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Abstract—Higher-order Statistics (HOS), also known as 
cumulants, cross moments and their frequency domain counterparts, 
known as poly spectra have emerged as a powerful signal processing 
tool for the synthesis and analysis of signals and systems. Algorithms 
used for the computation of cross moments are computationally 
intensive and require high computational speed for real-time 
applications. For efficiency and high speed, it is often advantageous 
to realize computation intensive algorithms in hardware. A promising 
solution that combines high flexibility together with the speed of a 
traditional hardware is Field Programmable Gate Array (FPGA). In 
this paper, we present FPGA-based parallel architecture for the 
computation of third-order cross moments. The proposed design is 
coded in Very High Speed Integrated Circuit (VHSIC) Hardware 
Description Language (VHDL) and functionally verified by 
implementing it on Xilinx Spartan-3 XC3S2000FG900-4 FPGA. 
Implementation results are presented and it shows that the proposed 
design can operate at a maximum frequency of 86.618 MHz. 

Keywords—Cross moments, Cumulants, FPGA, Hardware 
Implementation.

I. INTRODUCTION

IGHER-ORDER STATISTICS (HOS) (greater than two) also 
known as cumulants, cross moments and their associated 

Fourier transforms known as higher-order spectra or poly 
spectra, are commonly used as powerful signal processing tool 
in diverse application domains such as digital 
communications, sonar, radar, speech, biomedical, 
geophysical, plasma physics,  image processing, signal 
reconstruction, array processing, harmonic retrieval, time-
delay estimation, adaptive filtering and blind equalization [1]–
[6] etc.

HOS, unlike the second-order statistics are well known for  
their robustness to additive Gaussian noise and their ability to 
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preserve phase information. However, the computational 
complexity involved in the estimation of HOS far exceeds that 
of conventional second-order statistics because HOS are 
multidimensional functions [6]. 

Traditionally, Digital Signal Processing (DSP) algorithms 
are coded in C language or MATLAB, and implemented on a 
general purpose (programmable) DSP chips for low-rate 
applications. For moderate rates, special purpose DSP chips 
are used. However, for higher rates the software 
implementation is transformed either manually or compiled 
automatically into a high-level hardware description language 
such as VHDL or Verilog and implemented in an Application 
Specific Integrated Circuit (ASIC) or Field Programmable 
Gate Array (FPGA). General purpose DSP chips often lack 
the performance necessary for moderate sampling rates, and 
ASIC approaches are limited in flexibility and may not be cost 
effective for many applications. Recently, FPGAs have 
become an attractive alternative for realization of computation 
intensive algorithms. 

Recent advancement in FPGA technology has resulted in 
enormous possibilities for the implementation of sophisticated 
algorithms of high complexity, in a variety of important 
applications, by using low cost, high performance and high 
speed reconfigurable hardware. FPGAs have become one of 
the prevailing technologies for fast prototyping and 
implementation of digital systems. Being dynamically 
reconfigurable, FPGAs provide additional interesting features 
to implement complex algorithms in hardware with 
performance that exceeds both general-purpose and DSP 
implementations. 

In hardware design community, it is well known fact that 
by assigning computation intensive tasks to hardware (FPGA) 
and exploiting the parallelism in algorithms yields a 
significant speedup in computation time. This paper presents 
an FPGA based architecture for high speed computation of 
third-order cross moments. This paper exploits the inherent 
parallelism of FPGA technology as well as the algorithm 
which is based on the idea of formulating the computation of 
cross moments as a series of matrix multiplication operations 
[7].  

The remainder of the paper is organized as follows. Section 
II describes the related work done in this area. The 
architecture of Spartan-3 FPGA is described briefly in Section 
III. Algorithm for the computation of third-order cross 
moments is discussed in Section V. In Section VI, we discuss 
the architecture for the computation of third-order cross 
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moments. FPGA implementation results are summarized in 
Section VI. Finally, conclusions are drawn in section VII.  

II. RELATED WORK

During the last few years substantial amount of work has 
been generated towards the design and development of 
application specific systems to accelerate the computation of 
higher-order statistics using Very Large Scale Integration 
(VLSI) architectures and other emerging technologies [5]–
[10]. However, to the best of our knowledge, none of the 
previous work has used FPGA for the computation of third-
order cross moments. 

Ahmed et al. [5] presented a computationally efficient 
VLSI architecture for the computation of third-order 
cumulants. Their architecture is based on the systolic array 
and implemented with 1.0 μm CMOS technology. Their 
design operates at a speed of 5.2 MHz. Another efficient 
approach for computing third-order cumulants based on 
matrix multiplications was presented by Turaigi et al. [6]. 
They used fast systolic array system to compute third-order 
cumulants.  

Alshebeili [7] presented a novel approach based on matrix 
multiplication for the computation of higher order cross 
moments. The computation of cross moments was formulated 
as a series of matrix multiplication operations to take 
advantage of well established systolic array techniques for the 
computation of matrix multiplication.  

Turaigi et al. [8] presented a concurrent systolic array 
system for the computation of higher-order moments. The 
system was used for the computation of second, third and 
fourth-order moments simultaneously.  It was implemented in 
CMOS VLSI technology with an operating speed of 3.9 MHz. 
Aloqeely et al. [9] used a new approach based on matrix 
multiplication for the estimation of third-order cumulants 
using linear systolic array. 

Stellakis et al. [10] used adaptive sliding window time-and-
order recursive algorithm for the computation of higher-order 
moments up to the fourth order. The algorithm was once again 
mapped to a systolic array. 

III. TARGET FPGA ARCHITECTURE

The Spartan-3 FPGA consists of an array of Configurable 
Logic Blocks (CLBs), which are the basic elements that can 
be programmed to perform various logic functions. Each CLB 
is coupled with a programmable interconnect switch matrix 
that connects the CLB to adjacent and nearby CLBs [11]–[12].

Each CLB contains four logic slices, where each logic slice 
usually consists of two four-input Look Up Tables (LUTs), 
two configurable flip-flops, some muxes, and other control 
logic. In addition to the CLBs and the switch matrices, the 
Spartan-3 FPGA have a number of higher–level logic blocks 
such as block RAMs (BRAMs), 18-bit multipliers, digital 
clock managers (DCMs) and even CPUs [12]. 

IV. DESIGN FLOW

An FPGA design flow is the process of turning an FPGA 
design into a correctly timed bitstream file used to program 

the FPGA. In order to realize any algorithm on an FPGA it 
must be programmed (configured) first. To achieve this, a 
design methodology is adopted. Usually, design entry is done 
using hardware description language (HDL) such as VHDL 
and Verilog. In this paper, the design entry is done using 
VHDL. The objective is to make the system description 
independent of the physical hardware such that it can be used 
on other FPGAs and even on Application Specific Integrated 
Circuits (ASICs). Once a design has been completed it is 
simulated to verify the correct operation. A netlist is generated 
from the design and is mapped onto the FPGA using 
synthesis, place and route and optimizing tools. Mapping 
produces a bit-stream file that is used to program the FPGA 
[12]. The steps followed are summarized in Fig. 1.  

V. PROBLEM FORMULATION

In this section, we discuss the basic definition and 
formulation of third-order cross moments. The third-order 
cross moment function m3 of a stationary random process x(n)
with samples x0(n), x1(n) and x2(n) is defined as [1]: 

                 m3 ( 1 , 2 ) =  E{ x0(n) x1(n + 1 ) x2(n + 2)} (1)

where, E{·} denotes statistical expectation [1]. If x(n) is a 
zero-mean stationary process, then the third-order cross 
moments are identical to the third-order cross cumulants and 
are computed from the given formula [2]. 

         m3 ( 1 , 2 ) = 
2

1

)(n)x(n x(n)x1
22110

l

lnN
  (2)

where, N is the length of each data record, l1 = max {0, – 1, –
2}, and l2 = min {N – 1, N – 1 – 1, N – 2 – 1}.

Fig. 1 Design Flow 
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In this paper, third-order cross moments are computed 
based on the idea of converting (2) into matrix multiplication 
[7]. Let Mi be a square matrix whose elements are samples of 
third-order cross moments defined in (2). Mi is given by (3) 
where i = q, q + 1,…, q, and q is the maximum lag of third-
order cross moment function.  

   Mi =

),,(),1,(),,(

),,1(),1,1(),,1(
),,(),1,(),,(

333

333

333

iqqNmiqqNmiqqNm

iqqNmiqqNmiqqNm
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   (3)

By substituting (2) into (3), it can be seen that Mi can be 
written as 

                           Mi = XYiZ (4)

where, X is a (2q + 1) x N rectangular matrix which is given 
by (5). 

X =
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     (6)

Z is an N x (2q + 1) rectangular matrix which is given by 
(6) and Yi is a diagonal square matrix whose elements are 
x0(n)·x3(n + i), where n = 0, 1, …, N  1. X and Z are Hankel 
matrices. Thus the computation of third-order cross moment 
function is reduced to the computation of (2q + 1) different 
matrices whose elements are obtained by multiplying three 
matrices as given in (4). 

VI. ARCHITECTURAL DESIGN

Third-order cross moments are evaluated by computing the 
entries for matrix Mi for different values of i. The entries for 
matrix Mi can be calculated by performing the matrix 
multiplication XYiZ. The system block diagram for the 
computation of third-order cross moments is shown in Fig. 2.  

It consists of two arrays MM1 and MM2. The first array 
MM1 performs the multiplication of Hankel matrix X by 
diagonal matrix Yi and feeds the results to array MM2. The 
second array MM2, on the other hand multiplies XYi by Z.

We use the 2D systolic array based architecture as shown in 
Figs. 3 and 4 for the matrix multiplication. Systolic arrays 
speedup computationally intensive algorithms with inherent 
parallelization, by exploiting data parallelism. The major 
features of systolic array are: (1) simple and regular design; 
(2) concurrent design; and (3) nearest neighbor 
communication. FPGAs can be used efficiently to implement 

fine grain systolic arrays since they inherently possess the 
same regular structure. 

Fixed point numbers are used for the elements of the 
matrices. Matrix Yi is a diagonal square matrix with entries 
x0(0)·x3(i), x0(1)·x3(1 + i), x0(2)·x3(2 + i), …x0(n)·x3(N-1 + i),
where x0(0)·x3(i) is the non zero element in the first row, 
x0(1)·x3(1 + i) is the non zero element in the second row, and 
so on. 

Multiplying the Hankel matrix X by the diagonal square 
matrix Yi is equivalent to multiplying the first diagonal 
element by the entries of first row of X, the second diagonal 
element by the entries of the second row of X and so on. 

Figs. 3 and 4 shows the systolic architecture for array MM1
and MM2 for N1 = 3 and N2 = 3 respectively. MM1 and MM2
consist of nine identical Processing Elements PE1 and PE2
respectively. Each processing element PE1 consists of 
multiplier whereas PE2 contains Multiply-Accumulate (MAC) 
unit and each MAC unit consists of a multiplier, adder, and a 
register for storage. 2’s complement method is used for 
negative numbers.  

The function of each PE1 in MM1 array is to multiply the 
diagonal element of Yi [Y11, Y22, Y33] by one element of 
matrix X during each clock period. First column PE1s are 
responsible for producing first column of the product XYi
referred to as W in the Fig. 3, second column generates the 
second column and so on. The entries are stored in an output 
buffer to be used later by next array MM2.

Similarly, array MM2 as shown in Fig. 4 performs the final 
multiplication of (XYi) with Z i.e., WZ using the same 
technique as discussed for array MM1. The elements of matrix 
Mi represent the samples of third-order cross moments. For N 
= 3, Mi is represented in matrix form as (7). 

                          Mi =

333231

232221

131211

mmm
mmm
mmm

(7)

P = N2 + N2  = 2 N2 (8)

The total number of PEs, P required for the computation of 
third-order cross moments depends on N. The algorithm 
formulated as product of three matrices becomes 
computationally intensive [7] and the complexity further
increases with the parameter q and number of samples N. The 
simulation results of the proposed system after FPGA 
implementation are shown in Fig. 5.

Fig. 2.  Block Diagram
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Fig. 3  Systolic Architecture of Matrix Multiplier MM1 Fig. 4  Systolic Architecture of Matrix Multiplier MM2

Fig. 5 Simulation Results 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:2, 2008

258

VII. FPGA IMPLEMENTATION RESULTS

The algorithm is coded in VHDL and realized in FPGA 
using Xilinx ISE 9.1i to synthesize and place-and-route the 
design. Xilinx ISE simulator is used to verify the design in 
simulation before it is implemented on Xilinx Spartan-3 
FPGA. Because of their exceptionally low cost and inherent 
reconfigurability, Spartan-3 FPGAs are ideally suited for 
signal processing applications such as computation of third-
order cross moments. The design achieves a top frequency of 
86.618 MHz. 

The proposed architecture shows significant improvement 
in speed as compared to existing VLSI architectures [5], [8]. 
The implementation results generated by Xilinx ISE 9.1i is 
listed in Table I.  

VIII. CONCLUSIONS

In this paper, an FPGA based architecture for the 
computation of third-order cross moments based on novel 
matrix multiplication algorithm is presented. The algorithm is 
implemented on Xilinx Spartan-3 FPGA, a low cost FPGA 
that are now used in applications that were once relegated 
strictly to ASIC domain. The maximum operating speed of the 
design as reported by the synthesis tools is 86.618 MHz. The 
use of FPGA technology has proven to be an attractive 

alternative for efficient and fast computation of third-order 
cross moments under real-time constraints. 
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TABLE I
IMPLEMENTATION RESULTS ON XILINX SPARTAN-3 FPGA DEVICE

XC3S2000 FG900- 4 

Resources Utilization 

Number of Slices  144 out of 20480 

Number of 4 Input LUTs 270 out of 40960 

Number of Multipliers (18X18s) 36 out of 40 

Minimum Period (ns) 11.545 

Maximum Frequency (MHz) 86.618 

Power Consumption (mW) 100 


