed was a ‘restrictive’ licence such as GPL version 3,
then any modified code featured in the new version of the
program may also be required to be left ‘open’. The inability
to keep even the new modifications ‘closed’ could discourage
some contributors because it would potentially undermine
commercial exploitation of the modified program. GPL
version 3 has been criticised by some programmers for being
too ‘strict’ for this reason. Nevertheless, all of this diversity
may come at a cost. For instance, the proliferation of different
licences that are potentially available to programmers may
make it difficult for later users/contributors/distributors to
comprehend which uses are acceptable and legal [11]. For this
reason, the Open Source Initiative has tried to curb the
enactment of new licences, and some older, or poorly
designed, licences have effectively been’ retired’ from use.
However, these efforts have largely failed to prevent the

2476

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

negative aspects of proliferation from taking place [11].
Furthermore, the majority of software programs are released
under one of the 10 most popular licences, which does to some
extent mitigate some of the proliferation issues. On this point,
it has been argued that the proliferation of licences represents
both ‘helpful diversity’ and ‘hopeless confusion’ [11]. In other
words, despite the potential for confusion, there may be no
other way to satisfy the diverse licensing needs of the software
programmers [12].

II. SOCIAL NORMS

A. Social Norms Are Prevalent within FOSS Licensing

As previously noted, this article argues that underpinning
the legal aspects of FOSS is a foundation of informal social
norms [13]. On this point has been stated that the open source
model has in recent years ‘imposed itself as a powerful social
ideology’ [5]. The importance of informal social norms in this
context ought not to be underestimated. Indeed, the presence
of shared social norms has been crucial to the success of
network-based creativity within the FOSS movement - indeed,
the unifying principle of FOSS is ‘built upon an ethos of
sharing’ [6]. As discussed below, this ethos of sharing can be
described by the term ‘generalised reciprocity’.

Belenzon and Schankerman have performed empirical
research on the motivations of open source programmers [14].
They found that the ideology of ‘open source’ plays a crucial
role in motivating programmers. They also found that
reputational factors were significant, and to a limited extent, a
direct form of reciprocity was also an influence on the
motivations of programmers. Given its importance in this
context, the ideology of ‘open source’ must be examined in a
normative sense.

As noted above, central to the ideology of FOSS is the fact
that FOSS programmers believe that ‘software should be
offered to users with open access to the source code’ and that
‘end-users should be freely able to modify, copy, or
redistribute’ the programs in order to create better and more
accessible software [10]. In other words, this ideology is
centred on a belief that software is best produced when the
code is left ‘open’ so that all other programmers have the
capacity to make contributions to improve the software. As
noted above, this ideology is clearly based on some form of
‘share-ethic’. This article describes the underlying normative
base of open source as ‘generalised reciprocity’. lannacci has
previously used this term to describe the motivational factors
underpinning open source. He remarked [15]:

« open source developers do contribute their
derivative works back to the community... this is the
case because they share norms of generalised reciprocity
whereby they are entitled to expect future reciprocation
in the form of the derivative work of third parties.”

This idea of ‘generalised reciprocity’ differs from the
direct form of ‘reciprocity’ examined by Belenzon and
Schankerman - they envisaged a scenario where one
programmer would contribute to one project, and in return
another programmer would reciprocate by contributing to the

original programmer’s own project [14]. As Belenzon and
Schankerman stated, this form of direct reciprocity plays a
strong role in a limited number of projects, but it generally
does not play a large role in motivating open source
programmers. However, this article argues that the underlying
ideology of open source, which Belenzon and Schankerman
acknowledge is a crucial motivational factor for open source
programmers, does have a normative foundation based upon
this broader concept of ‘generalised reciprocity’ [14]. Under
this idea, programmers use and contribute to open source
projects not because they believe that other programmes will
necessarily reciprocate to their own individual projects, but
because they believe that within the grand scheme of ‘open
source’ they ought to share their contributions within the
network, while simultaneously reaping the benefits of other
shared contributions. It appears that open source programmers
believe that this model ultimately produces better and more
accessible software than the traditional ‘closed’, proprietary
model. Furthermore, the existence of a large, global network
of programmers helps to facilitate this process. On this point,
it has been noted that the presence of interdependent
relationships within the network is a key part of the success of
open source [16]. In this vein, central to Benkler’s vision of a
‘network’ is the concept of ‘peer production’ [17]. This idea
envisages a number of programmers, or ‘peers’, contributing
to the development of software in a collaborative environment.
These programmers are not necessarily working together in a
team in the same building, in the same city or even in the same
country. Each programmer has the ability to make his or her
own individual changes and modifications to the software and
distribute this via the internet. Because the source code for the
new version of the program is accessible, other programmers
have the ability to continue make further changes to the
program down the chain of ‘peers’. Therefore, it appears that
open source programmers form ‘generalised’ and ‘indirect’
reciprocal bonds with each other, with the internet providing
the crucial conduit for this process [18]. Indeed, there are
parallels to be found with other creative contexts. For instance,
Loshin has recently discussed the notions of authorship,
ownership and creativity within the magicians’ community in
the US, and in particular the crucial role played by social
norms, rather than intellectual property law, in regulating the
sharing of magic tricks [19]. In relation to ‘stand-up comedy’,
it has been argued that until recent times, the transmission and
performance of jokes by comedians were ‘governed by an
open access regime’ which was also based largely on social
norms [20]. Furthermore, it has also been noted that over the
past few decades, in response to social and economic
pressures, comedians have developed a more complex set of
‘non-legal norms, institutions and practices that maintain a
non-trivial set of incentives to create’ [20]. Programmers
within the open source network have taken this informal,
normative approach to regulation a step further. Not only is
‘generalised reciprocity’ part of the ideology of open source,
individuals within the network have also created a system of
licences in order to legally and formally regulate the creation
and distribution of open source software.

2477

International Journal of Business, Human and Social Sciences
ISSN: 2517-9411
Vol:10, No:7, 2016

I1I. CONCLUSION

For the purpose of this article, two points are of
significance. Firstly, the programmers have developed and
encouraged the use of new, innovative and legally binding
licences. These licences are formed of a complex mixture of
copyright and contract law. Secondly, the success of this
system of free and open-source licensing appears to be due to
the existence of a network or community of programmers,
who are bound together by some shared social norms which
can be grouped under the general idea of ‘generalised
reciprocity’. The open source network is not unitary — it is a
diverse network and there are divergences of opinion between
members regarding which licences are generally preferable.
Some members favour the ‘free’ licences and other members
favour the ‘strong open’ licences. Each individual member of
the community licenses his or her works depending on his or
her own individual wishes. Nonetheless, without the existence
of shared norms, it is unlikely that the innovative legal
framework provided by the open source system would have
succeeded to the extent that it has. In particular, the open
source system would not have proved successful had the
unifying principle of generalised reciprocity not been accepted
broadly.

Overall, the open source system has been a great success,
though some challenges remain, particularly due to licence
proliferation and patent issues. Furthermore, the success of
these types of licences for software programs is largely down
to the programmers themselves. The programmers have
created tailored licence-based solutions rather than resorting to
the use of traditional modes of political law-making. Instead
of lobbying for an amendment to the intellectual property
statutes, the programmers have successfully taken the law into
their own hands.

REFERENCES

[1] D. Hunter, 'Culture War,' Tex L Rev 83 (2004-2005), 1105.

[2] L. Rosen, Open Source Licensing — Software Freedom and Intellectual
Property Law (Upper Saddle River, NJ: Prentice Hall PTR, 2004), 1-18.

[3] M. Henley & R. Kemp, 'Open Source Software: An introduction,’
Computer Law & Security Review 24 (2008), 77, 77-78.

[4] R. Stallman, Free Software, Free Society (GNU Press, 2002), 47-48.

[5] L. Guibault and O. van Daalen, Unravelling the Myth around Open
Source Licences: An Analysis from a Dutch and European Law
Perspective (The Netherlands: T.M.C. Asser Press, 2006), 6-11.

[6] G. Westkamp, 'The Limits of Open Source' IPQ (2008), 14, 57.

[7]1 V. Lindberg, Intellectual Property and Open Source: A Practical Guide
to Protecting Code (O'Reilly Media, 2008), 155.

[8] G. P. Rosloff, “Some Rights Reserved”: Finding the Space Between All
Rights Reserved and the Public Domain," Columbia Journal of Law &
the Arts 33 (2009), 37, 68.

[91 C. M. Kelty, 'Punt to Culture," Anthropological Quarterly 77 (2004),
547, 547.

[10] R. Dixon, Open Source Software Law (Artech House, 2004), 22.

[11] R. W. Gomulkiewicz, 'Open Source License Proliferation: Helpful
Diversity or Hopeless Confusion?' Washington University Journal of
Law and Policy 30 (2009), 261, 261-263.

[12] M. F. Schultz, 'Copynorms: Copyright Law and Social Norms,' (2006),
1. 1-5 - http://papers.ssrn.com/sol3/papers.cfm?abstract_id=933656. E.
Ostrom, Governing the Commons (Cambridge: Cambridge University
Press, 1990).

[13] R. P. Merges, 'Individual Creators in the Cultural Commons,' Cornell
Law Review 95 (2010), 793, 805.

[14] S. Belenzon and M. Schankerman, "Mark Motivation and sorting in open
source software innovation,' EDS Discussion Papers DP019 (2008), 1,
4-5.

[15] F. lannacci, 'The social epistemology of open source software
development: The Linux case study,’ (2005), 1, 11 -
https://www.researchgate.net/publication/267259227 THE SOCIAL_E
PISTEMOLOGY_OF_OPEN_SOURCE_SOFTWARE_DEVELOPME
NT_THE_LINUX_CASE_STUDY

[16] A-K Kuehnel, 'Microsoft, Open Source and the software ecosystem: of

predators and prey—the leopard can change its spots,' Information &

Communications Technology Law 17 (2008), 107, 109-110.

Y. Benkler, The Wealth of Networks (New Haven, CT: Yale University

Press, 2006), 59-91.

[18] J. Feller and B. Fitzgerald, Understanding Open Source Software
Development (Addison Wesley, 2002), 1-5.

[19] J. Loshin, 'Secrets Revealed: How Magicians Protect Intellectual
Property Without Law,' (2007), 1, 1-13 -
http://www.udel.edu/richard/cisc356/2010/SSRN-id1005564.pdf

[20] D. Oliar and C. J. Sprigman, 'There's No Free Laugh (Anymore): The
Emergence of Intellectual Property Norms and the Transformation of
Stand-Up Comedy,' Virginia Law Review 94 (2008), 1787, 1865-1866.

(17

2478

