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Abstract—The RANS method with Saffman’s turbulence model 

was employed to solve the time-dependent turbulent Navier-Stokes 
and energy equations for oscillating pipe flows.  The method of 
partial sums of the Fourier series is used to analyze the harmonic 
velocity and temperature results.  The complete structures of the 
oscillating pipe flows and the averaged Nusselt numbers on the tube 
wall are provided by numerical simulation over wide ranges of ReA 
and ReR.  Present numerical code is validated by comparing the 
laminar flow results to analytic solutions and turbulence flow results 
to published experimental data at lower and higher Reynolds 
numbers respectively.  The effects of ReA and ReR on the velocity, 
temperature and Nusselt number distributions have been di scussed. 
The enhancement of the heat transfer due to oscillating flows has 
also been presented.  By the way of analyzing the overall Nusselt 
number over wide ranges of the Reynolds number Re and Keulegan-
Carpenter number KC, the optimal ratio of the tube diameter over 
the oscillation amplitude is obtained based on the existence of a 
nearly constant optimal KC number. The potential application of the 
present results in sea water cooling has also been discussed.  
 

Keywords—Keulegan-Carpenter number, Nusselt number, 
Oscillating pipe flows, Reynolds number 

I. INTRODUCTION 
CEAN wave energy [1] and sea water cooling [2] have 
been potential sources as renewable energy with high 

energy densities [3].  The fluid mechanics and heat transfer of 
oscillating pipe flows are very important for ocean energy 
applications [4].  

The early studies of oscillating flows were highly 
concentrated on flow structures [5-9]. The flow was observed 
to be laminar at low ReA and become turbulent at high ReA by 
Ohmi et al. [10].  They demonstrated that for ReR > 8, the 
critical Reynolds number (ReA)cr for the onset of transition is 
independent of ReR: the value of (ReA)cr = 4.00×104 
corresponds to the onset of disturbed laminar flow 
superimposed with small perturbations, while (ReA)cr = 
1.51×105  for the onset of intermittently locally-bursting 
turbulent flow.  Akhavan et al. [11] also investigated 
experimentally the transition of oscillating flows in circular 
pipes. Hino et al. [7] observed that the value of (ReA)cr 
increased when ReR < 5.12, because the viscous Stokes layers 
at the pipe wall become relatively thicker when ReR decreases 
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and the interaction of the Stokes layers from the wall restricts 
the viscous diffusion for boundary layer growth.  Further 
decrease in ReR leads to the limit case of a quasi-steady 
laminar Poiseuille flow.  Conversely, the increase of ReR to a 
very large value will lead to the other limit case where the 
Stokes layer becomes much thinner than the pipe radius. To 
investigate the flow transition as well as its associated wall 
shear stress, Blondeaux [12] investigated numerically the 
oscillating flows in a semi-infinite fluid domain over a flat 
plate by implementing the Reynolds Averaged Navier-Stokes 
(RANS) method with Saffman’s turbulence model [13, 14]. 
However, he reported only amplitude but no phase angle 
information on the oscillatory shear stress. The Lam-
Bremhorst form of the low-Reynolds number k-� turbulence 
model was chosen for oscillating-flow modeling by [15], 
while there are still some deficiencies due to the shortcomings 
of the low-Reynolds number computational model. Also the 
higher order harmonics are not decomposed from the first 
order one. Hsu et al. [16] demonstrated that Saffman's 
turbulence model is applicable for unsteady oscillating flows 
and they also provided a complete account for the oscillatory 
shear stress on the flat plate. Hsu et al. [17] revealed the flow 
structure of oscillating channel flows and obtained (ReA)cr = 
2.00×104.  

Recently, more studies are concentrated on heat transfer of 
oscillating pipe flows due to the increasing importance of the 
application in the ocean energy. Experimental studies show 
that the oscillating flows can enhance heat transfer.  
Experimental results of Chai et al. [18] show that the heat 
exchange capability of the oscillating heat pipe heat 
exchanger is about 3 times higher than that of a common tube 
heat exchanger. However their measurement is under the 
laminar flow region and they did not show the relationship of 
the enhancement of the heat transfer with governing 
parameters such as the Reynolds numbers.  Wang and Lu [19] 
applied large eddy simulation (LES) technique to simulate 
heat transfer between the two constant temperature endplates 
of oscillating channel flow at Re = 350.  They find out that 
the heat transfer takes place in a much thinner region near the 
wall at Pr = 100 than at Pr = 1. Due to the limitation of the 
computational speed of the LES method, they did not give out 
the full structures for heat transfer and fluid flow from 
laminar to transient and turbulent range. Also the assumption 
of the constant temperature difference between the two 
endplates does not fit for the present mode for sea water 
cooling heat exchangers, because the characteristic 
temperature difference is not on the pipe wall itself, but 
between inlet/outlet oscillating sea water and the pipe wall.    

In the present study, the RANS method with Saffman’s 
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turbulence model was employed to study overall structures of 
the axis direction dominated flow and two dimensional heat 
transfer of oscillating flows in circular pipes. The 
experimental studies of [20] and [21] show that the entrance 
length of oscillating pipe flow can be approximated by 
Lentrance/R = 8.76×10-3ReR. So the entrance length is a small 
value comparing to the transportation length of the water pipe 
before the water coming into the heat transfer part.  Thus the 
flow can be assumed to be fully developed one dimensional 
dominated oscillating flow.  Experimental study of a pulse 
combustor tail pipe in [22] showed that the mean temperature 
was as high as 800 K, while the surface temperature oscillated 
only about 0.56K. So the two dimensional heat transfer model 
with constant wall temperature Θw and inlet/outlet 
temperature Θ0 boundary conditions is applied in the present 
study.  Also the present model can speed up the simulation 
and make it possible for us to provide a complete picture of 
the oscillating flow structures and the overall heat transfer 
enhancement over a wide range of ReA and ReR.  Results of 
oscillating velocity and temperature fields are decomposed by 
the method of partial sums of the Fourier series.  The overall 
heat transfer enhancement comparing to a based line case of 
pure conduction will be presented.  By the way of analyzing 
the overall Nusselt Number over wide ranges of the Reynolds 
number Re and Keulegan-Carpenter number KC, their effects 
on heat transfer and the potential application of the results in 
sea water cooling will also be discussed.    

II. GOVERNING EQUATIONS AND GOVERNING PARAMETERS 
Consider an oscillating flow in a pipe with radii R, the 

cylindrical coordinate is chosen such that x is in the flow 
direction parallel to the centerline of the pipe. The pressure 
gradient in the x direction that drives the flow is assumed to 
be cosinusoidal with a frequency f as: 

 )2cos(1 ft
x
p

p πα
ρ

=
∂
∂

−             (1) 

where ρ is the fluid density, p the pressure, and αp is the 
amplitude of negative pressure gradient which is assumed to 
be constant. Using αp and f, a displacement length scale A is 
now defined as 2)2/( fA p πα= .  Similarly as the oscillating 
channel flows discussed in [17], there are three length scales 
for oscillating flows in circular pipes: the displacement 
amplitude of fluid oscillation A, the pipe radius R, and the 
Stokes layer thickness δ. The Stokes layer thickness δ = 

fπν 2/  measures the viscous diffusion distance in one cycle 
of oscillation, where, ν is the fluid viscosity and f is the 
oscillation frequency. The ratios of A and R to δ then give two 
important independent parameters defined respectively by 

ARe = 22 δA = νπ 22 fA  and RRe 22 δR= νπ 22 fR= . The 

oscillating period number, i.e. the Keulegan-Carpenter 
number KC (based on the characteristic length scale R) is 
defined as: KC = RA/2π = 2/1)Re/(Re2 RAπ , and the Reynolds 

number Re is defined as νπ /)2(Re RfA=  2/1)Re(Re RA= .  

Thus, in previous literatures we can see two set of governing 
parameters (ReA, ReR) and (KC, Re) for oscillating flow 
studies. The characteristics of the oscillating pipe flows then 
depend entirely on (ReA, ReR) or (KC, Re). While for heat 
transfer in oscillating pipe flows will also have Prantel 
number Pr as the third governing parameter.  The coordinate 
systems for the two groups of governing parameters 
(log(ReA), log(ReR)) and (log(KC), log(Re)) differ 4/π , so 
results can be presented in either of them.   

Using  R as the length scale, 2πfA as the velocity scale, 
)2( fAR π  as the time scale,  2)2( fA πρ  as the scale for 

negative pressure gradient, 0Θ−Θw  as the temperature scale, 
and the scales (2πfA)2 and RfAπ2  for the  pseudo-energy e 
and the pseudo-vorticity ω  respectively, the non-dimensional 
governing equations can be obtained based on Saffman’s 
turbulence model [13] as: 
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where, the Keulegan-Carpenter number KC = RA /2π  is also 
the dimensionless period, and the Reynolds number 

νπ /)2(Re RfA= , the  Pr = 7.0 is selected to simulate water 
cooling in the present study.     
The proper boundary conditions are: 

u = 0, e = 0,
r
uS

e ∂
∂

=
α

ω , Θ  = 1.0   at 1±=r ,     (6) 

0=
∂
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=
∂
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rrr
e

r
u ω   at 0=r ,         (7) 

and 
Θ  = 0     at RLxx 2/±= .          (8) 
In (2)-(5), eα , ωα , eβ , ωβ , eσ , ωσ  , γ  and γT are 

universal constants. In the present computation, we followed 
Saffman & Wilcox [14] and Jacobs [23] to use 3.0=eα , 

18.0=ωα , 09.0=eβ , 15.0=ωβ , 5.0=eσ , 5.0=ωσ , 
0.1=γ  and 89.0/1=Tγ . The value of S in the wall 

boundary condition (6) depends on the surface roughness and 
is equal to 100 for a smooth wall [14].   

III. NUMERICAL PROCEDURE AND RESULT VALIDATION  

A. Numerical Procedure 
The equation system (2)-(5), subjected to boundary 

conditions (6)-(8), was solved numerically with the following 
procedures: (i) Central difference scheme for spatial 
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derivatives, (ii) Second order Adams-Bashforth scheme for 
time advancement of the source terms, and (iii) Implicit 
scheme for the viscous terms.  

The main reason for adapting Saffman's turbulence model 
rests on its applicability to flows over the entire range of 
Reynolds number to provide a first estimate of flow 
transition. Meanwhile, the simplicity of RANS method, 
especially the less time-consuming feature, enabled us to 
compute the flow and heat transfer characteristics over wide 
ranges of Reynolds numbers to provide a complete picture of 
the oscillating flow structure and the overall heat transfer 
enhancement. 

In the present simulations, the length of the tube is 8 times 
of the diameter.  A mesh with grid size 160×200 is used and 
the mesh is stretched by exponential function to provide more 
points near the wall and inlet/outlet of the pipe to resolve the 
Stokes layer near the tube wall and the entrance heat transfer. 
The dimensionless time step ∆t was chosen as ∆t /KC = 10-6.  
The convergence error is less than 10-6 for the velocity field 
and less than 10-5 for the temperature field.   

 

B. Validation by Comparing to Analytical Results of 
Laminar Oscillating Pipe Flows 
When the Reynolds number ARe  is sufficiently low, the 

flow is laminar, i.e., <u'w'> = 0 or ( )ωγ /e = 0.  In term of the 
complex expression, 2/].)/2exp(ˆ[ ccKCtiuu += π  where û  

is the complex amplitude, 1−=i , and c.c. denotes the 
complex conjugate, the solution to (2) with boundary 
condition (6) and (7) is given by 
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where, 0J denotes the Bessel function of the first kind and of 
zero order. The amplitude and the phase angle of u are then 
obtained by taking the absolute value and the argument to û , 
respectively.  

The friction coefficient  defined by FC = 2)2(/2 fAw πρτ   

= 2/].)/2exp(ˆ[ ccKCtiCF +π  with wτ  being the wall shear 
stress, can be obtained by taking the derivative to  (9) with 
respect to r and evaluating the resultant equation at the wall to 
give the following expression: 
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Also, the amplitude and the phase angle of CF are the absolute 
value and the argument of FĈ , respectively. 

Two limit cases of high and low RRe  are of great interest. 
When RRe → ∞, Eq. (9) reduces to 
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Equation (11) indicates that the oscillating velocity is 
composed of two Stokes layers near the walls (whose scale is 
of order δ) and the centerline velocity has an amplitude one 
and 90o phase-lag to the negative pressure gradient.   By the 
same token, Eq. (10) reduces to 

( ) ( )
A

R
F iiC

Re
21

Re
Re2

1ˆ −=−=          (12) 

which indicates that the amplitude of wall shear stress 
depends solely on ReA and has the phase angle 45o leading the 
centerline velocity. On the other hand, when RRe → 0, Eq. 
(9) becomes the parabolic profile of a quasi-steady flow given 
by 

( ) 4/Re1ˆ 2
Rru −=                 (13) 

which shows that the amplitude decreases with decreasing 
RRe  and the phase angle becomes in-phase with the negative 

pressure gradient.  The wall shear stress of Eq. (10) now 
reduces to 

( ) 2/1ReReReReˆ
ARRFC ==            (14) 

which shows that the amplitude of shear stress decreases with 
decreasing RRe  in 1/2 power if ReA is fixed (i.e., when the 
amplitude of negative pressure gradient is fixed) and the 
phase angle is in-phase with the velocity (or negative pressure 
gradient). 

To validate the present numerical code, computational 
results of the amplitudes and phase angles of centerline 
velocity Cu  at 0=r  and wall shear stress CF obtained by 
present code are compared with the analytical results from (9) 
and (10).  As shown in Fig. 1, five cases for various ReR 

(<0.8× 410 ) are in excellent agreement with those predicted 
from a laminar-flow analytic solution calculated from (9) and 
(10).  From Fig. 1, we can see that when ReR is larger than 
102.5 and less than 0.8×104, Cû  equals to 1.0 and 

Cuθ  

maintains constant at -90o. Similarly, 2/1Reˆ
AFC  is constant 

equal to 2.0 and 
FCθ  remains constantly at o45− .  These 

amplitudes and phase angles equal to those predicted by (11) 
and (12) for the limit case of  RRe  → ∞.  For laminar 
oscillating flows in two flat plate channels [17], as RRe  

decreases, the amplitudes Cû  and 2/1Reˆ
AFC  (shown in 

dashed lines in Fig. 1) overshoot to the maximum values 
greater than 1.0 and 2.0 respectively.  For the present laminar 
oscillating flows in circular pipes, the amplitudes Cû  
overshoot to the maximum values greater than 1.0, however 
there is not overshooting for 2/1Reˆ

AFC .  When RRe  becomes 

very low, the amplitudes of both uC and CF decrease and their 
phase angles approach zero. In fact, Cû  varies linearly with 

RRe  and 2/1Reˆ
AFC  varies with 2/1)(ReR , which are agree 

with (13) and (14).  The agreement of the numerical results 
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and the analytical solution shown in Fig. 1,  show that the 
present code works very well at low RRe  number range. 
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Fig. 1 Variations of centerline velocity uC and wall frictional 

coefficient CF with RRe  for oscillating laminar flow, (a) amplitude 
and (b) phase angle difference. Solid lines: analytical solution for 
laminar oscillating pipe flows from Eqs. (9) and (10); Dash lines: 
analytical solutions for laminar oscillating channel flows Hsu et al 
[17]; - uC and - CF : computational results from present model 
 

C. Validation by Comparing to Experimental Data of 
Turbulent Oscillating Pipe Flows 
In order to validate the present code at high Reynolds 

number range, a comparison between our numerical result for 
one turbulent flow case (ReR = 224.767 and ReA = 6.2×105) 
and the experimental data of Akhavan (1991) has been done 
and shown in Fig. 2.  The good agreement between the 
numerical results and experimental data on the transient 
velocity for the eight phase angles in a period guaranteed that 
the present code is also valid in high Reynolds number range. 
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Fig. 2 A comparison between our numerical result and the 

experimental data of Akhavan [11] 

IV. RESULT AND DISCUSSION  
The method of partial sums of the Fourier series is used to 

decompose the velocity and temperature results.  The velocity 
and temperature can be decomposed based on the 
dimensionless period of the oscillating pressure (i.e. the KC 
number) as: 

( ))(/2cos)(ˆ)(),(
1

0 rKCtkrurutru k

N

k
k θπ ++= ∑

=

    (15) 

and 

( )),(/2cos),(ˆ),(),,(
1

0 rxKCtkrxrxtrx k

N

k
k θπ +Θ+Θ=Θ ∑

=

(16) 

where, k is the order of the harmonic term and kθ  is phase 
angle difference comparing to the pressure phase angle.  Zero 
order harmonic terms (u0, Θ0) are the cycle averaged values. 
The integer N larger than 3 is enough for decomposition of 
present numerical results, and higher orders of harmonic 
terms have maximum values of amplitude less than 10-5 and 
10-3 for velocity and temperature field respectively, which are 
negligible. 
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A. Numerical Results for Fluid Flow 
 Numerical simulations for five different values of ReR ( = 
5255, 328.4, 15.90, 3.974 and 1.131) and wide ranges of ReA 
(from 103 to 108.5) have been shown to cover the flow regimes 
from laminar to turbulent. It is noted that the present 
numerical simulation results contain in general the second and 
higher harmonics due to nonlinear nature in the equation 
system (2-4).  Based on the decomposition of velocity as 
shown in (15), we find out that the fluid flow is dominated by 
the first order of harmonics.  
 
A.1 Velocity Distribution along the r Direction 

As our objective is to explore the flow structure for 
transition rather than non-linearity, only the amplitudes and 
the phase angles of the first order harmonic of the velocity 
results are presented in this paper.   

To illustrate the flow transition under different conditions 
of RRe , the velocity profiles of three different values of ReA, 
corresponding to laminar, transitional and fully turbulent 
flows, are plotted in Fig. 3 for the two extreme cases of ReR = 
5255 (solid lines) and 3.974 (dashed lines).  For the case of 
ReR = 5255, Fig. 3 shows that the velocity profile at ReA = 103 
is of a typical laminar oscillating flow with a thin Stokes layer 
near the wall and a potential core. When the flow becomes 
transitional at ReA = 105, the velocity profile shown in Fig. 3 
indicates that the turbulent mixing is still confined in the 
turbulent boundary layer near the wall whose thickness is 
much thicker than the laminar Stokes layer. The locations of 
amplitude overshoot and phase-angle undershoot are shifted 
toward the pipe centerline due to turbulent mixing, even 
though the potential flow remains in the core region. At ReA = 
108.5, the turbulent boundary layer apparently has occupied 
the whole pipe, the amplitude overshoot disappears. 
Alternatively, this can be interpreted as the location of 
overshoot has moved to the pipe centerline. The phase angle 
θu then becomes quite uniform across the pipe, but remains to 
be close to -90o. On the other hand, for the case of ReR = 
3.974 the velocity profile shown in Fig.3 indicates that the 
flow is laminar and nearly quasi-steady when ReA = 103, with 
an almost parabolic profile in û  and phase angles θu ranging 
from -23.5o to -37.4o. When the flow becomes transitional at 
ReA = 106, the enhancement of the fluid diffusion by turbulent 
eddy viscosity apparently has flattened the velocity profile 
near the pipe core region to result in lower velocity 
amplitude.  Meanwhile, the phase angle θu ranges from -18.1o 
to -21.8o, which indicates that the eddy viscosity effect 
renders the flow to approach toward the quasi-steady state.  
Further increase of the Reynolds number seems only to 
provide high eddy viscosity to further enhance the turbulent 
mixing effect toward a fully developed quasi-steady turbulent 
pipe flow, as shown by ReA= 108.5 in Fig. 3 and the phase 
angle θu ranges from -6.5o to -8.1o.  The data also show that 
second order harmonic term of velocity is negligible 
comparing to the first order term and its phase angle is not as 
regular as that of the first hand harmonic term.   
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Fig. 3 First term of velocity profiles of laminar, transitional and 
turbulent oscillating flows for RRe  = 5255 (solid line) and RRe  

=3.974 (dashed line), (a) amplitude of 1u , (b) phase angle of 1u  
 
A.2 Full Structures of Velocity and the Wall Shear Stress  

To obtain overall flow structures, the results of centerline 
velocity Cu  and the wall shear stress CF for all computed 
cases of ReR and ReA are plotted in Figs. 4 and 5, respectively, 
for (a) amplitude and (b) phase angle. In Figs. 4 and 5, the 
solid lines represent the analytical laminar flow results of low 
ReA from Eq. (9) and (10) . We now first examine the result 
of Cu  given in Fig. 4. For the two sets at high Reynolds 
numbers of  ReR = 5255 , the amplitudes Cû  as shown in 
Fig. 4a maintain at one and the corresponding phase angles as 
shown in Fig. 4(b) have the value of -90o, except at very high 
ReA. This suggests that the turbulent oscillating boundary 
layer for high ReA is still thinner than R and is unable to 
produce noticeable effect on the centerline velocity, until ReA 
becomes very high. For the cases of ReR= 328.4, 15.90, 3.974 
and 1.131, the values of Cû  however drop monotonically 
with increasing ReA in the turbulent regime.  This is 
accompanied by the continuing shift of phase angle from -90o 
toward 0o as indicated in Fig. 4(b). Apparently, when ReR is 
sufficiently small, the oscillating turbulent boundary layer 
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becomes quasi-steady as ReA → ∞. Assuming the flow is 
quasi-steady, the expression for Cû  at very high ReA can be 
devised by following Saffman's derivation [13] to give: 

[ ]92.1)ln(Re75.0)ln(Re25.0
Re
Re1ˆ

25.0

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= RA

A

R
Cu

κ
  (17) 

where, κ (0.38<κ<0.47) is the von Kármán constant. The 
results calculated from (17) for high ARe  and low RRe  are 
shown as the dashed lines in Fig. 4a. They agree very well 
with the numerical results. It is recalled that in the quasi-
steady limit where the shear layer covers the entire pipe, the 
pressure force is balanced totally by the shear. Therefore, we 
conclude that at very high ReA, the eddy viscosity effect has 
greatly enhanced the shear force to render the transient inertia 
force negligible.  
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Fig. 4  Variations of (a) amplitude and (b) phase angle of Cu  with 

ARe  for five values of RRe . Solid lines: laminar solution; Dashed 
lines: quasi-steady analytical solution using Saffman's model [13] 
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Fig. 5 Variations of (a) amplitude of CF (b) phase angle of CF with 

ReA for five values of ReR. Solid lines: laminar solution; Dashed 

lines: FĈ Re = ReR. 

 
 For a better understanding of the flow structure, we shall 
examine the wall shear stress shown in Fig. 5.  Attention is 
first given to the case of ReR = 328.4, i.e, when R is about 
eighteen times the Stokes layer thickness δ.  When ReA is 
sufficiently low, say ReA < 0.8×104 before flow transition, the 
oscillating flows are laminar. The results of CF  as computed 
according to the RANS method with Saffman's turbulence 
model agree excellently with the analytical predictions from 
(10), i.e., Reˆ

FC  = 35.54 and 
FCθ = -43.84o.  As ReA 

increases, the transition from laminar to turbulent occurs 
approximately at (ReA)cr = 0.8×104 as shown in Fig. 5b where 

FCθ starts to decrease from -43.84o. Under the condition of 
ReR = 328.4, the oscillating turbulent flow after transition 
remains as a boundary layer flow confined near the wall, with 
a potential flow in the pipe core region. Interestingly, the 
amplitude Reˆ

FC  does not change noticeably until ReA = 

7.5×105, and hence is not a good indicator for flow transition. 
It is found out that the phase angle of the wall shear stress is a 
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more sensitive gauge than amplitude for the determination of 
flow transition.  Further increase in ReA leads to higher value 
of the eddy viscosity νT that thickens the thickness δT of the 
oscillating turbulent boundary layer.  The phase angle 

FCθ  
continues to decrease with increasing δT, until reaches a 
minimum value of about 

FCθ = -71o at ReA = 7.5×105 where 
δT has become sufficiently thick that the effect due to the 
mutual interaction of the boundary layers at top and bottom of 
the channel is appreciable.  For ReA >7.5×105, the phase angle 

FCθ  increases with increasing ReA . In the limit of ReA → ∞, 
R becomes the governing length scale since δT >> R and the 
oscillating turbulent flow becomes a quasi-steady turbulent 
flow where 

FCθ → 0. The amplitude of wall shear stress given 

in Fig. 5a for ReR = 328.4 shows that Reˆ
FC  increases with 

increasing ReA and asymptotically reaches a constant when 
ReA → ∞. For a fully developed turbulent flow in a channel 
that is steady in mean and driven by a mean pressure gradient 

xp ∂∂ / , a simple momentum balance results in 
xpRw ∂−∂= //τ  which in terms of the friction coefficient 

becomes (14).  This implies that Eq. (14), which was 
originally obtained for quasi-steady oscillating laminar flows, 
applies equal well to quasi-steady oscillating turbulent flows.  
The asymptotic value of Reˆ

FC  is ReR . This gives Reˆ
FC  = 

328.4 if ReR = 328.4, which as shown as dashed line in Fig. 
5a agrees very well with the computed result. 
 With the above comprehension of the flow for ReR = 328.4, 
we now examine the flows at different ReR.  For higher ReR 
such as the cases of ReR = 5255, the oscillating laminar 
Stokes layer at low ReA is much thinner than R. The transition 
from laminar to turbulent still occurs near (ReA)cr = 0.8×104; 
however, after the transition it requires much higher ReA than 
that of ReR = 328.4 for δT to become comparable with R. Fig. 
5b indicates that 

FCθ  reaches a minimum of -71o  at ReA = 
7.5×105 for ReR = 328.4 and is still decreasing at ReA = 
1.5×107 for ReR = 5255.  Figure 8a also shows that the 
amplitude results of this study never reach the asymptotic 
values of Reˆ

FC = 5255 for ReR = 5255. Apparently, for the 

cases of ReR = 5255 the computed range of ReA in this study 
covers only the laminar Stokes layer flow and the oscillating 
turbulent boundary layer flow regimes. On the other hand, for 
the cases of low ReR the thickness of the Stokes layer is 
already comparable with R when ReR = 3.974 and much 
thicker than R when ReR = 1.131. At low ReA the flow is 
laminar with 

FCθ =-23.914o for ReR = 3.974 and 
FCθ = -7.968o 

for ReR = 1.131. The oscillating laminar flow is already in the 
quasi-steady flow regime.  As ReA increases passing the 
critical value (ReA)cr , the oscillating flow moves directly 
from the quasi-steady laminar flow regime to the quasi-steady 
turbulent flow regime. Therefore, the phase angle 

FCθ  
increases from its respective laminar flow value toward 0o. 
Fig. 5a shows that for both cases of ReR = 3.974 and 1.131 
the amplitudes Reˆ

FC  increases with increasing ReA starting 

from (ReA)cr and reaches the asymptotic values of Reˆ
FC  = 

3.974 and 1.131, respectively, as plotted again as dashed 
lines. There is a delay in flow transition depending on ReR . 
The lower the ReR, the higher will be the (ReA)cr and the 
earlier the oscillating turbulent flow will reach the asymptotic 
results of quasi-steady state.  
 
A.3 Flow Regimes 

From the results given above, the structure of the 
oscillating pipe flows is constructed using parameters (ReA, 
ReR) as shown in Fig. 6.  Each point on Fig. 6 represents one 
computed case. The open circle represents the laminar flow, 
the star represents the oscillating turbulent boundary layer 
flow and the triangle represents the quasi-steady turbulent 
flow. The transition from laminar regime to turbulent regime 
is marked by the sudden change of 

FCθ  from the constant 
laminar values. 

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(Re
R
3/2Re

A
1/2)

cr
=2300

(Re
A
)
cr

=0.8x104Stokes layer 
laminar flow 
δ<<R    

Quasi−steady laminar 
flow δ>>R       

Oscillating turbulent 
boundary layer flow   
δ

T
<<R           

Quasi−steady turbulent 
flow δ

T
>>R       

Re
A
   

R
e R

 
Fig. 6 Flow regimes of oscillating flows in channels in term of 

coordinates ( ARe , RRe ). : laminar flow; : oscillating turbulent 
boundary layer flow; : quasi-steady turbulent flow; Dashed lines: 
flow transition lines at the two extremes corresponding to boundary 

layer flows and quasi-steady viscous flows 
 

At low ReA , say ReA < 0.8×104,  the oscillating flows are 
laminar and two flow regimes showing low and high ReR  
respectively, are identified.  The domain of ReR << 1 
represents the quasi-steady laminar flow regime where the 
velocity profile is parabolic and the domain of ReR >> 1 
represents the Stokes layer laminar flow regime where the 
velocity profile decays exponentially from the wall. As ReA 
increases, the Stokes layer at high ReR becomes unstable. The 
transition from laminar to turbulent occurs approximately at 
(ReA)cr = 0.8×104 and is plotted as the dashed line in Fig. 6. 
For ReA > (ReA)cr and high ReR , the flow is in the oscillating 
turbulent boundary layer flow regime where the thickness δT 
of turbulent boundary layer remains thinner than R, with a 
potential flow in the channel core.  The increase in ReA will 
lead to thicker δT and, in the limit of ReA >> (ReA)cr but still of 
high ReR, the thickness δT  becomes much thicker than R so 
that the flow is governed by R and belongs to the quasi-steady 
turbulent flow regime.  The flow transition is delayed to 
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higher (ReA)cr when ReR decreases.  In the limit of ReR << 1 
where flows become quasi-steady, the transition is expected 
to occur at the same critical condition of a fully developed 
steady channel flow at ( νRU 2 )cr = 2300, where U  is the 
mean velocity. For full developed pipe flow 2/maxUU = .  
We have Umax=2πfA(ReR)/4 from (13) and ( νRUmax )cr = 
(ReReR)cr /4= 2300; hence (ReR

3/2ReA
1/2)cr = 9200.  This limit 

case of critical condition is also plotted in Fig. 6.  Since the 
critical value of 9200 was found from experimental 
observation, which is less sensitive than our classification 
using phase angle change, the dashed line predicts a slightly 
higher value of (ReA)cr .  As ReA passes (ReA)cr , the 
oscillating flows move directly from the quasi-steady laminar 
flow regime into the quasi-steady turbulent flow regime. 
 

B Numerical Results of Heat Transfer 
Numerical results for the same five values of ReR (= 5255, 

328.4, 15.90, 3.974 and 1.131) and ReA (from 101.5 to 107.5) 
have been presented to cover the heat transfer regimes from 
nearly conduction to laminar and turbulent flow convection.  
Also a pure conduction case is simulated as a base line for the 
study of heat transfer enhancement. 
 
B.1 Temperature Distribution 

It is noted that the present numerical simulation results for 
the temperature field contain higher orders of harmonics than 
the velocity field, because the fluid field will affect the 
temperature field as shown in (5). Based on the 
decomposition of the transient results of the temperature field, 
as shown in (16), we find out that the temperature field is 
dominated by the zero order of harmonic.  The amplitude of 
the temperature harmonics will decrease with the increase of 
the order of harmonics. Phase angles are zero at the 
inlet/outlet of the pipe, while the phase angles at the center of 
the pipe (x=0) are the maximum value along the x direction. 
The phase angles will increase with the order of 
homogeneous, and the center phase angle is larger than 360 o 
at orders higher than the first order. For example, when ReR = 
1.131 and ReA =100, the maximum amplitude of the zero 
order harmonic temperature is 1, and is about 0.4 for the first 
order. It is about 0.15 and 0.05 for the second and third 
harmonics respectively.  The maximum phase angles appear 
in the mid of the tube at x=0. The maximum first order phase 
angle is about 120o and it is about 390o and 660 o for the 
second and the third order respectively.  Our data also show 
that the thermal boundary layer thickness decreases with 
increase of ReR or ReA.Now that the amount of net heat 
transfer is based on the cycle averaged temperature gradient 
on the tube wall, so we will only discuss the Nusselt number 
based on the zero order of temperature gradient and the length 
scale R in the following parts to obtain the effects of 
parameters on net heat transfer.  
 
B.2 Axis Direction Distribution of Nusselt Number 

The axis direction distributions of the Nusselt Number on 
the pipe wall for ReR = 328.4 and ReA from 102 to 107.5 are 
plotted as solid lines in Fig. 7.  The dash line is the pure 
conduction result. With ReA increased from 102 to 107.5, the 

center point Nusselt number NuR(x=0) will increase from 0 to 
222. There is always a heat transfer leading edge near the 
inlet/outlet of the pipe due to the assumption of the constant 
inlet/outlet water temperature.  The leading edge Nusselt 
numbers are much larger than the center ones.  From Fig. 7, 
we can also see that the center point of Nusselt number equals 
0 for the cases ReA < 0.8×104, which is for nearly conduction 
to laminar flow regions. For the oscillating turbulent 
boundary layer flow region, when ReA >0.8×104, the center 
point Nusselt numbers will increase with ReA. 
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Fig. 7 Axis Direction Distribution of NuR on Wall (Dashed line: pure 

conduction, Solid lines: ReR=328.4 and ReA from 102 to 107.5) 
 

B.3 Averaged Nusselt Number based on various (ReA, ReR) 
The averaged Nusselt Numbers along x direction are 

plotted in Fig.8 in form of ReA and ReR.  At lower ReA and 
ReR, RNu  is near to the pure conduction value (1.7031).  

While the value increase with both ReA and ReR. Those RNu  
lines in coordinate (ReA, ReR) never cross each other, which 
shows ReR and ReA are the basic two independent governing 
parameters for heat transfer as well as the structure of the 
flows in oscillating pipe flows.  If RNu  is plotted in form of 
Re and KC, we can see overlap of the data, which is similar as 
the overlap of data shown in the experimental study of [24]. 
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Fig. 9 Contour plot of log( RNu / CNu ) in term of coordinates 

(log( ARe ), log( RRe )) 
 
B.4 Heat Transfer Enhancement 

Comparing to the pure conduction x axis averaged Nusselt 
Number ( CNu =1.7031), the heat transfer enhancement ratio 

RNu / CNu  is always greater than 1 in all ranges of ReR and 

ReA.  Fig. 11 show the distribution of log( RNu / CNu ) in term 
of coordinates (log(ReA), log(ReR)).   From Fig. 11, we can 
see that the enhancement of heat transfer increased form near 
1 at lower ReA value less than 103 and lower ReR value less 
than 4.  The enhancement ratio is less than 10 for ReA < 
0.8×104 or ReR< 10. It means that in laminar flow and quasi-
steady turbulent regions, the heat transfer enhancement is 
small and in order of 1.  This similarity is consistent with the 
previous discussion on the quasi-steady turbulent flow has 
similar drag formation as laminar flow in (14).  For 
oscillating turbulent boundary layer flow region, heat transfer 
enhancement ratio can be in order higher than 10.  At higher 
ReA and ReR region such as ReR =5255.0 and ReA =107.5, the 
heat transfer enhancement ratio RNu / CNu can be as much as 
500.  From Fig. 9, we can see that increase of both ReR and 
ReA, i.e. increase of the pipe diameter R and the amplitude of 
the oscillating flow A, can definitely increase the heat transfer 
enhancement ratio.  It is obviously that if we use larger pipe 
at places, where sea water oscillating amplitude as much as 
possible, we can get more effective heat transfer. Thus, we 
can remove thermal energy more quickly through sea water 
cooling by increase the oscillating amplitude and the pipe 
diameter. However the effect of the KC number on the heat 
transfer enhancement is not clear in Fig. 9, so in the following 
section, we will present a clear picture, which shows the 
effects of the KC numbers and Re numbers. 
 
B.5 Optimal Keulegan-Carpenter number and Tube Diameter  

In order to show the effects of the Keulegan–Carpenter 
number KC and the Reynolds number Re on the heat transfer,  
log( RNu )  in form of coordinates (log(KC), log(Re)) is 

shown  in  Fig. 10.   From Fig.10 we can see that log( RNu )  
increase dramatically with log(Re).  Now that Re is linear to 

the velocity scale fAπ2 , we should put sea water cooling heat 
exchangers on sea floors, where both the frequency f and the 
amplitude A of the ocean wave are as large as possible.  The 
circular white balls in Fig. 10 show the positions of the 
maximum RNu for a wide range of fixed Re number from 5 to 

105.  It is clear that RNu  has a maximum value near the line 
of log(KC) ≈ 1.8, i.e. the optimal Keulegan–Carpenter 
number is about 101.8 for heat transfer.  Hence, in order to 
enhance the heat transfer between the tube wall and the sea 
water, the optimal KC number is about 63.  Thus, the optimal 
size for the heat exchanger pipes should be 
around 8.110/2/ π≈AR , i.e. the inner diameter of the heat 
exchanger pipe over the wave oscillating amplitude should 
be 8.110/4/ π≈AD .  So the optimal ratio of the inner 
diameter of the heat exchanger pipe over the ocean wave 
oscillating amplitude is 0.2/ ≈AD . 
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Fig. 10 Three dimensional plot of log( RNu ) in term of coordinates 
(log(KC), log(Re)). 

V. CONCLUSIONS 
Fluid flow and heat transfer in oscillating pipe flows have 

been studied using RANS method with Saffman’s turbulence 
model over wide ranges parameters to reveal the full 
structures of the fluid flow and heat transfer in oscillating 
pipe flows.  For low ReA, the flows are laminar and the 
present computed results are in excellent agreement with 
those predicted from a laminar-flow analytical solution.  For 
laminar flow, the flow characteristics depend solely on ReR, 
with ReR >> 1 corresponding to the Stokes layer flow limit 
and ReR << 1 to the quasi-steady laminar flow limit.  As ReA 
increases, the high ReR Stokes layer flow becomes unstable at 
approximately (ReA)cr = 0.8×104 and experiences through a 
turbulent boundary layer flow regime before reaching a quasi-
steady turbulent flow regime as ReA → ∞, while the low ReR 
quasi-steady laminar flow transits directly, with a delay, to the 
quasi-steady turbulent flow.  This value of (ReA)cr = 0.8×104 
agrees very well with the experimental results of Ohmi [10].  
For turbulent oscillating flow, present numerical results (ReR 
= 224.767 and ReA = 6.2×105) and the experimental data of 
Akhavan [11] agree very well on both amplitude and phase 
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angle. By the way of analyzing the overall Nusselt Number 
over wide ranges of the Reynolds number and Keulegan-
Carpenter number, we know that RNu  increase dramatically 
with the Re number and we also obtain the optimal KC 
number is about 101.8 for a wide range of Re from 5 to 105.   
So the best place to put pipe heat exchangers for the 
application of sea water cooling is to choose the ocean floor, 
where both the frequency f and the amplitude A of the ocean 
water waves are as large as possible.  The optimal ratio of the 
inner diameter of the heat exchanger pipe D over the wave 
oscillating amplitude A is D/A ≈ 0.2. 
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