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Abstract—This paper presents a formant-tracking linear prediction
(FTLP) model for speech processing in noise. The main focus of this
work is the detection of formant trajectory based on Hidden Markov
Models (HMM), for improved formant estimation in noise. The
approach proposed in this paper provides a systematic framework for
modelling and utilization of a time- sequence of peaks which satisfies
continuity constraints on parameter; the within peaks are modelled
by the LP parameters. The formant tracking LP model estimation
is composed of three stages: (1) a pre-cleaning multi-band spectral
subtraction stage to reduce the effect of residue noise on formants
(2) estimation stage where an initial estimate of the LP model of
speech for each frame is obtained (3) a formant classification using
probability models of formants and Viterbi-decoders. The evaluation
results for the estimation of the formant tracking LP model tested
in Gaussian white noise background, demonstrate that the proposed
combination of the initial noise reduction stage with formant tracking
and LPC variable order analysis, results in a significant reduction in
errors and distortions. The performance was evaluated with noisy
natual vowels extracted from international french and English vo-
cabulary speech signals at SNR value of 10dB. In each case, the
estimated formants are compared to reference formants.

Keywords—Formants Estimation, HMM, Multi Band Spectral Sub-
traction, Variable order LPC coding, White Gauusien Noise.

I. INTRODUCTION

ORMANTS , the resonant frequencies of the vocal track

during voiced speech, are widely believed to be use-
ful features which be exploited in various areas of auto-
matic speech processing: speech recognition, speech synthesis,
speaker identification[1]. . . Given the potential interest of
formant data, an accurate formant model estimation is needed
to deal with the problems of the variability of the number
of formants across the phonemes and the merging and de-
merging of neighbouring formants (such as F2 and F3) over
time. So, formant tracking is a difficult problem for which
numerous works have been dedicated to design an automatic
formant tracking algorithms. Formant trackers usually include
two different phases: one in which the speech is analyzed and
formant candidates are obtained, and another in which, by
imposing different constraints, the most likely formants are
chosen. While the first stage usually relies on standard spec-
trum estimation techniques: LPC estimation [2, 3], Cepstral
estimation [4], the second stage has evolved notably in the
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recent years. Traditionally the second phase tries to impose
continuity constraints on the formant selection process. Several
approaches are used for the last stage, some include non-
linear smoothing operations which depend on good estimates
in neighbour regions [5], either extends reliable formant esti-
mates from “anchor frame” found in supposed strong vocalic
areas [6, 7]. Both types of approaches are sensitive to wrong
estimates and have a tendency of error-propagation. Another
approach, which has gained in popularity, uses dynamic pro-
gramming techniques [8, 9]; with the objective of minimizing
the transition costs for all formant configurations possibilities,
imposing continuity constraints between adjacent frames. This
method usually find reasonable formant estimates when the
formant trajectories are apparent, but can make gross errors
even in vocalic regions, especially when formant candidates
are occasionally missing [10]. The Hidden Markov Model
approach to speech parameter trajectory estimation [11] offers
another dimension of flexibility and tractability. HMM has
provided excellent performance since it is build on the concept
of global optimization, where the overall result is determined
by the highest combined probabilities of a series of frames
to occur in a given sequence. The approach presented in
this paper introduces the notion of global optimization char-
acteristic of HMMs and incorporate dynamic programming
techniques for the Viterbi algorithm [13]. An important con-
cept put forward is the computation of transition probabilities
according to frequency and amplitude slope variations, rather
than looking at the relative evolution of the trajectories directly
on the frequency and amplitude axis. The accurate estimation
or traking of formants embedded in background noise, is
problem currently receiving considerable attention in the signal
processing literature. However, due to noise in the speech
signal, non- formant peaks can be confused for formant peaks
and true formant peaks can be obscured. To account for this,
many approaches were developed in the literature [14, 15,
16]. In Our research, the overall estimating formants’ system
was tested under an additives noise environment. So, and in
order to tackle with this problem, we propose to incorporate
a pre filtering stage designed around a multi-band spectral
subtraction before estimating the formants by an algorithm
based on variable order LPC Coding. Outline of this paper is as
follow: in the next section, we present an overview of formant-
traking variable order LP Model with HMM. In section 3,
we present the details of the proposed algorithm of formants
estimation in noisy environment based on a variable order LPC
analysis with a system of pre-filtering noise designed around
a multi-band spectral subtraction. In section 4, description of
implemented Hidden Markov Model is introduced. Then, we
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present in section 5 the experimental results of the different
techniques and give a critical performance evaluation of these
methods. Finally, the conclusion of this work is stated.

II. AN OVERVIEW OF FORMANT-TRAKING LP
MODEL WITH HMM

The block diagram describing different modules and their
interrelation of the proposed Formant-Traking LP Model with
HMM (FTLP-HMM) with de-noising speech is illustrated
in Fig.1 and consists of the following sections: (1) A pre-
cleaning module for de-noising speech incorporatin multi-
bands Spectral Subtraction. (2) A formant LP model estimation
incorporating variable order LPC analysis [17]. (3) A formant-
tracking HMM model incorporating Viterbi trackers.

Noisy speech
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Fig. 1. Overview of the FTLP-HMM model for Formants Estimation of
Noisy Speech.

III. FORMANTS ESTIMATION FROM NOISY
SPEECH

In this section a robust formant LP model is introduced
composed of pre-cleaning of speech spectrum followed by
formant estimation.

A. Initial-Cleaning of Noisy Speech

After acquisition and pre-treatment, noisy speech spec-
trum is pre-cleaning with the multi-bands spectral subtraction
method. The preceding methods assume an additive noise with
constant spectral density such as white noise. To take into
account the non-uniformity of the spectrum of other types of
noise, Kamath [16] proposed a method, which involves cutting
the spectre of noisy signal in interlaced N bands, and applying
to each band a spectral subtraction.

B. Variable LP Order Rule Based Formant Estimation

There are several methods of formant extraction such as
peak picking [3], HMM2 [18] and LP model pole extraction
[2]. The main method used in this work is the LP model
pole extraction combined with a rule based method for pole
refinement. This method consists on estimating the formants
directly from the poles of the vocal tract transfer function
obtained by the LPC analysis [2, 3]. Indeed, each pair of
conjugate poles represents a formant, but the problem is that
there are pairs, which do not produce resonance. They are
represented by the pairs of poles whose module is lower
than 0.7 and the bandwidth is higher than 300 Hz [19]. The
algorithm should suppress those poles and keep only the poles,
which are conjugates with positive argument. Each formant Fi
and its corresponding bandwidth BWi can then be calculated
as follows [20]:

92' *ln(’f‘i)

F = . ;= 1
Qﬂ'Ti ' W 7TT1‘ ( )

If the number of poles remaining after removal is insufficient
to represent the number of formants requested, the segment
will be analyzed again with a higher LPC analysis order
(increment of the order). This process is repeated until obtain
at least the requested number of formants. The poles obtained
by the LPC analysis of the segment are sorted out so as
to eliminate extreme poles. An extreme pole is a pole that
does not engender any resonance (formant), which is a real
pole, nil or its bandwidth exceed 300 Hz. It may happen that
the number of obtained poles, after elimination, represents a
number of formants upper than that asked. In this case, there
will be discontinuity in the trajectory of formants. The solution
to this problem is to measure the distance between the formant
measured previously and the poles obtained, the pole with the
lowest distance is the one who ensures the continuity of the
above formant; we decided to hold her back. The decision
criterion is based on the measure of Euclidean distance. If we
assume that we must extract n formants, then the equations
used to measure the Euclidean distance are:

k

d(F;,C) = (3 (e; = £))* ©)
=1

Fitq1 = arglmin(d(F;, Cy))] 3)

C} is the k' formant obtained after the sorting and Fj is
the 7; formant previously estimated. The initial condition for
this recurring equation is the average estimated formants. The
algorithm based on variable order LPC analysis, solves the
problems of formants too close together or confused, missing
formants (undetected) and the sensitivity of poles to the noise.

IV. HMM FORMANT TRACK ESTIMATION

Hidden Markov Model (HMMs) are quite powerful statis-
tical models which are used to represent sequential data, the
elements of HMM theory are described in a tutorial fashion
[21]. There are three key problems associated with HMM the-
ory [21].To apply HMM theory to the tracking problem we are
primarily interested in the estimation problem, which is solved
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by the Viterbi algorithm [13]. In this section a description
of implemented Hidden Markov Model is introduced, then
state transition probability is computed, finally a design of the
modified Viterbi algorithm proposed for formant estimation
problem is presented.

A. Description of HMM for Tracking Problem

The major difference between HMM models usually en-
countered in standard literature and the model used in this
implementation is the fact that the state transition probabilities
evolve as a function of time, since they are obtained from the
frequency and amplitudes of the formant candidates observed.
In fact, the intuitive model of trajectory which was used is a
time-sequence of peaks which satisfies continuity constraints
on parameter slopes. Consequently, this method tends to iden-
tify trajectories whose amplitude and frequency slopes evolve
smoothly in time. The type of HMM which was formalised
by Garcia and Depalle [13] is described as follow, for each
partial trajectory named frame we consider:

« n; number of peaks at time t,

e Pi[k] ,0 < k < ny order of frequency growing,

e I[k], 0 < k < n; index associate to each peak P:[k],

When a peak Pt[k] is detected as a spurious (i.e. k > ny),
it is associated with null index I;[k] = 0.

o Fi(k) frequency of the peak k of frame t,

o A;(k) amplitude of the peak k of frame t,

e S; HMM state at time t defined by an ordered pair of

vector (Iy—1, 1)

¢ O observation defined by an ordered pair of integers

(ntfh nt)-
Notice that only the combinatorial aspect was retained and
that frequency and amplitude parameters of peaks are not
taken as observations. In fact they are considered parameters
of the Markov Model and are used to compute the transition
probability between two states.

B. State transition probabilities computation

The state transition probabilities are obtained from the
values of the frequency and amplitudes candidates for a
given frame, using a criterion computation for apparied tracks
and non-apparied ones. Garcia and Depalle in [13] evaluate
a “matching criteria” 6;(k) for each peak k of frame t,
0 < k < ny, this criteria depends on two other peaks i and j
of frames t-2 and t-1 respectively, such that :

L —o(i) = Ii—1(j) = Ii(k) )

This matching criterion is defined by equation (5) and (6)
Where:

Afi(k, j) = ag(k) — as—1(4), Afe(k, J) = fe(k) — fim1(5)

And yi,0¢,04,0n, 0qn are adjustable parameters of the com-
putation. The idea is to compute a score which is high if
the discontinuities in slope from frame candidates are low
and these predictable frequency tracks are present in the
state currently evaluated. The non-apparied criterion “death”
is used to penalize the score of continuous slopes that are

not identified as tracks in the current state evaluated. The
procedure for the computation of the apparied criterion “birth”,
when indexes representing track numbers are non-zero is given
by equation (5). The procedure for the computation of the non-
apparied criterion, for state configurations with zero indexes
(indicating the absence of trajectories) is similarly given in
equation (6).

if I,(k) > 0
exp{— [BId) =B S Gl
f
Aay(k,j)—Aar_1(5,3)]?
[Aa(k Ja)z(]é)g2 (4,9)] } (5)
0uk) =3 it 1,08) = 0 e
_ .

{1—(1—p)exp{— [Aft(kv])_fAff—l ) 1
{1— (1 = ) exp{ - Bt penGilyy - ()

C. Modified Viterbi Algorithm

The approach taken for the design of a modified Viterbi
sequence accepting the computation of transition probabilities
according to frequency and amplitude slope variations and re-
stricting formant trajectory crossings, births and deaths within
a single window of frames. The Viterbi algorithm was used
on a window of T frames length which slides frame by frame
and we introduce some constraints on the index combinations.
For instance, for given window ”births” and “deaths” of
peaks are disallowed to reduce the number of possible states,
forcing the state sequences to have a constant number of
trajectories. Consequently, there always exist two integers’
i and j which satisfy the condition (4). Since there cannot
be any births or deaths within a single window for which
the optimal Viterbi sequence is calculated, the procedure is
repeated while sliding the analysis window by one frame every
time. The results of each window are stored and the births
and deaths are determined by looking at all interpretation of a
same frame transition. The modified algorithm output could be
judged by comparing the results of sending the same transition
probabilities for all frames to the original Viterbi sequence
[22] results fed with only one copy of the same transition
probabilities.

V. EXPERIMENTS AND RESULTS

This formant tracking algorithm was tested on several
natural vowels extracted from international french and English
vocabulary. For the algorithm prototype, Matlab [23] was
chosen as the implementation language. This section reports
on the results and is divided into three subsections. The first
subsection focuses on a pre-cleaned linear predictive formants
trajectory stage extraction. In the second subsection, focus
on testing the impact of frame size parameters related to the
HMM tracking algorithm. Finally, we give several illustrating
on the performance of the proposed tracking algorithm in
background white Gaussian noise with a signal-to noise ratio
(SNR) of 10dB.

A. Pre-Cleaning Formants Candidates Generation

The natural vowels /aa/, /oee/ and /i/ are degraded by white
Gaussien noise, extracted from NOISEX database [24], with
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an average SNR in the range of 10 dB. We use speech sampled
at 44 kHz linearly quantized. We were interested in following
the first three formants (Fy, Fa, F3). The digital speech s[n],
where n is the sample index, is pre-emphasized with a pre-
emphasis coefficient of 0.98, to partially compensate the
spectral tilt of the speech signal. After pre-emphasis, the
speech signal is windowed, using a 200 sample (25 ms)
Hamming window every; 80 samples (10 ms) and 12th order
LPC coefficients are computed for each window The algorithm
based on variable order LPC coding presented in this paper is
a modified and ameliorated version of the formants estimation
algorithm by search for poles. Initially, the LPC analysis order
is set at 12; the number of formants toextract is also fixed
(number of formants asked). The poles obtained by the LPC
analysis of the segment are sorted out so as to eliminate
extreme poles. The poles of the LP model pre-cleaned using
multi-bands spectral subtraction method applied for 8 bands.
These poles are the formant candidates represented as formant
trajectory.

B. Frame size Parameters Controls

Since formants are extracted, a HMM formant tracker is
used to process the poles of the LP model and obtain an
improved estimate of the LP model parameters. The first
problem to handle in this step is fixing the size of frame
parameters. In fact, as be shown in fig.2 controls related to the
frame size are provided to get a good pre-liminary extraction,
that the HMM algorithm will use to make clean tracks.

Fig.2 illustrates the performance of HMM tracking algo-
rithm depending on the size frame. The frequency cells are
marked along the vertical axis, and the time blocks marked
along the horizontal axis The fig.2 (a) shows simulated of
both the correct formant trajectories and the wrong one, which
are interlaced, of the sequence of phonemes /Lalo/; when
this trajectories are tracked with a small frame size, a major
formant information is eliminated with the persist of the wrong
ones as be shown in (b). A large frame size allows ridding the
false formants even the correct one (c). Then by choosing the
best size frame only the correct formants are saved (d).

C. Evaluation of Proposed Algorithm in Noisy Background

A qualitative assessment can be made with natural vow-
els by inspecting the coincidence of formants trajectories
obtained by the algorithms tested with the spectrogram of
the original signal presented in Fig.3, Fig.4 and Fig.5. For
the purpose of evaluating the robustness of the proposed
FTLP-HMM algorithm against environmental additive noise,
we first studied the behavior of HMM tracking algorithm
based on classic LPC analysis in the same test condition.
The experimental results realized with three kinds of natural
vowels aa, oee and i are illustrated by Fig.6, Fig.8 and Fig.10.
These figures shown that both the high order and the low
order trajectories of candidate formants of the noised phoneme
could be affected: we notice the birth of false peaks between
the formants trajectories (Fig.10) or the delete of candidates’
peaks for each frame (Fig.6 and Fig.8). This first study proves
the high sensitivity of the LPC coefficients to noise, the
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Fig. 2. Effect of the frame size in the Performance of HMM tracking
algorithm: (a) the correct formants trajectory of the sequence of phonemes
/Lalo/, (b) tracking with small frame, (c) tracking with large frame, (d)
tracking with a best choice of frame.
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Fig. 3. Spectrogram and Formants trajectory of LPC poles model in clean
environment for vowel /aa/.
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Fig. 4. Spectrogram and Formants trajectory of LPC poles model in clean
environment for vowel /ooe/.
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Fig. 5. Spectrogram and Formants trajectory of LPC poles model in clean
environment for vowel /i/.
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Fig. 6. Performance of HMM tracking with classic LPC for vowel /aa/ with
SNR=10 dB.

LPC poles were affected considerably and their position and
amplitude would be changed. This change causes erroneous
formants frequencies by merging of neighbouring formants, or
by creating a high discontinuity in formants trajectory. This
discontinuity causes the division of trajectory in careers of
short durations which make these latter considered as false
trajectories by the tracking HMM algorithm and then they
will be rejected. In order to remedy in the limitation of
format track estimation based on LPC models under noisy
condition, a second experiment was targeted on the same
vowels; in this study the proposed FTLP-HMM algorithm was
tested. Results presented by Fig.7, Fig.9 and Fig.11 achieve
improvement of continuity in the most affected formant tracks.
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Fig. 7. Performance of HMM tracking with classic order LPC for vowel
/ooe/ with SNR=10 dB.
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Fig. 8. Performance of HMM tracking with variable order LPC for vowel
/aa/ with SNR=10 dB.
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Fig. 9. Performance of HMM tracking with variable order LPC for vowel
/ooe/ with SNR=10 dB.

The discontinuity of formants is assumed to be compensated
by combination of variable order LPC analysis and de-noising
block conceived around a multi-band spectral subtraction. So,
these proposed techniques allow resolving the problems of
the formants too closer or confused, the missing formants
(not discovered) and the sensibility of poles to noise. Hence,
improvement of continuity of formant tracks is mainly ob-
tained by the best estimation of formants trajectory candidates
which lead for a best HMM tracking. Trajectories of formants
obtained by the algorithm are compared to the spectrogram
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of the original signal (without noise). We notice that formants
trajectories coincide well with the dark areas representative of
concentrations of energy the formants.

VI. CONCLUSION

This paper presents a novel algorithm for formant-tracking
linear prediction (FTLP-HMM) model for speech processing
in noise. The overall system was conceived around noise pre-
filtering using a multi-band spectral subtraction, followed by
a module for formants’ estimation using a linear prediction
technique "LPC’ operating with variable order. The formants
trajectory generated are tracked using the probabilistic models
Hidden Markov Model (HMM) with a Viterbi-decoder. This
approach provides a systematic framework for modelling
and utilization of a time- sequence of peaks which satisfies
continuity constraints on parameter. This study proves the
robustness of the proposed formant tracking method, evalu-
ations of the de-noising block shows that it delivers improved
results compared to algorithm based only on classic LPC
method. In fact, the additions of the de-noising and variable
order LPC analysis allow an efficient contribution to overcome
the problems of speech formants trajectory tracking for noise
effect. Since, they allow the compensation of the discontinuity
of formants trajectories affected by noise which make their
tracking by Viterbi-decoder more consistent for SNR level

upper than 10dB. However, difficulty arises if background
noise is lower than 10dB, we notice the trackers wander far
away from the true formant values. Therefore, it may be
necessary to incorporate a smoothing stage where Kalman
filters are used to model the formant trajectories and reduce
the effect of residue noise on formants.
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