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Abstract—Identifying the nature of protein-nanoparticle 

interactions and favored binding sites is an important issue in 
functional characterization of biomolecules and their physiological 
responses. Herein, interaction of silver nanoparticles with lysozyme 
as a model protein has been monitored via fluorescence spectroscopy. 
Formation of complex between the biomolecule and silver 
nanoparticles (AgNPs) induced a steady state reduction in the 
fluorescence intensity of protein at different concentrations of 
nanoparticles. Tryptophan fluorescence quenching spectra suggested 
that silver nanoparticles act as a foreign quencher, approaching the 
protein via this residue. Analysis of the Stern-Volmer plot showed 
quenching constant of 3.73 µM−1. Moreover, a single binding site in 
lysozyme is suggested to play role during interaction with AgNPs, 
having low affinity of binding compared to gold nanoparticles. 
Unfolding studies of lysozyme showed that complex of lysozyme-
AgNPs has not undergone structural perturbations compared to the 
bare protein. Results of this effort will pave the way for utilization of 
sensitive spectroscopic techniques for rational design of 
nanobiomaterials in biomedical applications. 
 

Keywords—Nanocarrier, Nanoparticles, Surface Plasmon 
Resonance, Quenching Fluorescence. 

I. INTRODUCTION 

ILVER nanoparticles offer superior utility in biosensing 
and medical diagnostics [1], [2], optical labeling [3], 

hyperthermia and antibacterial applications [4]. They show 
outstanding photophysical properties, such as tunable 
fluorescence emission, localized surface plasmon resonance 
and enhanced FRET efficiency [5]-[7]. Meanwhile, significant 
adsorption capacity of these nanostructures to bind or carry 
drugs and biomolecules offers new research opportunities for 
investigating molecules-nanoparticles binding events [8]. 
Detailed studies on the absorption processes and binding of 
nanoparticles to biomolecules at their interface provide in-
depth understanding of pharmacological responses for 
nanobiomaterials. This will set new directions for generation 
of nanoscale-based systems, with application in variety of 
areas, spanning from medical implants and bioengineering to 
drug nanocarrier systems. 

For the latter one, a number of criteria such as drug 
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circulation time, cell targeting, release, therapeutic index and 
side effects are all affected by binding properties of drugs to 
their carriers. Therefore, to fulfill the requirements of such 
combined systems, structure and function of the overall 
system should be monitored using sensitive spectroscopic 
techniques.  

Despite the recent active progress on gold nanoparticles, 
there has been rare information on how biomolecules interact 
with silver nanoparticles. Previous studies have reported about 
Surface Enhanced Raman Spectroscopy (SERS) of 
biomolecules such as lysozyme on Ag electrodes and island 
films. Those studies indicated that the α-helical conformation 
is favored for binding to the surface over the random coil or β-
sheet conformations, and lysozyme is adsorbed on the silver 
surface through the disulfide bonds and aromatic amino acid 
residues [9], [10]. In this effort, fluorescence spectroscopy has 
been utilized as a convenient technique to study interaction 
sites of lysozyme-silver nanoparticles complex. High 
sensitivity of this optical technique makes it a promising tool 
to understand various pathophysiological steps and enables 
potential diagnosis of microorganism associated diseases, 
tissue abnormalities and malignancies [11].  

Chicken egg white lysozyme (HEWL) is a single chain 
polypeptide of 129 amino acids cross-linked with four 
disulfide bridges. Lysozyme preferentially hydrolyzes the 
β(1→4) glucosidic linkages between N-acetylmuramic acid 
and N-acetylglucosamine in the peptidoglycan of certain 
microorganisms. Recently, the biomolecule’s potential ability 
in killing human immunodeficiency virus (HIV) has been 
evidenced [12]. With well-known physico-chemical properties 
and antibacterial activity, the enzyme also shows efficiency in 
delivery of drug molecules [13].  

This effort aims to gain further insight into lysozyme-
AgNPs interaction and the extent of stability changes that 
protein might undergo upon interaction with AgNPs, using 
fluorescence spectroscopy. In this regard, a series of 
experiments were conducted to investigate favorable 
adsorption sites of lysozyme on silver nanoparticles by 
measuring intrinsic tryptophan fluorescence quenching. To 
compare stability of the complex with bare lysozyme, spectra 
of the tryptophan residues were also monitored in the presence 
of a chemical denaturant.  

II. MATERIALS & METHODS 

A. Chemicals  

Silver nitrate (AgNO3) and sodium borohydride (NaBH4) 
were procured from Sigma. Anhydrous sodium dihydrogen 
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Fig. 2 Quenching of tryptophan fluorescence for lysozyme, in 
varying concentrations of NPs 

 

 

Fig. 3 Stern–Volmer plot. F0 /F = 0.0373 [NPs] + 1.0029 (R2=0.98)  

B. Quenching of Trp Fluorescence by Silver Nanoparticles 

Fluorescence spectroscopy has been used as a convenient 
way for investigating protein tertiary structure and its binding 
behavior. It can provide intimate knowledge on ligand 
accessibility to Trp residues of protein. Lysozyme molecule 
contains six Trp residues (28, 62, 63, 108, 111 and 123) with 
three residues located (Trp62, 63 and 108) in the active site of 
the enzyme. Trp62 and Trp108 are considered as the most 
dominant fluorophores. According to Fig. 2, the intrinsic 
fluorescence of biomolecule experiences steady reduction in 
its intensity upon increase of nanoparticle’s concentration. 
Therefore, Trp residues are involved in the complex 
formation. Since Trp 62 and Trp 63 residues are located at the 
active site between alpha and beta domains, it could be 
suggested that presence of AgNPs in protein’s vicinity might 
affect the conformation of Trp microenvironment. Spectral 
shift of 24 nm in the complex form clearly indicates the 
increment of hydrophobicity around Trp residues. An increase 
in the helical content of lysozyme and decrease of substrate 
affinity upon treatment with nanoparticles also indicated that 
nanoparticles may approach to the enzyme’s catalytic site and 
induce some degree of compactness [16], [17]. Analysis of the 
Stern–Volmer plot using the intrinsic fluorescence quenching 
data provided the value of 3.73 µM−1 as KSV constant (Fig. 3). 
The plot showed a straight line, supporting the existence of a 

single quenching mechanism. Fluorescence intensity data can 
also be used to obtain the binding constant (Ka) and the 
number of binding sites (n). When small molecules bind 
independently to a set of equivalent sites on a macro-
molecule, the equilibrium between free and bound molecules 
is given by the following equation [18]: 
 
               Log [(F0 - F) /F] = log Ka + n log [Q]                   (2) 

 
where, Ka is the binding constant and n is the number of 
binding sites per molecule. The plot of log (F0−F)/F against 
log [Q] yields a straight line with slope and intercept of n and 
Ka, respectively (Fig. 5). From analysis of (2), we obtained n 
= 0.94 and Ka = 0.04 nM, for Lys and AgNPs. The value of n 
indicates that there is approximately a single binding site in 
Lys upon approaching AgNPs. The low affinity of ligand 
binding represents weak intermolecular forces between 
lysozyme and AgNPs. Our previous studies on adsorption of 
Lys onto gold nanoparticles showed higher binding affinity 
compared to this result [19], [20]. Such difference could be 
justified by Density Functional Theory (DFT) and molecular 
dynamic simulation [21]. In vacuo DFT results indicated that 
water molecules adsorb more strongly to Ag rather than Au 
surfaces. The expulsion of water molecules in the first 
solvation layer at the Ag interface presents a free-energy 
barrier that the adsorbate must overcome to make close 
contact with silver surface. Presence of this barrier is not seen 
in a majority of the gold adsorption cases. Therefore, most of 
the biomolecules favor adsorption onto gold over silver [21]. 

C. Lysozyme Unfolding Studies 

Fluorescence spectroscopy is highly sensitive to the 
biochemical environment of the fluorophores. In this regard, 
changes that might be induced in the structure of lysozyme 
during interaction with AgNPs were explored using a 
chemical denaturant. Upon addition of GdnHCl, lysozyme 
experienced unfolding phenomenon (Fig. 4), in which, 
tryptophan residues became more exposed to the hydrophobic 
core of the molecule and kept more distance from each other. 
This could explain enhancement and red-shift of fluorescence 
emission spectra for the bare protein and its complex to 369 
and 367 nm, respectively. Increasing concentration of 
denaturant led to gradual increase in the fluorescence intensity 
of biomolecule (data are not shown). Comparison of 
fluorescence spectra of unfolded bare lysozyme with its 
nanoparticle-interacted counterpart showed that AgNPs have 
not induced perturbations in the protein’s structure. However, 
based on our previous report on interaction of lysozyme with 
gold nanorods, it is worth to mention that nature of the 
nanoparticles, its morphology and affinity to absorb water 
molecules are key parameters in induction of structural 
stability [20], [21]. Therefore, within this range of 
concentration, AgNPs do not enhance structural stability, as 
previously seen by gold nanorods [20].  
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