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Abstract—Forecasting the stock market is a very challenging 

task. Various economic indicators such as GDP, exchange rates, 
interest rates, and unemployment have a substantial impact on the 
stock market. Time series models are the traditional methods used to 
predict stock market changes. In this paper, a machine learning 
method, Bayesian Additive Regression Tree (BART) is used in 
predicting stock market indexes based on multiple economic 
indicators. BART can be used to model heterogeneous treatment 
effects, and thereby works well when models are misspecified. It also 
has the capability to handle non-linear main effects and multi-way 
interactions without much input from financial analysts. In this 
research, BART is proposed to provide a reliable prediction on day-
to-day stock market activities. By comparing the analysis results from 
BART and with time series method, BART can perform well and has 
better prediction capability than the traditional methods. 
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I. INTRODUCTION 

HERE are a number of primary economic indicators that 
can be used to predict the stock market changes. Gross 

Domestic Product (GDP) is an important indicator, which is 
defined as the total amount of goods and services produced by 
a country. As a major economic indicator, it has a significant 
impact on the stock market. When the economy is growing, it 
is expected that GDP will increase due to business expansion. 
A lower GDP number will have a negative effect on the stock 
market. Unemployment rate is another important indicator that 
illustrates the strength of the economy. In the U.S., this figure 
is reported monthly by the Bureau of Labor Statistics. Other 
important indicators include, but are not limited to the 
Consumer Price Index for All Urban Consumers, Advance 
Retail Sales: Retail (Excluding Food Services), Consumer 
Sentiment (University of Michigan), Effective Federal Funds 
Rate and 10-Year Breakeven Inflation Rate, etc. 

The goal of this research is to provide a reliable statistical 
method using BART to predict stock indexes, such as Dow 
Jones Averages, based on multiple economic indicators. 

II. BACKGROUND OF BART METHOD 

Chipman et al. proposed a Bayesian "sum-of-trees" model 
with Bayesian backfitting MCMC algorithm implemented [1]. 
One major advantage of BART is the capability to handle non-
linear main effects and multiway interactions without much 
input from researchers [2]. There are two versions of BART 
proposed by Chipman et al. [1]: BART-cv and BART-default. 
In BART-cv, the prior hyperparameters were tuned via cross-
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validation as operational parameters. Different from BART-
cv, those parameters were set as default values in BART-
default. Chipman implemented BART in his R package 
BayesTree written by C++. The performance of BART-cv and 
BART-default were compared to some other methods, 
including Lasso, Boosting, Neural net and Random Forest. 
BART-cv has the smallest relative root-mean-square error 
(RMSE) values than the other methods per Chipman’s 
analyses. The other BART method, BART-default, has the 
second best performance. Since most other methods, such as 
neural nets, random forests and gradient boosting rely on 
cross-validation, it is very impressive that BART-default, 
which does not need cross-validation, can out-perform those 
methods. 

Kapelner et al. developed another R package bartMachine 
for similar analysis on BART [3]. Different from BayesTree 
which was written by C++, bartMachine was written by Java, 
with some additional features, such as external prediction 
function, model persistence across sessions, parallelization, 
native missing data mechanism, built-in cross-validation, and 
model diagnosis, etc.  

Geirsson explored a parallel implementation of BART using 
the Apache Spark framework [4]. The most significant 
modification is the serial improvement of the code, which 
reduces the workload considerably as the scanning of data is 
minimized. 

Lakshminarayanan et al. proposed a new PG sampler for 
BART [5]. Unlike existing samplers which make local moves, 
the PG sampler can propose complete trees. Experimental 
results confirm that PG dramatically increases mixing when 
the true posterior consists of deep trees or when the data 
dimensionality is high. 

III. BART ALGORITHM 

The BART model consists of two parts: a sum-of-trees 
model and prior distributions on the parameters of that model. 

A. Priors and Likelihood 
There are three components of prior distribution in the 

BART model: 
(1) The tree structure, denoted as Tj, where j is the number of 

trees in the model. 
(2) The leaf parameters in a tree, denoted as Mj. 
(3) The variation parameter σ2. 

 

p((T1;M1); … ; (Tm;Mm); σ) = [∏ 𝑝 𝑇𝑗,𝑀𝑗 𝑝 𝜎  (1) 
 

   =[ ∏ 𝑝 𝑇𝑗 ∨ 𝑀𝑗 𝑝 𝑇𝑗 𝑝 𝜎     (2) 
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and, 
p(Mj|Tj)∏ 𝑝 µ𝑖𝑗 ∨ 𝑇𝑗      (3) 

 
where, µij ϵ Mj 

The tree components (Tj ;Mj) and σ are independent to each 
other. The terminal node parameters µij in all trees are also 
independent. 

The prior of µij |Tj ~ N(µµ; σµ
2) and the prior of σ2 ~ IG(ʏ/2, 

ʏλ/2), where IG( ʏ/2, ʏλ/2) is the inverse gamma distribution 

with shape parameter of ʏ/2 and the scale parameter of ʏλ/2. 
The prior distribution of tree structure of P(Tj) is composed 

of three different components. 
1. The probability of a node will split at depth d = α / (1+d)β, 

where d is an integer greater or equal to 0. At the root of 
the tree, d is equal to 0. α controls the probability of a 
node would split, which follows a uniform distribution 

from 0 to 1. The larger α, the more likely for a node to be 
split. β controls the number of terminal nodes in a tree. 
When the value of β increases, the probability to split 
goes down. 

2. Since there is usually more than one covariate in the 
model, only one covariate will be checked for the 
possibility to be split on an internal node of a tree. The 
probability to pick one specific covariate follows the 
uniform distribution by default. 

3. Each covariate has a list of values in the dataset. Once a 
covariate is selected for an internal node, which value will 
be used as the cutoff point in an internal node to split will 
also follow the uniform distribution. 

In addition, the number of trees m also needs to be 
determined. Chipman et al. suggested the default of m to be 
200 [1]. According to their experience, the predictive 
performance of BART improves dramatically when m is 
increased from 1. At some point, the predictive performance 
levels off and starts to go down gradually when m continues to 
be increased. They suggest not to choose a very small m. In 
the proposed method, the default of m=200 is used. 

B. Hyperparameters 
There are six hyperparameters, α, β, µµ, σµ, ʏ, and λ, need to 

be set in BART for continuous endpoints. α and β are usually 
set to their default values of 0.95 and 2, respectively, which 
provide balanced penalizing effect for the probability of node 
splitting [1]. ʏ is also set to its default value of 3. λ is set to the 
value such that P(σ2

 < s2; ʏ; λ)=0.9. 
In default, the last two hyperparameters (i.e. µµ, σµ) are set 

to appropriate values so that the prior distribution of BART 
will be a non-informative prior. In this case, E[Y|X] ~ N(m µµ; 
m σµ) assigns high probability to the interval (min(Y), 
max(Y)), where m is the number of trees. In order to calculate 
the posterior distribution easily, Y is transformed to become 
Y_tilda = (Y-(max(Y)+min(Y))/2)/(max(Y)-min(Y)). When 
min(Y)=-0.5 and max(Y)=0.5, Y_tilda will fall in the range of 
(-0.5, 0.5). As a result, µµ will be set as 0 and the value of σµ 
will be calculated from σµ=0.5/(ʏ*sqrt(m)). The value of ʏ 
will be set to its default values of 3, as suggested by Vincent et 

al. [2]. In order to set the value of λ, a multiple linear 
regression by using the outcome as the dependent variable and 
all selected predictors as covariates will be run first to obtain 
the estimated variance of residuals. The selected value of λ 
will make the probability of σ2

 < s2, i.e. P(σ2< s2, ʏ, λ), equal 
to 0.9. 

C. Posterior Distribution and Prediction 
After all hyperparameters are set and all prior distributions 

and m are determined, the posterior distribution will be 
generated by a Gibbs sampler with Metropolis-Hasting 
method embedded using Bayesian backfitting MCMC 
algorithm [6]. 

The residual response of each tree is defined as: 
 

 𝑅 𝑌 ∑
𝑛
𝑘 𝑇𝑡 𝑋    (4) 

 
As the first step, the posterior distribution of T1 will be 

obtained from R-1 and σ2, i.e.: T1|R-1, σ
2. 

The proposed tree structure may or may not be accepted via 
a Metropolis-Hastings step. The proposed tree structure can 
either grow or prone or change or swap. Chipman et al. [1] 
propose the probabilities as 0.25 for growing a terminal node, 
0.25 for pruning a pair of terminal nodes, 0.40 for changing a 
nonterminal rule, and 0.10 for swapping a rule between parent 
and child. The sampling from the posterior distribution of tree 
structure T1 does not depend on the leaf parameter M1 because 
they can be integrated out. 

As the next step, the posterior distribution of M1 will be 
generated using the posterior formula derived in appendix: 
M1|T1, R-1, σ

2. Similarly, the posterior distributions of other 
tree structures Tj and leaf parameters Mj are generated 
sequentially in the following order for up to m trees. 
 
T2|R-2; σ2 
M2|T2;R-2; σ2 
T3|R-3; σ2 
M3|T3;R-3; σ2 
…… 
Tm|R-m; σ2 
Mm|Tm;R-m; σ2 
σ2 | T1, M1, …, Tm, Mm, ϵ 
 

All above steps represent a single Gibbs iteration. 
According to Kapelner et al. [3] the default setting in R 
package bartMachine is 250, and no more than 1,000 iterations 
are needed as "burn-in". In addition, the results will converge 
after 200 iterations according to trace plots. As a result, the 
first 1000 iterations are discarded in the proposed method. 

After the model based on proposed method is converged, 
the full set of trees will be obtained. The terminal node µ's can 
be summed up to get the predicted values of Y. A large 
number of random draws from the posterior distribution will 
provide estimation for the response. 

IV. PROPOSED BART METHOD 

Dow Jones Averages and economic data, including Real 
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GDP, Unemployment Rate, Consumer Price Index for All 
Urban Consumers (CPI), Advance Retail Sales: Retail 
(Excluding Food Services), Consumer Sentiment (University 
of Michigan), Effective Federal Funds Rate and 10-Year 
Breakeven Inflation Rate, are downloaded from  [7]. Since not 
all data are available before the year 2003, only data available 
on or after January 1, 2003 are used in the analysis. Not all 
economic indicators are measured on a daily basis. For 
example, CPI and the unemployment rate, etc., are measured 
monthly and GDP is only measured quarterly. When any 
economic indicators are missing on a specific day, the value 
reported on an earlier day would be carried over. If any stock 
indicator is still missing on a day, that day would be excluded 
from the analysis. The days of the weekend are also excluded 
from the analysis since the stock market was closed. As a 
result, 4186 days between  January 1, 2003 and January 10, 
2020 are used in the analysis.  

Half of the available days are used as the training set to 
build the BART model. For the remaining days, Dow Jones 
Averages will be predicted using economic indicators based 
on the model built on training set. The predicted stock index 
will be compared to the true stock index to determine the 
accuracy of prediction. 

BART with 200 trees and seven covariates listed above are 
used in the analysis. Metropolis-Hastings method is used to 
run 5000 iterations with the first 1000 burn-in sets excluded to 
obtain the posterior distribution. 

Based on the posterior distribution, 200 random draws are 
taken. Those 200 random draws are combined using Rubin's 
rule to get the final prediction. 

The time series analysis with the same covariates is also 

performed to predict the stock index so that the accuracy of 
the proposed BART method and time series method can be 
compared. 

V. RESULTS 

In the test set, which has 2186 days, the difference between 
the true Dow Jones Stock Index and the prediction from the 
time series technique is calculated for each day. The difference 
is summarized in Table I. The mean difference is 56.115 
points with the standard deviation of 1030.650. Similarly, the 
difference between the true Dow Jones Stock Index and 
BART prediction is calculated for each day. The difference is 
summarized in Table II. The mean difference is as small as -
0.284 points and the standard deviation is only 242.163. 
Comparing time series analysis, BART can provide a much 
more accurate prediction on stock changes. 

 
TABLE I 

SUMMARY OF DIFFERENCES BETWEEN TRUE DOW JONES STOCK INDEX AND 

PREDICTION FROM TIME SERIES TECHNIQUE 

Number of Days Mean Median Std Min Max 

2186 56.115 52.3633 1030.650 -3499.62 3695.73 

 
TABLE II 

SUMMARY OF DIFFERENCES BETWEEN TRUE DOW JONES STOCK INDEX AND 

BART PREDICTION 

Number of Days Mean Median Std Min Max 

2186 -0.284 -9.35221 242.163 -1385.78 1456.92 

 

The true stock index and BART prediction, along with 95% 
CI, are plotted in Fig. 1. According to the figure, the true stock 
indexes are always within 95% CI even when confidence 
interval is very narrow. 

 

 

Fig. 1 Forecasting Performance in Test Set Using BART 
 

VI. CONCLUSION 

BART is a powerful method to analyze financial data. One 
of advantages of the proposed BART method is that it can 
predict stock changes accurately based on economic 
indicators. The obtained analysis results proved that the BART 

algorithm is more accurate than the traditional time series 
technique in stock prediction. 

BART can handle many covariates at the same time. 
However, only seven covariates are used in the above analysis 
due to the availability of data. As a future research interest, the 
proposed BART method with more available data included 
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can be applied. 
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