
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

89

Abstract—Securing the data stored on E-passport is a very

important issue. RSA encryption algorithm is suitable for such

application with low data size. In this paper the design and

implementation of 1024 bit-key RSA encryption and decryption

module on an FPGA is presented. The module is verified through

comparing the result with that obtained from MATLAB tools. The

design runs at a frequency of 36.3 MHz on Virtex-5 Xilinx FPGA.

The key size is designed to be 1024-bit to achieve high security for

the passport information. The whole design is achieved through

VHDL design entry which makes it a portable design and can be

directed to any hardware platform.

Keywords—RSA, VHDL, FPGA, modular multiplication,

modular exponential.

I. INTRODUCTION

-PASSPORT is a passport that includes a smart card

embedded in the back. This card contains the traveler’s

personal data. Many countries adopted e-passports to facilitate

people traveling and Visa issuing. About 53 different countries

including the United State (US) and Canada have used e-

passport [1]. However, the security and integrity of the e-

passport are very critical. The International Civil Aviation

Organization (ICAO) created sets of e-passport standard [2],

[3]. 1024-bit RSA is one of the recommended algorithms used

for Active Authentication (AA) protocol. This protocol is used

to prevent e-passport cloning [4].

The RSA is a public key encryption algorithm invented by

Rivest, Shamir, and Adleman in 1977. RSA operation is based

on modular exponentiation which requires repeated modular

multiplications. Moreover for security reasons RSA operand

sizes is recommended to be 1024 bits or more [5]. As a result

the modular operations for 1024 bits or higher make RSA is

difficult to achieve a high throughput. To address this problem

many algorithms are invented such as add and shift, Montgomery

multiplication and carry save adder (CSA) [6], [7].

This paper presents the implementation of RSA

encryption/decryption algorithm with 1024-bit key length on

FPGA. RSA algorithm adopts square and multiply algorithm

for modular exponential. The modular multiplier is

implemented using add and shift algorithm presented.

The paper is organized as follows: Section II explains RSA

algorithm, Section III explains the mathematical algorithms

used to execute RSA algorithm. Then in Section IV is

Khaled Shehata and Hanady Hussien are Lecturers in Arab Academy for

Science and Technology, Cairo, Egypt (e-mail: khaledshehata58@gmail.com

Hanady.issa@gmail.com).
Sara Yehia is Teaching Assistant, Lecturer in the Higher Institute of

Engineering, New Cairo, Egypt (e-mail: Hawa3dy@yahoo.com).

discussed the RSA implementation and shows the simulation

results. Finally, Section V draws the conclusion.

II. RSA ALGORITHM

RSA is a public encryption algorithm which has a public

key for encryption (e) and private key for decryption (d). RSA

algorithm is summarized to three main steps [8].

A. Key Generation

In this step the private and public keys are generated as

shown in Fig. 1 by:

1. Choose two large prime numbers p and q.

2. Compute modulus number n = p x q.

3. Calculate the Euler function φ(n) = (p-1) x (q-1).

4. Select an integer number e randomly as a public key. It

should satisfy Greater Common Divisor GCD(e, φ(n)) =

1, 1< e < φ(n).

5. Compute the private key d such that d x e =1(mod φ(n)).

B. Encryption

In RSA both plain text (M) and cipher text (C) are blocks

with length less than [log2n]. In encryption, the cipher text is

generated by

C= M
e
 mod n (1)

C. Decryption

The decipher text is recovered using the private key (d) by

M = C
d
 mod n (2)

Fig. 1 Block diagram of RSA encryption and decryption algorithms

III. RSA MATHEMATICAL OPERATIONS

The RSA encryption/decryption algorithm is based on

computation of modular exponentiation operation. The

strength of RSA depends on the difficulty of factoring the

modulus n to get the prime numbers p and q. Hence, the larger

Khaled Shehata, Hanady Hussien, Sara Yehia

FPGA Implementation of RSA Encryption

Algorithm for E-Passport Application

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

90

prime numbers the harder the factorization of modulus n.

Therefore the modular exponentiation operation becomes

harder to accomplish on a hardware platform. This section

details the main modular mathematical operations used for

hardware implementation.

a) Modular Exponentiation Operation

Modular exponentiation for large numbers is considerably

difficult to compute. Therefore, this operation can be

simplified into series of modular multiplication and squaring

operations [9], [10]. This algorithm is known as square and

multiply algorithm. In this algorithm the exponent number e is

scanned either from Left to Right (LR) or Right to Left (RL).

In LR method, which is common used, if the scanned bit is

logic zero a squared operation is performed. However if the

scanned bit is logic one a multiplication operation is

computed. This operation is performed k-time where k is the

modulus length. The square and multiply algorithm is

described by the following code [8]-[10].

 Input: m, e and n.

 Output: c = m
e
 mod n, e > 1

Initialization c = m if ek-1 = 1 else c=1

for j = k -1 downto 0 do

c = c * c mod n

if (e[j] == 1) then

c = c * m mod e

end for

return c

b) Modular Multiplication Operation.

The modular multiplication operation is essential to

compute the exponentiation modular as shown in previous

algorithm. Shift and add algorithm is one of the algorithms

used to perform modular multiplication. This algorithm

computes y x z (mod n). The numbers y and z are k-bit

integers and yi and zi are the ith bit of y and z respectively.

The detailed algorithm is described as follows [10], [11].

Input: y, z, n

Output: Mul = y × z mod n

Initialization Mul = 0;

For i = 0 to k

Mul=Mul +(y×zi)

if Mul0 = 1 then

 Mul = Mul / 2;

 else

Mul=(Mul + n) /2;

return M;

IV. SIMULATION RESULTS OF RSA ENCRYPTION/ DECRYPTION

HARDWARE IMPLEMENTATION

The RSA Encryption / Decryption modules with key length

1024 are designed and implemented based on VHDL code.

The design adopts the square and multiply algorithm for

modular expatiation. The modular multiplier is performed

based on add and shift algorithm. The public and private keys

are generated using C# program. The results are stored in

ROM. There are two different ROMs, one is used to store (n,

e) keys and the other is to store (n, d) keys. The design is

simulated using Xilinx ISE 12.3 targeting Virtex-5

XC5VTX240T-2FF175 FPGA from Xilinx.

A. Add and Shift Algorithm Simulation Results

As discussed before add and shift algorithm is used to

perform modular multiplier. It computes Mul = y x z mod n.

As shown in Fig. 2, the algorithm inputs are ‘mpand’,

‘mplier’, and ‘modulus’ each with length 1024 bits. These

inputs represent y, z and n respectively. The algorithm output

is ‘product’ signal which represents ‘Mul’ output. As shown in

Fig. 1 mpand = e hex, mplier = 3hex, modulus = 21hex and

product = 9hex (9 = e x 3 mod 21). At clock: 209.048ns

Fig. 2 Simulation results of add and shift algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

91

B. Square and Multiply Algorithm Simulation Results

Fig. 3 Simulation results of square and multiply algorithm

Similarly the square and multiply algorithm is designed and

tested. This algorithm computes c = m
e
 mod n. As shown in

Fig. 3 the applied inputs are ‘indata’, ‘inexp’, ‘inmod’ and the

output delivered is ‘cipher’. These signals represent m, e, n

and c respectively. From the simulation results shown in Fig.

2, indata = 11hex, inexp=903ad9hex, inmod = 3b2c159hex the

output cipher = 36cf344hex (36cf344 = 11903ad9 mod 3b2c159).

At [6,771.000ns] clock.

RSA Encryption/Decryption Algorithm

The whole system is tested by applying 1024-bit plain text.

The used public keys are loaded form ROM module. The

simulation result is shown in Fig. 4. By applying the generated

cipher text on the RSA decryption algorithm the deciphering

output is identical with the original plain text as shown in Fig.

5.

Fig. 4 Simulation Results of RSA encryption algorithm

Fig. 5 Simulation Results of RSA decryption

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

92

TABLE I

THE RESULTS OF ENCRYPTION AND DISCUSSION

Reference
Clock Frequency

(MHz)
Chip(plate form)

Key

generation

R. Srinivasan
[13]

54.7
Alter a Apex 0KE
EP20k200EBC356

64 bits

Mostafizur

Rahman [14]
100Mhz

Xilinx’s vertex II

pro FPGA
8bits

Sushanta

Kumar Sahu

[12]

101.06MHZ
XilinxISE10.1
3s100evq100-4

128 bits

Proposed 36.290MHz
Xilinx’svirtex5

xc5vtx240t-2ff175
1024 bits

The algorithms in Table I are used firstly R. Srinivasan

[13]: Square and multiply algorithm is used for modular

exponent and the Montgomery algorithm is used for modular

multiply. R. Srinivasan uses 54.7 MHz clock frequency.

 Secondly, Mostafizur Rahman [14]: Square and multiply

algorithm is used for modular exponent and the add and shift

algorithm is used for modular multiply. Mostafizur Rahman

uses 100 MHz clock frequency.

Thirdly, Sushanta Kumar Sahu [12]: Square and multiply

algorithm is used for modular exponent and the Montgomery

algorithm is used for modular multiplier. Sushanta Kumar

Sahu uses 101.06 MHz clock frequency.

It is clear that when the number of bits is increased; the

frequency is decreased, compared with other works. The

previous work is much more complicated than the present

work; because of the length of RSA public key and private key

under1024- bit are insecurity. There are certain procedures in

the selection of the p,q and e in addition to the generation of

public key apart from the need for a high speed computer.

In this proposed technique, the Xilinx’svirtex5 xc5vtx240t-

2ff175is used, number of slice (LUTS) used is 28,350, while

the available (LUTS) is 149,760 so the proposed technique

utilizes 18%. The key generation is 1024 bit, it is the most

security code compared to previous work in the latest papers.

V. CONCLUSION

In this paper, a detailed implementation technique for 1024-

bit RSA encryption/decryption algorithm is presented. The

modular exponential for encryption and decryption process is

performed by using square and multiply algorithm. The add

and shift algorithm is used to perform the modular multiplier.

All these algorithms are implemented using VHDL code

targeting Virtex-5 XC5VTX240T-2FF175 FPGA from Xilinx.

The whole design is tested using Xilinx ISE 12.3 tool. The

system speed achieved is 36.3 MHz which comply with the

speed of smart card used in e-passport.

REFERENCES

[1] Sungbae Ji, Zeen Kim, Kwangjo Kim,” Design of an RFID-embedded e-
ID System for Privacy Protection”, Symposium on Cryptography and

Information Security, Miyazaki, Japan, Jan. pp. 22-25, 2008.

[2] Albert B. Jeng, Lo-Yi Chen, “ How to enhance the Security of e-
passport”, Proceedings of the Eighth International Conference on

Machine Learning and Cybernetics, Baoding, pp. 2922-2929, 12-15 July

2009.
[3] Saeed, M.Q., Masood, A.; Kausar, Firdous,” Securing e-Passport

System: A Proposed Anti-Cloning and Anti-Skimming Protocol”, 17th

International Conference on telecommunications & Computer Networks,

2009.

[4] Zdenek Riha, Vashek Matyas, “Privacy issues of electronic passports”
Journal of medical informatics and technologies, Vol. 17, ISSN 1642-

6037, 2011.

[5] Na Qi Jing Pan Qun Ding “The implementation of FPGA –based RSA
public key algorithm and its application in mobile –phone SMS

encryption system” International Conference on Instrumentation,

Mesurment, Computer, Communication and Control volume 21-No.5,
pp. 700-703, 2011.

[6] Ridha Ghayoula, El Amjed Hajlaoui, Talel Korkobi, Mbarek Traii,

Hichem Trabelsi, “FPGA Implementation of RSA Cryptosystem”,
International Journal of Engineering and Applied Sciences pp 2-3, 2006.

[7] Chiranth E, Chakravarthy H.V.A, Nagamohanareddy P, Umesh T.H,

Chethan Kumar M.” Implementation of RSA Cryptosystem Using
Verilog ”in International Journal of scientific & Engineering Research

Volume 2, Issue 5, May-2011, 1ISSN 2229-5518

[8] Vibhor Garg, V. Aruna chalams.”Architectural analysis of RSA crypto
system on FPGA “International Journal of Computer Applications “,

Volume 26-No8, July 2011.

[9] Chiranth E, Chakravarthy H.V.A, Nagamohanareddy P, Umesh T.H,
Chethan Kumar M., “Implementation of RSA Cryptosystem Using

Verilog”, International Journal of Scientific & Engineering Research

Volume 2, Issue 5, pp.1-7, May-2011
[10] Muhammad I. Ibrahimy, Mamun B.I. Reaz, handaker Asaduzzaman and

Sazzad Hussain, “FPGA Implementation of RSA Encryption Engine

with Flexible Key Size”, International journal of communication, Issue
3, Volume 1, pp. 107-113, 2007

[11] M., Rokon, I.R., Rahman, M., “Efficient hardware implementation of

RSA cryptography”, 3rd International Conference on Anti-
counterfeiting, Security, and Identification in Communication, 20-22

Aug. , pp. 316-319, Hong Kong, 2009.

[12] Sushanta Kumar Sahu, Manoranjan Pradhan,” FPGA Implementation of
RSA Encryption System” International Journal of Computer

Applications”, Volume 19– No.9, pp. 10 –12, April 2011.

[13] R. Srinivasan, Dr. V. Vaidehi, J. Balaji, S. Heema “A single chip
efficient FPGA implementation of RSA and DES for digital envelop

heme” Madras Institute of Technology Campus, Anna University,

Chennai – 600 044 .India.2011.
[14] Mostafizur rahman, Iqbalurrahmanrok on and Miftahurrahman

“Efficient hard ware implementation of RSA cryptography”2009.

