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Fractional Order Controller Design for Vibration
Attenuation in an Airplane Wing
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Abstract—The wing is one of the most important parts of an
airplane because it ensures stability, sustenance and maneuverability
of the airplane. Because of its shape, the airplane wing can be
simplified to a smart beam. Active vibration suppression is realized
using piezoelectric actuators that are mounted on the surface of the
beam. This work presents a tuning procedure of fractional order
controllers based on a graphical approach of the frequency domain
representation. The efficacy of the method is proven by practically
testing the controller on a laboratory scale experimental stand.
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[. INTRODUCTION

IBRATION suppression techniques and aero elasticity

allow airplanes to improve safety and flight quality. Also,
the damage produced by engine vibration is minimized
increasing the airplane’s lifespan and minimizing the fuel
consumption.  Atmospheric  turbulences represent an
unavoidable and significant source of vibration during flight
and their presence is critical in aircraft design. Also, solutions
to actively suppress the effects of turbulences are taken into
consideration and implemented.

The airplane wing can be seen as a cantilever beam, or a
smart beam if it is equipped with sensors and/or actuators. This
is the reason why most studies that tackle the problem of wing
vibration prove the veracity of the solutions on smart beams , .
The active vibration suppression is realized using piezoelectric
materials attached to the surface of the beam. From a practical
point of view, framing the piezoelectric materials on the surface
is preferred, rather than embedding them since the first option
facilitates access for inspection and reduce manufacturing and
maintenance costs . Another advantage is the fact that
piezoelectric actuators have no effect on the aerodynamics
without generating auxiliary magnetic fields .

There are many studies and methods developed for vibration
mitigation using a wide range of tuning methods, from fuzzy
controllers to the more complex fractional order controllers.
References , present the design of a fuzzy controller that
suppresses bending and torsional vibrations of the airplane
wing. In , a controller based on Linear Quadratic Theory is
developed and implemented on a smart cantilever beam. The
efficacy of using adaptive control in the case of beam vibrations
is detailed in Fractional order controller design and
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implementation on a smart beam is presented in .

Fractional order tuning methods and fundamentals are
presented in , while presents the tuning of a fractional order
Proportional Derivative controller by imposing frequency
domain constraints such as phase and magnitude designed
specifically for smart beam vibration suppression. Fractional
order controllers represent an alternative to traditional integer
order controllers. Advantages in using fractional calculus come
from the increased number of tuned parameters which offers
flexibility and a better characterization of the system. It is
considered that fractional order PI*D* controllers honor more
performance specifications and are more robust that integer
order controllers, but are more difficult to tune since there are
five parameters: kp, ki, kg, 4 and u and fractional calculus is
more complex than the integer one.

This paper presents the design of a fractional order PI"D*
fractional order controller based on a graphical approach. The
five parameters are determined through optimization
techniques in the frequency domain.

II. TUNING PROCEDURE

The novelty of the tuning procedure presented is directly
addressing the resonant peak. Analyzing the Bode diagram of
an underdamped process it can be observed a peak on the
magnitude plot at the natural frequency of the process. When
the system is excited with a sine wave having the frequency
equal to its natural frequency, the amplitude increases with time
exhibiting a behavior known as resonance. The fractional order
controller further developed and tested is tuned with the
purpose of lowering the resonant peak of the closed loop
system.

A similar tuning procedure was used in to tune a fractional
order PD controller that suppresses vibrations in civil structures
using tuned mass dampers. In this paper, a fractional order
PI*D* controller is tuned that has to successfully reject
disturbances.

The fractional order transfer function of PI*D* is:

1
Hgo—pip(s) :kp+ki's_z+kd'5# (1)

where A is the order of the integrator and u is the order of the
differentiator. In the case of a classic PID, A and u are equal to
1, but if the controller is fractional the values of A and p usually
belong to [0, 1]. However, there are cases when better results
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are obtained by expanding the interval to [0, 2]. The variables
kp, ki, ka represent the proportional, integral and derivative
gains. When the transfer function of the controller is expressed
in the frequency domain, s is replaced with jw, where j is the
imaginary unit and w is the frequency (rad/s).

Expanding (1) based on the trigonometric form of a complex
number gives:

Hro—pip(jw) =k + kiw"lcos%1 —jkiou"lsin”?/WL +

kg4 w“cosnz—” +jkda)“sinnz—” 2)

The terms in (2) can be rearranged such that the equation is
expressed as a sum of the real and imaginary parts.

The real part of the controller is noted with ReC and the
imaginary part is noted with ImC.

A M,
ReC(w) = ky + kiw‘AwST + kdw”cos%

. T 1. A
ImC(w) = kdw“SLn?— kiw™ sin—-

Hpo-pip(jw) = ReC(w) + jImC(w) (3)

The tuning procedure is exemplified on second order plant
characterized by the transfer function:

Hy($) = pro o 4
which can also be expanded into trigonometrical form:
ReP(w) = k(wn” = w9
(wy? — w?)? — (2 wyw)?
ImP(@) =57 ;Zzlgiain(;)gwnw)z
H,(jw) = ReP(w) + jImP(w) 5

The method is not limited to a second order process. It can
be expanded for any order.
The closed loop transfer function is:

__ Hp(s)Hpo-pID(s)

Ho(s) = 14+Hp(s)-Hro-pPID(S) ©)
from which the equation of the closed loop magnitude is
obtained as:

J(ReP2Z+ImP2Z)(ImC2+ReC?)

J1+(ReP2+1mP2)(ReCz+1mCZ)+
2 ReC ReP—-2 ImC ImP

|Ho(s)| = %

The parameters of the fractional order controller are
determined by imposing the magnitude for the closed loop of
the system at certain frequencies.

|Hy(jw1)| = xdB, wq =arad/s
|H,(jw,)| <ydB, w,=brad/s 8)
{IHo(jwz)I =2zdB, wy =crad/s

The values are imposed based on the magnitude plot of the
transfer function of the process. First, the frequency range of
interest should be determined and it must contain the resonant
peak. There is not a minimum size for the interval, but it must
include the frequencies of interest. In this method, robustness
is not a parameter that influence the obtained controller and it
is obtained by choosing a wider frequency of interest when
imposing the constraints. The constraints from (8) are not
limited to the specified equality/inequalities, but it is suggested
that only the resonant peak is constrained through an inequality
in order to limit the number of found solutions. Apart from the
constraints in (8), the solution should be limited such that the
gains kp, ki, k> 0 and A, 4 € (0,2). Also, the chosen value for
the magnitude of the resonant peak should be chosen such that
the magnitude line is smoother and the peak is almost
eliminated.

After determining the desired values of the closed loop
magnitude, the controller tuning turns into an optimization
problem which can be easily solved using MATLAB’s
Optimization Toolbox. One option is using the fmincon
function which finds the minimum of a constrained nonlinear
multivariable function. The obtained solutions depend on the
chosen initial point. By running the optimization starting from
one initial point it is not guaranteed that a satisfactory solution
is found. A solution to this problem is choosing initial points
for the variables close to the expected values and perform the
optimization for every combination of initial points. For
example, since it is known that A, 4 € (0,2) a possible point to
start from is 4o = 0.05 and p, = 0.05 and optimize for every
combination of initial points incremented by 0.05 until 4, = 2
and yy = 2.

It is known that an integrator 1/s introduces a slope of -20
dB/decade while s introduces a slope of +20 dB/decade. If the
analysis is done for fractional order integrator 1/s%, it can be
observed that the slope varies between 0 and -20 dB/dec, while
for the differentiator s# the slope varies between 0 and +20
dB/decade.

III. CASE STUDY

A. Experimental Setup

The tuning procedure presented in Chapter I, was practically
tested on an experimental stand. The stand consists of: smart
beam, 4 PZT patches, real time controller and input and output
modules.

The experimental setup can be seen in Fig. 1. The beam is
made of aluminum and has the following dimensions: 250 mm
length, 20 mm height, 1 mm width. It is positioned
perpendicular to the ground. The fixed end allows the free end
of the beam to vibrate left and right.

For the PZT patches the P-878 DuraAct Power Patch
Transducers were chosen. The piezoelectric patches are glued
to the fixed end of the beam, two on each size. The patches are
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used as actuators. The nominal operating voltages are between
-20 and 120 V, while the power generation is possible up to the
milliwatt range. The dimensions of one patch are 27 mm x 9.5
mm x 0.5 mm and the block force is 44 N.

Fig. 1 Experimental setup

Fig. 2 The smart beam

Fig. 3 PZT patches and strain gage sensor mounted on the surface of
the beam

The patches are controlled with the E-500 9.5” chassis, which
has E-509 PZT-Servo controller and E-503 LVPZT-Amplifier
on 3 wires.

The displacement of the free end of the beam is measured by
measuring the strain using 120 ohm Omega Prewired KFG-5-
120-C1-11L1M2R strain gauge sensors (Fig. 3).

All 4 PZTs working together are able to produce a vibration
of amplitude up to 20 mm in the free end of the smart beam. In
the experiments performed only the patches from one side were

used. Better results can be obtained by using all four patches for
vibration attenuation.

For data acquisition and control, the CompactRIO™ 9014
real-time controller was used. The output of the strain gauge
actuator is read using the N1 9215 module, while the mechanical
stress is induced in the PZTs by the NI 9263 through the E-501
modular piezo controller. The control algorithm and the
communication is implemented using LabVIEW ™,

For identification purposes, the NI Educational Laboratory
Virtual Instrumentation Suite (NI ELVIS™) was used to
generate a sine wave.

B. System Identification

The system identification was performed experimentally
based on the response of the system to a sine wave of amplitude
2 and frequency 14.75 Hz. The transfer function that describes
the system is:

49.62
s2+1.286s+ 5857

Hy(s) = )

The fit of the sinus response of the second order transfer
function and the experimental data is greater than 90%.
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Fig. 4 Sinus response of Hf compared to the experimental data

Since a second order transfer function is able to accurately
describe de system, there is no need to determine a higher order
approximation. Using a higher order, the volume of calculus
increases without considerable improvements in the closed loop
response.

C.Fractional Order Controller Tuning

Since the transfer function of the process is identified, the
real and imaginary parts expressed in (5) are known.

The next step is to determine the constraints that have to be
imposed. Since the PI*D* controller has 5 parameters, 5
constraints will be imposed. These are determined by analyzing
the Bode magnitude plot and determining the frequencies and
corresponding values in the frequency range of interest.

|H,(jw)| = —41dB, w = 10rad.s

|H,(jw)| = —41.5dB, w = 23 rad/s

|H,(jw)| < —42 dB, w, = 76.5rad/s (10)
|H,(jw)| = =86 dB, w = 10%rad/s

|H,(jw)| = =126 dB, w = 10* rad/s

As can be seen in (10), only the resonant peak has an
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inequality constraint, while the rest are equality constraints.
These are not the only possible values; any combination of
constraints should achieve satisfactory results for the imposed
range.

The frequency domain plot of the open loop system and the
coordinates of the imposed constraints can be seen in Fig. 5.

Bode Diagram

—Hf
imposed
constraints

Magnitude (dB)

10° 10! 10? 10 10* 10°

Frequency (rad/s)

Fig. 5 Open loop magnitude plot and imposed constraints

The initial conditions for which the optimization was
performed were chosen kp, ki, kg, ¢4 € [0,1] and A € [—1,0]. The
optimization algorithm was applied for every combination of
initial parameters in the previously mentioned intervals with a
step of 0.1.

One of the controllers that honors the constraints has the
transfer function:

Hro-pip(5) = 2" —g5z + 0.001 - 506% (11)

The values found for the proportional gain was 0 which is not
surprising since we do not want to move the plot up or down,
we only want to lower the peak. Even if the derivative gain has
a very small value, it makes a considerable difference in the
closed loop Bode plot.

Bode Diagram

B0

Magnitude (dB)

-100

-120

.
10’ 102 10°

Frequency (rad/s)

Fig. 6 Magnitude plots of the open and closed loop system

As it can be seen in Fig. 5, all the equality constraints

imposed in (10) are honored. The resonant peak has not
disappeared, but the peak magnitude has lowered.

Since fractional order transfer functions cannot be directly
implemented practically, they have to be approximated to
integer order transfer functions. Several approximation
methods have been developed among the years such as
Continued  Fraction  Expansion,  Oustaloup  Filter
Approximation, Modified Oustaloup Filter, etc., [13].

The method chosen for approximation is a novel digital
implementation that maps the discrete time operator z* to the
Laplace operator S and evaluates the discrete frequency
response of the fractional order system [14].

Since the purpose of real life active vibration suppression
techniques is to reject unwanted vibrations, the performance of
the controller was tested based on impulse type disturbances. In
the case of an airplane wing, the vibration suppression
algorithm has the purpose of eliminating all disturbances
caused by atmospheric turbulences.

The amplitude of the impulse disturbance is 1 cm and it was
applied to the free end of the beam.

A — Open loop response |1

Amplitude (cm)

Time (s)

Fig. 7 Impulse type disturbance response of the uncompensated
system

Fig. 6 shows the disturbance response of the open loop
system with a settling time between 5 and 6 seconds.

open loop
closed loop

r M'a'h‘n\“ﬁ\i’h\wr VAR o]

Amplitude (cm)
o

0 2 4 6
Time (seconds)

Fig. 8 Closed loop impulse disturbance response

The closed loop response to a disturbance equal in amplitude
is shown in Fig. 7 overlaid on the uncompensated system
response. In Fig. 6, it can be see that the oscillations of the beam
are mitigated in approx. 0.4 seconds, improving the open loop
settling time by 92%.
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Fig. 9 Zoomed disturbance response of the closed loop

An important remark is the fact that the disturbance response
of the closed loop is obtained by using only 2 patches from the
same side. If all 4 patches would be used the response would be
improved even further.

IV. CONCLUSION

Airplane wings can be modeled as smart beams due to their
shape and vibration characteristics. Piezoelectric actuators are
ideal in vibration mitigation of the airplane wing.

The graphical frequency domain method presented based on
lowering the resonant peak can be successfully used to tune
fractional order controllers.

The obtained controller successfully rejects impulse type
disturbances of the free end of the smart beam, bringing
improvements of the settling time with up to 92%.
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