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Abstract—In this report we have discussed the theoretical aspects 

of the flow transformation, occurring through a series of bifurcations. 

The parameters and their continuous diversion, the intermittent bursts 

in the transition zone, variation of velocity and pressure with time, 

effect of roughness in turbulent zone, and changes in friction factor 

and head loss coefficient as a function of Reynolds number for a 

transverse flow across a cylinder have been discussed. An analysis of 

the variation in the wake length with Reynolds number was done in 

FORTRAN. 

 

Keywords—Attractor, Bifurcation, Energy cascade, Energy 

spectra, Intermittence, Vortex stretching.  

I. INTRODUCTION 

HE word flow, as described in the phrase flow 

transformation, can be defined as the set of curves of a 

dynamical system produced from all feasible initial conditions 

linked with a specific attractor [1]. In this document, we have 

taken into account the involvement of the flow prediction, 

computational method solutions, and the parameters, such as 

Reynolds number causing a discontinuous qualitative change 

in system behavior during the period when flow is transformed 

from laminar to turbulent via periodic and quasi-periodic 

states, bypassing a critical value. Others are drag coefficient, 

pressure gradient, viscous force, streamlines, dynamic density. 

The sequence of transitions (bifurcations) that a flow will 

undergo as the Reynolds number is increased to arrive at a 

frenzied state, are, namely, steady to periodic, periodic to 

quasi-periodic, quasi-periodic to turbulent have analysed 

theoretically. 

II. THEORY 

A. Laminar Flow 

In laminar flow, we visualize the fluid particles to move 

along parallel path in layers or laminae. The locus of 

individual fluid particles does not cross those of neighboring 

particles. Existing literature describes laminar flow to achieve 

only at low Reynolds number [2]. 

To define a low Reynolds number flow we have 

conceptualised a new parameter called ‘angle parameter’, 

denoted by θ in which θ is the angle between initial stream-
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direction (say horizontal) to streamline and it can be calculated 

at any point in flow field called ‘instantaneous angle 

parameter’. It can be applied to both attached and detached 

(Wake region) flows. Taking the special case of a transverse 

flow across a cylinder, (considering external laminar flow), as 

fluid approaches body (freestream condition), θ will be zero, 

and at downstream when fluid will follow the contour of the 

body θ firstly will increase, becomes maximum ‘θmax’ at a 

point and then decreases to zero again nearby the shoulders of 

cylinder (considering location of separation point at the 

shoulders). Each streamline is characterized by a particular 

value of ‘θmax’. Considering the upper half from the center 

streamline, this maximum value decreases as we move 

towards the upper streamlines. The concept of angle parameter 

can be validated wherever and whenever the streamlines are 

defined in the flow field. The above graph shows the value of 

θmax for different streamlines considered in the flow field. 

Several streamlines were picked in serial order taken in the 

outward direction away from the body and results have been 

plotted for θmax. It was found that for streamline no. 1 has 

maximum value of θmax and as we move away its value 

decreases. Streamline no. 19 is the boundary streamline which 

does not feel the presence of obstacle in the flow field. 

Streamline no. 20 has θmax equal to zero and beyond that 

streamlines have constant value of zero for θmax.  
 

 

Fig. 1 Variation of θmax for different streamlines in outward direction 

away from the body 

B. Flow Stability 

Flow stability depends on the growth and decay of the 

existing perturbations that a system contains/gains. As such, it 

can be expected that the occurrence of the transformation 

would depend on the intensity and structure of existing 

disturbances, and this has often been found to be the case. 

Linear stability theory can predict when a flow is unstable 
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under infinitesimal disturbances. It thus gives no estimation 

about transition assisted by considerably large disturbances; 

this may happen when the theory can well indicate stability. It 

should point out the situation in which it will essentially 

transform under a given set of disturbances. The linear 

stability theory for a particular dynamical flow system starts 

with an initial approximate solution of the basic flow 

equations, which are then superimposed with the disturbances 

present. It is then decided if the disturbances are intensified or 

abated. We neglect all terms involving the square of its 

amplitude of the disturbances. This simplification through 

linearization limits the theory to infinitesimal disturbances. 

This linearization of the disturbances simplifies this theory to 

be applicable to many different forms of disturbances. Fourier 

analysis can be used to study any pattern of disturbance. The 

linearization makes various harmonics to be independent of 

each other. The theory for a single Fourier component 

considers a disturbance whose general form is directly 

proportional to exp(ik.r + σt) [3] where σ is a complex 

parameter, as σ = σr + iσi where σr is the real part σi is the 

imaginary part. The sign of σr determines the intensification/ 

decay and thus transformation of the flow system. When σr is 

positive, the Fourier component under consideration gets 

amplified which will lead to the transformation of the initial 

flow. If σr is negative, the Fourier component (disturbance) 

vanishes eventually and the original flow gets sustained. 

Hence, if we can make σr negative for all values of k, the 

original flow will remain stable to all existing infinitesimal 

disturbances [3]. So, this makes a necessary condition for 

stability. If σr is positive for some values of k, the 

corresponding disturbance will be spontaneously intensified. 

Hence, this is a sufficient condition for instability. Another 

situation called over-stability will occur when σi ≠ 0 where the 

disturbance amplifies sinusoidally with time. As such, if non-

linear effects are taken into account, the resulting motion will 

be an oscillatory motion. The actual name is a misnomer, 

pointing that the system has diminishing disturbances over 

time while it is not. Such a situation is exhibited when the 

Prandtl number of the fluid flow is low enough and the system 

has a quality or component that can give rise to wave motions. 

In case of stratified fluid flows, both the mean velocity and 

mean density varies vertically. Velocity and density gradients 

perpendicular to the flow at a point are thus the parameters 

which govern the stability in such cases. In one hand, the 

velocity gradient can lead to generation of turbulence in the 

usual way through the action of inertia forces while the role of 

density gradient, on the other hand, is variable. If the density 

increases upwards, then buoyancy forces support and provide 

energy for the turbulence and hence called destabilizing form 

of density gradient. If the density decreases upwards, then 

turbulent work must be expended against buoyancy forces, 

which therefore produces a loss of turbulent energy; as such, 

turbulence cannot persist when the density gradient is too 

large and hence called stabilizing form of density gradient. 

Quantitatively, the extent of stability in such flows is 

determined by dimensionless Richardson number [3].  
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As evident from its expression, the quantitative value of the 

stability depends on the sign of the density gradient but not on 

the velocity gradient. Negative Richardson number 

corresponds to a destabilizing density gradient; where both 

shear and buoyancy affect to generate turbulence. The relative 

dominance between these two competing factors depends on 

the value of this negative Ri. When – Ri is small, the former is 

dominant and the motion is essentially of the type we have 

considered in the foregoing discussion. When – Ri is large, the 

latter becomes more effective and the turbulence may be more 

like the free convection turbulence. Positive Ri corresponds to 

a stabilizing density gradient; turbulent motion cannot be 

sustained when Ri is positive and large. In such cases, the 

turbulence changes in a way that makes it relatively less 

efficient as a heat transfer mechanism then as a momentum 

transfer mechanism.  

C. Transformation 

 Fluid behavior has been observed to change massively at 

moderate Re. The smooth, steady behavior switches to an 

erratic one. The primary and essential parameter on which this 

switchover depends is the Reynolds number. The fluctuations, 

typically ranging from 1 to 20% of the average velocity, are 

not strictly periodic but are random and encompass a 

continuous range of frequencies [3]. In a typical wind tunnel 

flow at high Re, the turbulent frequency ranges from 1 to 

10,000Hz [3]. Though at higher Re, flow is unsteady, 

disordered and irregular but, but when properties are averaged 

overtime, become steady and predictable. The following plot 

is a general observation of the erratic behavior of fluid flow at 

appoint observed at intermediate Re. As shown, the average 

velocity fluctuates randomly at a very high frequency when 

the flow system undergoes transition. 
 

 

Fig. 2 Flow velocity as a function of time in the regime of viscous 

flow in transition at intermediate Reynolds number [1] 

 

In case of pipe flows, the following approximate flow 

regimes have been observed to occur: 0<Re<2000: viscous 

laminar, 2000<Re<4000: laminar, Re>4000: turbulent flow 
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regime. For open channel flows, the ranges are: 0<Re<500: 

viscous laminar, 500<Re<1000: transition, Re>1000 [4].  

D. Intermittency and Related Effects 

Turbulence is mostly found to occur in regions having high 

shear properties. Often, turbulent jets and wakes are enveloped 

by non-turbulent fluid. The interface between the turbulent 

and non- turbulent regions has been observed to be quite 

distinct and sharp in such cases. High detailing of it however 

has a highly irregular shape with bulges and indentations of 

various sizes. The bulges and indentations are carried 

downstream by the flow. The composition and details of the 

boundary also keep on varying; there is a varying time for the 

indentation and bulges to survive in their flow path. At a fixed 

point, we observe repeated and random transformation 

between turbulent and non-turbulent motion. The fraction of 

the time that the motion is turbulent at a certain point can be 

defined by the intermittency factor γ. At the center of the wake 

γ is 1; the motion is always turbulent. Outside the wake γ is 0; 

turbulent motion is never sustained there. But over a 

substantial fraction of the wake width, γ is greater than zero 

but less than 1. Another effect that is observed due to the flow 

of turbulent stream is that at the interface between turbulent 

and non-turbulent fluid, the turbulence growth takes place. 

Fluid in the turbulent region will a short time later engulf the 

fluid just in the non-turbulent zone. In particular, the 

entrainment is related to energy dissipation. Turbulent flows 

have much higher entrainment rates than the corresponding 

laminar flows, due to the additional dissipation by the velocity 

fluctuations. The process by which entrainment of new fluid 

so as to become turbulent is the spreading at the interface. 

Velocity fluctuations of turbulent motion are rotational in 

nature. If the flow in the non-turbulent region is irrotational, as 

is usually the case, the initially irrotational fluid can become 

rotational through the action of viscosity. Thus the spreading 

process essentially involves the action of viscosity and must 

be affected by the small eddies for which the viscosity is 

significant. The shape of the interface is, on the other hand, 

affected by eddies of all sizes. The largest bulges and 

indentations are produced by the large eddies. Even the non-

turbulent flow outside the interface, involve velocity 

fluctuations due to the neighboring turbulent region. However, 

as opposed to the turbulent region the velocity fluctuations are 

purely irrotational and are dynamically quite different from 

turbulent fluctuations. The intensity of such fluctuations 

reduces rapidly with distance from the interface and thus value 

of intermittence factor also decreases rapidly as the 

fluctuations. Thus, from the foregoing discussion, it is 

revealed that the intermittency factor is most appropriately 

defined as the fraction of the time that vorticity fluctuations 

exist. The total turbulence spreading area of the interface is 

determined by the larger eddies. 

E. Turbulence 

Next comes the most complicated, non-intuitive, intriguing 

and important kind of fluid motion, known as turbulence. 

Turbulence was, and still remains as one of the great unsolved 

mysteries of science. The subject of turbulent flow is very 

deep, complicated and even though we make thorough studies, 

we are yet to call it precise. The basic characteristic of 

turbulence, and therefore our ability to predict its nature, is 

still an unsolved problem in classical physics. Pure theory of 

turbulent flow doesn’t exist. The analysis of turbulent flows 

always requires empirical data in order to obtain a particular 

solution. Despite the broad occurrence of fluid flow, and the 

ubiquitous nature of turbulence, the “problem of turbulence” 

remains to this day the last unsolved problem of classical 

mathematical physics. The problem of turbulence has been 

studied by many of the greatest physicists and engineers since 

decades, and yet we do not comprehend in complete detail 

how or why turbulence occurs, nor can we predict turbulent 

behavior with any degree of reliability, even in very simple 

engineering flow situations. Thus, study of turbulence is 

motivated both by its inherent intellectual challenge and by the 

practical utility of a thorough understanding of its nature. 

Perhaps, the best brief encapsulation of it is a state of 

persistent instability. We can rather more easily introduce 

turbulence as: each time a flow modifies as the result of 

disturbance intensification, our predictability of the details of 

the motion gets reduced. The immediate effect of instability 

may not necessarily result in turbulent motion. Consider the 

Karman vortex street in the wake of an obstacle. The velocity 

varies periodically and roughly sinusoidal at a point in the 

street fixed relative to the obstacle. The phase of this variation 

is arbitrary, and depends on the small disturbances at the time 

the flow started. Thus, without making observations, the 

prediction of the instantaneous velocity within defined limits 

cannot be achieved. This lack of predictability arises due to 

the instability producing the vortex street; while in case of 

steady flow, such a prediction could be made in the developed 

vortex street. The degree of unpredictability though exists, is 

small but one can determine all the details of the flow by 

requiring only a single observation indicating the phase of the 

fluctuations. When we increase Reynolds number, a further 

instability causes loss of regularity in the series of vortices, 

and so the unpredictability is increased. One can, for example, 

no longer say that, if one has made an observation of the 

velocity, then the velocity is justified for one period later. 

However, other systematic features may still exist – regions of 

high vortices passing a point in a sequence, although not a 

completely periodic one. Hence, we instead go for describing 

systematic features rather than the fluctuating ones. The 

persistent instability keeps on reducing the systematic features 

till the random features get dominance. A flow may be called 

turbulent when due to persistent instability; the level of 

predictability gets so reduced that we need to describe the 

flow statistically. Turbulence may be seen to occur suddenly 

in the transition zone. For example, turbulent spots appearing 

in boundary layer transition. The difference arises through one 

stage of the sequence occurring on a small length scale; the 

time scale is correspondingly small and the developments 

leading to local randomness are rapid compared with other 

stages of transition.  



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:2, 2015

290

1. Statistical Description of Turbulent Motion:

A statistical description is formulated in terms of average 

quantities which are repeated from one experiment to another. 

Turbulent flow is achieved at higher Reynolds number due to 

fluctuation in various parameters. It is neither feasible nor 

desirable to consider in detail all of the small-scale 

fluctuations that occur in the turbulent flows. Also as turbulent 

fluctuations are random and varying with time so no 

deterministic approach is valid so certain properties or 

information averaged over time can be derived from statistical 

approach. We have to introduce averaging or smoothing 

operators, and attempt to describe only the averaged state of 

the flow system. Experimental results are not reproducible in 

detail as they are highly varied and dispersed. But statistical 

properties are reproducible and can be comprehensively 

understood e.g. energy cascade and correlation are well 

understood statistical phenomenon. For this reason, we have to 

introduce averaging or smoothing operators, and attempt to 

describe only the averaged state of the flow system, following 

the approach of “Reynolds Averaging.”[5] The governing 

equations are essentially deterministic; deterministic implies 

predictable, at least for short times. Any behavior described by 

differential and/or algebraic systems possessing no random 

coefficients or forcing can be expected to be deterministic. 

Predictability may, in fact, be for only a short time. Indeed, 

deterministic chaos is of precisely this nature—predictable, 

but not for very long, as the systems are sensitive to initial 

conditions; sensitivity to initial conditions. 

2. Turbulence Equations

In turbulent flow the velocity components of fluid fluctuates 

at any point in the flow field. The other parameters such as 

density and temperature also fluctuate if flow is 

incompressible and has non-uniform temperature distribution 

respectively. Since turbulence is the most complex 

phenomenon in fluid dynamics, we need to define certain 

parameters in order to understand it properly. 

Fig. 3 Turbulent velocity as a function of time 

In case of velocity two components are present; one is mean 

component of velocity and another one is the fluctuating 

components. 

Let Mean Velocity component is designated by M, 

Fluctuating velocity Component by F, and total Velocity at a 

point be U. Then,  

U = M + F. 

From continuity equation we can write 
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Navier Stokes Equation of Differential form can be written 

as 
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On considering total velocity as component of both mean 

and fluctuating the differential form of Navier Stokes equation 

becomes 
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Using Reynolds Averaged Navier-Stokes (RANS) Method 

fluctuating components of velocity can be manipulated as 

follows 
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Since turbulent is always three dimensional, but in 

modelling we do not apply three dimensional boundary 

condition so that in effect, its effect in third direction (z 

direction) is uniform. Considering two dimensional 

components only, equations can be written as follows  
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Now, taking the statistical average of above equation we get 
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The term avg. (ρFv) referred as Reynolds Stress; this 

generally arises due to velocity collision at same point in the 

flow field. This value correlates the two velocity components. 

If its value is zero then two components becomes independent. 

In real it have non zero values. Since in any example either 

flat plate or flow through pipe, these velocity components are 

correlated and Reynolds stress plays a vital role in their 

relation. 

3. Homogeneous Isotropic Turbulence: A Simplification

Till now, turbulence has mostly been treated by the concept 

of homogeneous, isotropic turbulence where the statistical 

properties are uniform spatially and directionally. The 

isotropic consideration is valid when rotational and buoyancy 

effects are neglected which otherwise restricts the vertical 

motion and there is also no mean flow. From the equation, 
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we can see that the energy production term in equation is zero 

in isotropic turbulence and so the motion must decay through 

and that by viscous dissipation. We suppose that turbulence 

(assumed homogenous isotropic in many cases) is generated at 

an initial instant and then decays as time passes.  

a. Energy Cascade 

Experimental observations say that viscous dissipation 

occurring in turbulent flows is greater than in the 

corresponding laminar flow. Turbulent flows normally occur 

at high Reynolds number, and the viscous dissipation is 

associated with and brought about by small eddies. Hence, 

turbulence requires the development of local regions of high 

shear; that is the presence of small length scales. The small 

dissipative eddies must be generated from larger ones. This 

interpretation allows the development of a model of 

turbulence which has relevance not just too homogeneous 

isotropic turbulence but to most turbulent flows. Energy flown 

into the turbulence goes primarily into the larger eddies. From 

these, smaller eddies are generated, and then still smaller ones. 

The process continues until the scale of the vortices is small 

enough for viscous action to be important and dissipation to 

occur. This sequential transfer of energy is called the energy 

cascade. As we keep increasing the Reynolds number, the 

length of cascade becomes longer; i.e. there is a large 

difference in the sizes at its extreme ends. Then the direct 

interaction between the large eddies governing the energy 

transfer and the small dissipating eddies governing the energy 

dissipation becomes less and less pronounced. The dissipation 

is determined by the rate of supply of energy to the cascade by 

the large eddies and becomes independent of the dynamics of 

the small eddies in which the dissipation actually takes place. 

The rate of dissipation then becomes independent of the 

magnitude of the viscosity. Increasing the Reynolds number to 

a still higher value by decrease of viscosity keeping other 

variables constant only extends the cascade at the small eddy 

end. Still smaller eddies get generated before the dissipation 

can occur. All other aspects of the dynamics of the turbulence 

remain unaltered. Thus, there is no effect of variation in the 

viscosity on the turbulent dynamics at high Reynolds number. 

b. Mechanism of Energy Cascade 

The mechanism of energy cascade is a very complex one. It 

entails the interaction of the velocity field with itself. The 

interaction can be described by three processes. Firstly, the 

recurrent instability in which each stage may give rise to 

motions not only of greater complexity but also involving 

smaller scales than the previous stages. One stage may 

produce local regions of high shear that can themselves be 

unstable. Secondly, turbulence in these smaller scales may 

extract energy from larger scale motions. Thirdly, due to 

vortex stretching, the random nature of turbulent motion gives 

a diffusive action; two fluid particles that happen to be close 

together at some instant are likely to be very farther apart at 

any later time. The turbulence will have carried them over 

very different paths. This can be applied to two particles on 

the same vortex line. This produces intensification of the 

vorticity, but because of continuity the cross-section of the 

vortex tube also reduces. There is thus also an intensification 

of the motion on a smaller scale; that is a transfer of energy to 

smaller eddies. The distance up to which this hypothesized 

turbulent eddy can retain its identity due to the intensification 

of the vorticity is called the mixing length. This intensification 

at a region however depends on the value of the vorticity 

already present; places where existing vorticity happens to be 

large intensifies the vorticity greater than where vorticty is 

weak.  

F. Turbulence Modeling 

It is necessary to accept a model to include the effects of 

turbulence in analysis of turbulence in real life applications. 

The Baldwin-Lomax model is one such widely accepted 

model which has been observed to give reasonable results for 

a wide range of computational fluid dynamic analyses in a 

turbulent flow system. Each trial of computation made 

contains many empirical relations. The molecular and 

turbulent values are both taken into consideration each for 

viscosity and thermal conductivity while using this model to 

compute eddy viscosity as a function of local boundary layer 

velocity profile. This model is more suitable for high speed 

flows with thin attached boundary layers, typically found in 

aerospace and turbo-machinery applications. It has good 

agreement with the experiments for attached flows or near the 

wall. But it is found to be unsuitable for cases with broadly 

separated regions [6]. 

G. Reverse Transition 

Reverse transition also called relaminarisation is the process 

of turbulent flow switching over back to the laminar flow. The 

laminar properties start to appear while turbulent properties 

start vanishing. It can take place when the viscous dissipation 

starts increasing as a result of which turbulent energy goes 

down. Further in case of wall flows, the inhibition of 

formation of large eddies emanated from laminar/viscous sub 

layer may also reduce gradually the turbulent energy. While in 

case of boundary layers formed in region of favorable pressure 

gradient, it is the region of intermittent turbulence that 

becomes so large that it extends to the wall. Examples include 

boundary layer entering a region of stable stratified zone, 

boundary layers that enter a region of strongly favorable 

pressure gradient; pipe and channel flow in which the 

Reynolds number is reduced either by a change of geometry; 

by increase of viscosity is increased and/or by decrease of 

density due to heat transfer. Though reverse transition usually 

leading to a decrease in the turbulent energy follows effects 

with which viscous dissipation starts increasing leading to a 

reduction in the turbulent energy but this transformation 

possesses its own inherent mechanism. The change in velocity 

becomes less correlated with this transformation as turbulence 

decays itself in a way so as to convert original turbulent 

structures faster into laminar ones.  
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III. KEY POINTS 

1. In laminar flow, the fluid moves slowly in layers, without 

much mixing among the layers. It typically occurs when 

the velocity is low or the fluid is very viscous. Whereas, 

opposite of laminar, in turbulent flow, considerable 

mixing occurs, Reynolds number is higher than a critical 

value. 

2. Laminar and turbulent flows can be characterized and 

quantified using dimensionless Reynolds Number 

established by Osborne Reynolds and is given as – 

 

Re = ρVL/η = VL/ν 

 

where ρ is fluid density, V is fluid velocity, L is characteristic 

length, η is dynamic viscosity, ν is kinematic viscosity. More 

viscous fluid (lower Reynolds number) will tend to exhibit 

laminar flow characteristics for a given flow velocity.                                                                                               

3. Although the final result of turbulent mixing is the same 

as that of diffusive mixing, the physical mechanisms are 

very different. Intermixing due to turbulence arises due to 

dominance of macroscopic transport over molecular 

diffusion effects. Diffusive mixing involves 

predominantly molecular transport [7]. 

4. If ν is small, advective, nonlinear behavior becomes 

dominant, and this happens in a turbulent flow. While if ν 

is relatively large molecular diffusion will be dominant 

and the flow will be laminar. 

5. The friction losses in pipes depend on whether the flow is 

laminar or turbulent. The head loss in pipes is directly 

proportional to the friction factor, f. For laminar flows, f 

is inversely proportional to Reynolds number (f= 64/Re) 

where Re is Reynolds number. For turbulent flows, 

Swami and Jain estimated f within 1% of error given by-  
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where ε denotes the average height of the surface projections 

on the inside of pipe and D is the diameter of pipe. In the 

laminar zone – f decreases as Re increases. In transition zone, 

we can’t predict the value of f, as it shows intermittent and 

fluctuating values. 

6. In case of pipe flows, beyond 4000, for a given Re, as the 

relative roughness term ε/D increases (less rough), 

friction factor decreases. For a given relative roughness, 

friction factor decreases with increasing Reynolds number 

till the zone of complete turbulence. Within the zone of 

complete turbulence, Reynolds number has no effect. As 

relative roughness increases (less rough), the boundary of 

the zone of complete turbulence shifts (increases). If we 

know the value of relative roughness, Reynolds number, 

we can compute the friction factor from the Moody 

diagram. 

7. The surface roughness has an effect on friction resistance; 

for laminar flow, however, this effect is negligible. The 

turbulent flow is strongly affected by roughness, as 

viscosity is very powerful near contour. Nikuradse [7] 

simulated roughness by gluing grinded sand grains on to 

the inner walls of the pipes. He then calculated the 

pressure drops and flow rates computationally and 

correlated friction factor versus Reynolds number. 

8. The laminar friction is unaffected, and turbulent friction 

after an onset point, increases monotonically with the 

roughness ratio, є/d, friction factor becomes constant 

(fully rough) at high Reynolds numbers, fluid gets highly 

energetic and its capability of energy transfer also gets 

high [8].  

9. For flow over a body, if (dV/dy)y=0 denotes the velocity 

gradient in cross-stream direction at the wall, (dV/dy)y=0 

for laminar flow is less than (dV/dy)y=0 for turbulent flow. 

Hence, at wall, laminar shear stress is less than turbulent 

shear stress [9]. 

10. Fluid/Aerodynamic heating in laminar flow is less than 

that in turbulent flow. So, at wall, temperature gradient 

for laminar flow is less than that for turbulent flow [10]. 

11. Angle parameter as described in this article is very much 

effective in flow analysis and visualization in external 

flow past a blunt body. 

 

 

Fig. 4 Variation of Reynolds number with friction factor [9] 

 IV. EXPERIMENTAL RESULTS 

Through our experimental results, we have noticed that for 

each Reynolds number there is a unique shape of vortex. 

Ultimately, we have analyzed the variation in wake length 

with change in Reynolds number computationally. Within the 

experimental range of Reynolds number, we obtained almost 

linear relationship between the two variables. The data are 

tabulated in Table I and plotted in Fig. 5. In creeping flow 

keeping very low Reynolds number as shown in the table, 

approaching fluid will follow the body contour; vortices will 

not form and hence almost no wake, or wake length will be 

zero. These results are also well established in the existing 
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literature [11]. On increasing Reynolds number the flow will 

still be laminar, but we can see that at a Reynolds number 10 

there is a formation of wake and further it varies linearly with 

wake length. On further increase in Reynolds number wake 

length increases and when flow becomes turbulent (in 

continuous turbulent), Re= 50000, the flow gets separat

we can’t tell about wake length. 
 

TABLE I 

VARIATION IN WAKE LENGTH WITH REYNOLDS 

S.No REYNOLDS NO. Wake Length

 1 

 2 

 3 
 4 

1 

2 

3 
4 

 5 5 

 6 10 1.286802

7 15 1.958898

 8 20 2.634998

 9 25 3.310703

 10 30 3.985503

 11 

12 

35 

40 

4.661173

5.335324

 

The results can be graphically plotted as shown 
 

Fig. 5 Variation of Reynolds number with 
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