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 
Abstract—The objective of this study is to investigate the forced 

vibration analysis of a planar curved beam lying on elastic foundation 
by using the mixed finite element method. The finite element 
formulation is based on the Timoshenko beam theory. In order to 
solve the problems in frequency domain, the element matrices of two 
nodded curvilinear elements are transformed into Laplace space. The 
results are transformed back to the time domain by the well-known 
numerical Modified Durbin’s transformation algorithm. First, the 
presented finite element formulation is verified through the forced 
vibration analysis of a planar curved Timoshenko beam resting on 
Winkler foundation and the finite element results are compared with 
the results available in the literature. Then, the forced vibration 
analysis of a planar curved beam resting on Winkler-Pasternak 
foundation is conducted. 
 

Keywords—Curved beam, dynamic analysis, elastic foundation, 
finite element method.  

I. INTRODUCTION 

URVED beams are preferred in many engineering 
applications due to architectural or structural reasons. 

Many studies exist in the literature examining the static 
analysis of curved beams resting on elastic foundation [1]-[9] 
and the free vibration analysis of curved beams resting on 
elastic foundation [8], [10]-[17], while the number of 
researches concerning the forced vibration analysis curved 
beam on elastic foundation is limited. Celep [18] considered 
the problem of a thin circular ring resting on a tensionless 
Winkler foundation. This ring is subjected to time dependent 
in-plane loads. Çalım [19] investigated the forced vibration 
problem of Timoshenko curved beam on Winkler foundation 
subjected to triangle impulsive loading. The rocking influence 
is also considered. Ordinary differential equations are obtained 
in Laplace space and solved by using the complementary 
functions method. The results are transformed to the time 
space by using Durbin's numerical Laplace inverse 
transformation algorithm. 

The aim of this study is to investigate the dynamic behavior 
of a planar curved Timoshenko beam resting on elastic 
foundation (Winkler-Pasternak). The rocking influence of the 
foundation is also considered. The solution under the 
triangular impulsive type loading is carried out in Laplace 
space by using the mixed finite element method. The planar 
curved beam is discretized by a two-noded curvilinear mixed 
finite element. Each node of the element contains 12 degrees 
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of freedom. In detail, six displacement type variables 
involving three translations and three rotations, six stress 
resultant type variables composed of two shear forces, one 
axial force, two bending moments, and one torsional moment. 
The results are transformed back to the time domain 
numerically by the modified Durbin's transformation 
algorithm [20]-[22]. First, the verification of the mixed finite 
element formulation by means of a comparison with results 
from the literature is carried out for the forced vibration 
analysis of a planar curved beam on Winkler foundation. 
Then, the effects of some parameters (e.g. the opening angle 
of curved beam, the radius of the curved beam to the height of 
the rectangular cross-section ratio and foundation parameter) 
on the dynamic behavior of the planar curved beam resting on 
Winkler-Pasternak foundation are investigated. 

II. FORMULATION IN LAPLACE SPACE 

A. The Field Equations 

The field equations based on the Frenet coordinate system 
for the isotropic homogenous spatial Timoshenko beam exist 
in [23] and [24]. As an extension of those formulations, 
additional terms due to the foundation interaction are involved 
in the field equations of spatial beam by transforming them to 
the Laplace space. The field equations become Laplace space 
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The Laplace transformed variables are denoted by the over 

bars. z  is the Laplace transformation parameter, s  denotes 
the axis parameter along the arc length of the spatial beam. 

t n bu u u  u t n b , t n b    Ω t n b , and 

t n bT T T  T t n b  are the displacement, rotation, and force 

vectors, respectively. t n bM M M  M t n b  is the moment 

vector in the Laplace space,   is the density of homogeneous 

material, A  is the area of the cross section, 

t n bI I I  I t n b  is the moment of inertia of the cross 

section, q  and m  are the distributed external force and 

moment vectors in the Laplace space, C  and C  are the 

compliance matrices. ( )W Wt Wn Wbk ,k ,kk  and ( )P Pt Pn Pbk ,k ,kk  

are foundation parameter vectors of Winkler and Pasternak, 
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respectively. ( )R Rt Rn Rbk ,k ,kk  is foundation rocking stiffness 

vector. 

B. Functional 

The field equations in (1) are written down in operator form 
as Q = Ly - f . After showing the potentiality of the operator, 

the functional of the structural problem can be obtained in the 
Laplace space as: 
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The terms with hats in (2) define the known values on the 

boundary. The subscripts   and   represent the geometric 
and dynamic boundary conditions, respectively. The details of 
the variational formulation and functional can be found in 
[25].  

C. Mixed Finite Element Formulation 

A two-nodded curved element is employed to discretize the 
beam domain. The curved element has 2 12  degrees of 
freedom. Linear shape functions are employed for the 
interpolation. The curvatures are satisfied exactly at the nodal 
points and linearly interpolated through the element [24], [25]. 

 

 

Fig. 1 A planar curved beam and impulsive load 

III. NUMERICAL EXAMPLES 

The forced vibration analysis of a planar curved beam 
resting on Pasternak foundation is performed. The curved 
beam with various opening angles is subjected to a triangular 
impulsive type of external dynamic load ( )P P t  acting at 

the midpoint of beam (Fig. 1). The fixed-fixed end condition 
is employed. The analyses are carried out in the Laplace 
space, and the results are transformed back to the time space 
numerically using modified Durbin's algorithms. Firstly, the 
dynamic analysis results of the planar curved beam on two-
parameter elastic foundation are verified with the literature 

[19]. Next, the influence of the opening angle of curved beam, 
the radius of the curved beam to the height of the rectangular 
cross-section ratio ( /R h ) and foundation parameter are 
investigated on the dynamic response of the planar curved 
beam on Winkler-Pasternak foundation. The rocking influence 
of the foundation is also considered in the solutions. 

The common parameters for the examples are: The modulus 
of elasticity of the beam 47.24GPaE  , its Poisson's ratio 

0.2  , the density of material 35000kg/m  , the radius of 

curved beam having rectangular cross-section 7.63mR  . 

The opening angles ( ) are 45 , 90 , 135 ,180    . The 

component of Winkler foundation parameter in the direction 
of b 23.623MPa

Wb
k  , the foundation rocking stiffness constant 

in the direction of t 1143kNm/m
Rt

k  . The intensity and the 

duration of the loading 100kNoP   and 0.064sloadt  , 

respectively. The dynamic response of the beam is determined 
within 0 0.25st  . The parameters used in the analysis for 

inverse Laplace transformation algorithm are chosen 112N   
and 6aT  . These parameters are verified by the authors in 
[25]. 

A. Convergence Test and Comparison with the Literature 

The dimensions of rectangular cross-section are 
0.762 mb h  . The dynamic analysis of the planar curved 

beam with 180    is carried out using 4, 10, 40 and 80 
finite elements. The time history curves of the displacement (

bu ) at the midpoint of the beam (at point C) and the shear 

force ( bT ) and the moments ( ,t nM M ) at the fixed end of the 

beam (at point A) are presented in Fig. 2. From the time 
variation curves, the first maximum values for bu , bT , tM , 

nM  are tabulated in Table I. In the following examples, 80 

elements are employed. 
 

TABLE I 
CONVERGENCE ANALYSIS 

Number of 
element 

410bu  (M) bT  

(kN) 
tM  

(kNm) 
nM  

(kNm) 

4 -10.5958 43.8939 -12.4514 0.76248 

10 -7.93354 10.4702 -9.39795 28.3368 

20 -7.86019 9.50552 -9.89036 37.1206 

40 -7.85772 9.58955 -9.84413 36.8867 

60 -7.85641 9.45788 -9.84480 37.1374 

80 -7.85560 9.37392 -9.84470 37.2756 

100 -7.85571 9.36965 -9.84396 37.3439 

 
The dynamic analysis of curved beam is investigated for 

four different opening angle values ( 45 , 90 , 135 , 180      ). 

The influence of the opening angle on the dynamic behavior is 
shown in Fig. 3 by plotting the time histories of bu  and tM . 

In [19], this problem is solved, but the results are given 
graphically. In order to compare our mixed finite element 
results with [19], we got in touch with the author. The author 
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of [19] has shared his results with us. The comparison for the 
absolute values of displacement bu  and moment tM  of 

0.05st   is tabulated for different opening angle values in 

Table II. The absolute percent differences with respect to the 
[19] results are also provided in Table II. It is observed that 
the results of both studies are in agreement with each other. 

 

 

(a) bu  displacement at the midpoint of the beam 
 

 

(b) bT  shear force at the fixed end of the beam 
 

 

(c) tM  moment at the fixed end of the beam 
 

 

(d) nM  moment at the fixed end of the beam 

Fig. 2 Convergence analysis of transverse triangle type impulsive point load applied at the midpoint of the curved beam, for 4, 10, 40, 80 
elements 
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(a) bu  displacement at the midpoint of the beam 

 

 

(b) tM  moment at the fixed end of the beam 

Fig. 3 Time histories of the curved beam for different values of opening angle ( ) 
 

TABLE II 
COMPARISON WITH THE LITERATURE  

    [19] ANSYS[19] This study % diff. 

45  
410bu  (m)  0.492  0.490 -0.493 0.20 

tM (kNm) -0.337 -0.119 -0.409 17.6 

90  
410bu  (m)  3.150  3.160 -3.156 0.19 

tM (kNm) -4.110 -4.053 -4.538 9.43 

135  
410bu  (m) 7.160 7.130 -7.164 0.06 

tM (kNm) -11.30 -11.22 -11.84 4.56 

180  
410bu  (m) 6.950 6.910 -6.950 0.00 

tM (kNm) -9.790 -9.843 -9.736 -0.55 

B. Curved Beam on Pasternak Foundation 

The dynamic behavior of the curved beam for different 
opening angles ( 45 , 90 , 135 , 180      ), the radius of the 

curved beam to the height of the rectangular cross-section 
ratios ( / 5,10,15R h  ) keeping 7.63mR   and 0.762 mb  , 

and Pasternak foundation parameters ( 2362.3kN
Pb

k  , 

23623kN , 236230kN ) are investigated. 

For four different opening angle values, the time histories of 

bu  and tM  are given in Fig. 4. It is observed that increasing 

the opening angle of the curved beam enlarges the vibration 
periods of bu  and tM . The values of first extrema of the 

forced vibration zone corresponding to four different opening 

angle values are determined from Figs. 4 (a), (b) and the 
MFEM results for 180    are compared with the results 
associated with 45 , 90 , 135     . As the opening angle 

values (except 135   ) increases, an increasing trend is 
observed for the displacement bu  and the moment tM . If the 

displacement bu  in each opening angles   are compared with 

respect to the results of 180   , the absolutely percent 
reduction for the cases 45    and 90 are 85%  and 33% , 
respectively. The percent increase for 135   is 0.8% . A 
similar situation is seen in the moment tM . If the moments 

tM  in each opening angles   are compared with respect to 

the results of 180 ,    the absolute percent reduction for the 

cases 45    and 90 are 90.1%  and 30.9% , respectively. 
The absolute percent increase for 135   is 10.5% . 

For the ratios of radius to the height of the rectangular 
cross-section ( / 5,10,15R h  ), the time histories of bu  and 

tM  are given in Fig. 5. As /R h  ratios increase (or the 

thicknesses of the beam decrease), it is observed that the 
displacements bu  increase and the vibration periods of bu  

decrease. The values of first extrema of the forced vibration 
zone corresponding to three /R h  ratios are determined from 
Figs. 5 (a), (b) and the MFEM results for / 5R h   are 
compared with the results that correspond to the / 10, 15R h  . 
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If the displacements bu  in each /R h  ratios are compared 

with respect to the results of / 5R h  , the absolute percent 
increase for the cases / 10R h   and 15  are 31%  and 41% , 
respectively. As /R h  ratios increase, it is observed that the 
moments and the vibration periods of tM  decrease. If the 

moments tM  in each /R h  ratios are compared with respect 

to the results of / 5R h  , the absolutely percent reduction for 
the cases / 10R h   and 15  are 83%  and 95% , respectively. 

 

 

(a) bu  displacements at the midpoint of the beam 

 

 

(b) tM  moments at the fixed end of the beam 

Fig. 4 Time histories of the curved beam for different values of opening angle 
 

 

(a) bu  displacements at the midpoint of the beam 

 

0 0.05 0.1 0.15 0.2 0.25
time (s)

-4

0

4

-6

-2

2

45o

90o
135o

180o

M
t m

om
en

ts
 (

kN
m

)

0 0.05 0.1 0.15 0.2 0.25
time (s)

-4

0

4

-6

-2

2

R/h=5
R/h=10
R/h=15



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:11, No:7, 2017

986

 

 

 

(b) tM  moments at the fixed end of the beam 

Fig. 5 Time histories of the curved beam for different values of /R h  ratios 
 

For each Pasternak foundation constants, the displacements 

bu  of 23623kN, 236230kN
Pb

k   are compared with the 

results that correspond to 2362.3kN
Pb

k  ; in the cases of 

23623kN, 236230kN
Pb

k  , the percent reductions for the 

values of first extrema of the forced vibration zone are 3.6%  
and 26% , respectively. Similar comparison can be made for 

the moments tM  and the percent reductions are 1.2%  and 

15% , respectively. It is also observed that due to an increase 
of Pasternak foundation constants of the curved beam, the 
vibration periods of bu  and tM  decrease (see Fig. 6). 

 

 

(a) bu  displacements at the midpoint of the beam 

 

 

(b) tM  moments at the fixed end of the beam 

Fig. 6 Time histories of the curved beam for different values of Pasternak foundation parameters 
 

IV. CONCLUSION 

Dynamic behavior of a planar curved Timoshenko beam on 
elastic foundation with rectangular cross-section is 
investigated using the mixed finite element method. The 

solutions are obtained in Laplace space and the results are 
transformed back to time space by using modified Durbin's 
algorithm. Regarding as a converge test, a semicircular beam 
resting on Winkler foundation is handled, the mixed finite 
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element results for different opening angle values of curved 
beam are compared with the literature and a good agreement is 
observed. The rocking influence is also considered in the 
formulation. Next, some examples are solved to investigate 
the influence of the radius of the curved beam to the height of 
the rectangular cross-section ratio ( / )R h , the opening angle 

of the curved beam ( )  and Pasternak foundation parameter 

( )
P

k  on the dynamic analysis of a planar curved beam having 

rectangular cross-section. Following remarks can be cited: 
 As the opening angle values increase, an increasing trend 

is observed for the magnitude of displacements bu  and 

the moments tM . 

 As the ratio /R h  increase, an increase of the 

displacements bu  and a reduction of the moments tM  are 

observed. 
 An increase of Pasternak foundation constant caused a 

reduction of the displacements bu  and the moments tM . 

 The change of opening angle, /R h  and Pasternak 
foundation constant affect the vibration period of 
displacements bu  and the moments tM . 
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