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Abstract—Genetic Algorithms (GAs) are direct searching 

methods which require little information from design space. This 
characteristic beside robustness of these algorithms makes them to be 
very popular in recent decades. On the other hand, while this method 
is employed, there is no guarantee to achieve optimum results. This 
obliged designer to run such algorithms more than one time to 
achieve more reliable results. There are many attempts to modify the 
algorithms to make them more efficient. In this paper, by application 
of fractal dimension (particularly, Box Counting Method), the 
complexity of design space are established for determination of 
mutation and crossover probabilities (Pm and Pc). This methodology 
is followed by a numerical example for more clarification. It is 
concluded that this modification will improve efficiency of GAs and 
make them to bring about more reliable results especially for design 
space with higher fractal dimensions.   
 

Keywords—Genetic Algorithm, Fractal Dimension, Box 
Counting Method, Weierstrass-Mandelbrot function.   

 
I.  INTRODUCTION 

SSOCIATED with a typical design problem, nowadays, 
many different techniques are used for optimizing the 

design space. Most of these techniques can be classified under 
either calculus-based techniques or direct search methods. 
However, the calculus-based methods are deficient in 
robustness over the broad spectrum of optimization function 
that arises in engineering optimization.  In recent years, the 
direct-search techniques, which are problem-independent, 
have been proposed as an elixir for the difficulties associated 
with the traditional techniques. One of these techniques is 
genetic algorithms (GAs) which are global search and 
optimization methods that mimic natural biological evolution. 

Genetic Algorithms were, firstly, invented by John Holland 
in the early 1970 [1]. Subsequent to him, many researches 
tried to improve the technique to obtain more reliable results 
[2]-[5]. These modifications are usually due to choice of 
effective parameters for genetic operations for a particular 
problem. For example a certain crossover structure may be 
proposed for specific situations in a problem to make a more 
efficient genetic algorithm. The efficiency consists of reducing 
CPU time and increasing accuracy of results. 

Fractals are objects which have similar appearances when 
viewed at different scales. Such objects have details at 
arbitrarily small scales, making them too complex to be 
represented by Euclidian space; hence, they are assigned a  
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non-integer dimension. Generally, continuous and non-
differentiable functions have been represented as a curve with 
fractal dimensions between one and two. There are different 
ways to define fractal dimension, most being equivalent in the 
continuous domain. However, when applied in practice to 
discrete data sets, different ways lead to different results.  

In this study it is tried to modify a Genetic Algorithm by 
implication of concept of fractal dimension. This dimension 
depicts complexity of design space and adapts probability of 
mutation and crossover for each generation. The methodology 
is described in the subsequent section and followed by a 
numerical example for more clarification. Some concluding 
remarks are presented at end of the paper.    
 

II.  METHODOLOGY 
To attain the purpose of this paper the following 

methodology was employed. In the Genetic Algorithm a 
population of chromosomes initialized and fitness values 
associated with each chromosome are evaluated. In this stage, 
due to Euclidian locations of points which are represented by 
chromosomes and their fitness values, fractal dimension is 
calculated. Moreover, Creation of new chromosomes and 
removing some members for further generations will be 
performed iteratively by applying several operations using 
parameters obtained by employing the fractal dimension. In 
other words, parameters, such as mutation and cross over 
probability, are determined dynamically for each generation 
by aid of fractal dimension. This procedure may continue until 
termination criterion is encountered. 

Abrupt variations of fitness value for neighbor points in 
space indicate that more random search to obtain optimum 
value is required. On other hand, while a gradual variation of 
fitness value is recognized, a more coherent search is required 
for this purpose (Fig. 1). Since increasing mutation probability 
intends to require more random search to optimize function, 
the curve with more abrupt variation requires higher mutation 
probability. Fractal dimension can represent abruptness of a 
curve. Therefore, mutation probability may be determined as 
follow for next generation: 

IDP ii
m −=+1  (1) 

where 
1+i

mP  is probability of mutation to construct (i+1)th 
generation, I is dimension of design space (I=1, 2, …, n), and 
Di is fractal dimension of design space, including fitness 
values, using all previous generations.  

Appropriate searching algorithms look homogeneously for 
optimum solution. Fractal dimension can be utilized to control 
homogeneousness of searching. While populations in a 
generation scattered inhomogeneously, in a GA, crossover 
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operation may manage production of new offspring and make 
them spread more homogeneously in space. Hence, increase of 
fractal dimension may cause to reduce crossover probability. 
Consequently, crossover probability may be determined as 
follow for next generation: 

11 −−=+ ii
c DIP  (2) 

where 
1+i

cP  is probability of crossover to construct (i+1)th 
generation, I is dimension of design space, and Di is fractal 
dimension of design space, without fitness values,  using all 
previous generations. 

There are many methods available for estimating the fractal 
dimension of data sets. Among these methods, Box Counting 
Method (BCM) is intuitive, easy to employ, and applicable to 
sets in any dimension [6]. In fact, it has been applied on 
images of almost everything, from river systems to the cluster 
of galaxies. The methodology may be explained on a fractal 
curve; a curve of infinite detail by virtue of its self-similarity. 
The length of the curve is indefinite, increasing as the 
resolution of the measuring instrument increases. By covering 
the curve with boxes of length lb, as illustrated in Fig. 2, BC 
method gives the fractal dimension as follows: 

( )
b

bb

l
lND

log
loglim−=

 
(3) 

where Nb(lb) is the number of boxes needed to completely 
cover the curve and Db corresponds to the slope of log Nb(lb) 
versus log lb plot. Equation (3) holds over a finite  range  o  
box-sizes;  the  smallest  boxes  having  a  span  of  x,  where  
x  is  the resolution of independent variable, and a height of a, 
where a is the resolution of the measurement (X(x) in Fig. 2). 
 

 
Fig. 1 A typical generation consists 20 populations 

 

 
Fig. 2 Box-counting methodology for a typical time series record 

Applying the proposed methodology helps not to select the 
values for probabilities of mutation and crossover blindly. It 
improves efficiency of both operations to achieve quicker and 
more accurate results. A numerical example in the subsequent 
section may clarify the method for application and indicates 
advantageous of modifications in comparison with an ordinary 
genetic algorithm in which the parameters selected randomly 
and improved after a complete run. 
 

III.  NUMERICAL EXAMPLE 
In order to clarify the method proposed in the previous 

section, a function with known fractal dimension is used for 
optimization. This function is Weierstrass-Madelbrot fractal 
function which is introduced as follow: 

( )( )
( )∑

∞=

−∞=
−

−
=

n

n
nD

n

b
xbxW 2

cos1)(  (4) 

While fractal dimension is known, probabilities of mutation 
would be preset and constant during a complete run. But, 
usually this value is unknown and has to be determined and 
improved during a run. Therefore, Pm will not constant in a 
run. For this example, since there is one independent variable, 
I is equal to 1. Implementing Equation 1, Pm becomes D - 1. 
However, Pc is not constant and has to be determined during 
the run.     

Figs. 3 to 5 show evolution of generations with regard to 
different fractal dimensions and two types of GAs. In ordinary 
GA, Pm considered to be 0.05 and Pc is 0.9. Looking upon 
these figures, while the overall fractal dimension of the 
function is low  (near unity),  both  ordinary  and  modified  
GA  may  achieve  optimal  value  in reasonable period (Fig. 
3). In contrary, when fractal dimension increases, the modified 
GA leads to not only accurate results but also improves CPU 
time of the run.  
 

IV.  CONCLUSION 
Ordinary GAs usually captured in local optima. Mutation is 

a good way to escape these local optima in all GAs. However, 
increasing the probability of mutation will destroy logics 
behind searching procedure. Furthermore, crossover is a 
powerful tool to create new offspring and search through a 
design space. Increasing the probability of crossover may lead 
to bypass optima and increase period of searching. 
Conversely, low probability of crossover restricts and even 
terminates searching without achieving proper results. A 
suitable value for these parameters will accelerate reaching to 
more reliable results.  

Fractal dimension is a good way to give an overview to 
design space for selecting proper parameters in a GA. In this 
research, it is concluded that design spaces with lower fractal 
dimension are more robust with their crossover and mutation 
probabilities. In addition, for high fractal dimensions it is 
recommended to consider higher mutation probability and low 
crossover probability. A simple equation proposed to indicate 
relation between these values. 
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Fig. 3 Comparison Ordinary and Modified GA for Weierstrass-Mandelbrot function with D=1.01 
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Fig. 4 Comparison Ordinary and Modified GA for Weierstrass-Mandelbrot function with D=1.50 

 

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30
Number of Generations

M
ax

im
um

 N
or
m
al
ai
ze

d 
fit
ne

ss
 v
al
ue

 in
 e
ac

h 

ge
ne

ra
tio

n

Ordinary GA Modified GA

D=1.99

 
Fig. 5 Comparison Ordinary and Modified GA for Weierstrass-Mandelbrot function with D=1.99 
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