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 
Abstract—The problem of laminar fluid flow which results from 

the shrinking of a permeable surface in a nanofluid has been 
investigated numerically. The model used for the nanofluid 
incorporates the effects of Brownian motion and thermophoresis. A 
similarity solution is presented which depends on the mass suction 
parameter S, Prandtl number Pr, Lewis number Le, Brownian motion 
number Nb and thermophoresis number Nt. It was found that the 
reduced Nusselt number is decreasing function of each dimensionless 
number.  
 

Keywords—Boundary layer, Nanofluid, Shrinking sheet, 
Brownian motion, Thermophoresis, Similarity solution. 

I. INTRODUCTION 

HE boundary layer flow of an incompressible fluid over a 
shrinking sheet has received considerable attention of 

modern day researchers because of its increasing application 
to many engineering system. One of the common applications 
of shrinking sheet problems is shrinking film. In packing of 
bulk products, shrinking film is very useful as it can be 
unwrapped easily with adequate heat [1]. Wang [2] first 
pointed out the flow over a shrinking sheet when he was 
working on the flow of a liquid film over an unsteady 
stretching sheet. Then Miklavcic and Wang [3] found that the 
flow depends in externally imposed mass suction. The 
problem of stagnation point flow towards a shrinking sheet 
was studied by Wang [4] and found that the solutions do not 
exist for larger shrinking rates and non-unique in two-
dimensional case. The unsteady viscous flow over a 
continuously shrinking surface with mass suction was also 
investigated by Fang et al. [5]. After that, Bhattacharyya [6] 
investigated the flow over exponentially shrinking sheet and 
found that the thermal boundary layer thickness becomes 
thinner due to the increasing Prandtl number.  

A decade ago, with the rapid development of modern 
technology, particle of nanometre-size (normally less than 100 
nm) are used for dispersing in base liquids, and they are called 
nanofluids that was first proposed by Choi [7]. Nanofluids 
containing nanoparticles and it have been shown to have 
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higher heat transfer rates and thermal conductivity, even at 
very low solid concentrations. They are also very stable and 
have no additional problems such as erosion, additional 
pressure drop and non-Newtonion behavior, due to the tiny 
size of nanoelements and the low volume fraction of 
nanoelements required for conductivity enhancement. The 
enhanced thermal behavior of nanofluids could provide a basis 
for an enormous innovation for heat transfer intensification, 
which is major importance to a number of industrial sectors 
including transportation, nuclear reactors, electronics as well 
as biomedicine and food. There are some nanofluid models 
available in the literature. Among the popular models are the 
model proposed by Tiwari and Das [8] and Buongiorno [9] 
and. It is worth mentioning that the mathematical model 
proposed by Tiwari and Das [8] that was very recently used by 
Arifin et al. [10], Bachok et al. [11]-[13], Rohni et al. [14], 
Kameswaran et al. [15], and Das [16] in their papers. In the 
present paper, we study the boundary layer flow of a nanofluid 
and heat transfer over a shrinking sheet using the Buongiorno 
[9] model that analyzes the effects of Brownian motion and 
thermophoresis, which was also used by several authors, Nield 
and Kuznetsov [17], [18], Kuznetsov and Nield [19], [20], 
Khan and Pop [21], Bachok et al. [22], [23], Khan and Aziz 
[24], Nadeem and Lee [25].  

The purpose of the present investigation is to study the 
boundary layer flow and heat transfer past a shrinking sheet in 
nanofluid. The governing partial differential equations are 
transformed into a set of ordinary differential equations using 
a similarity transformation, before being solved numerically 
by a shooting method. The results obtained are presented 
graphically and discussed. 

II. MATHEMATICAL FORMULATION 

Consider the flow of an incompressible nanofluid over a 
linearly shrinking sheet with suction at the boundary. The 

stretching/shrinking velocity  wU x ax , where a is a 

constant and is maintained at a constant temperature wT . It is 

also assumed that the mass flux velocity is 0V  with 0 0V   for 

injection and 0 0V   for suction. The simplified two-

dimensional equations governing the flow in the boundary 
layer of a steady, laminar, and incompressible nanofluid are 
(see Khan and Pop [21])  
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subject to the boundary conditions 
      

  0= , = , = , at = 0,w w wu U x v V T T C C y   

 0, , as ,u T T C C y             (6) 
 
where u  and v  are the velocity components along x  and y  

axes, respectively, / ( ) fk c   is the thermal diffusivity of the 

fluid,   is the kinematic coefficient, BD  is the Brownian 

diffusion coefficient, TD  is the thermophoresis diffusion 

coefficient and ( ) / ( )p fc c    is the ratio between the 

effective heat capacity of the nanoparticle material and heat 
capacity of the fluid with   being the density, c  is the 

volumetric volume expansion coefficient and p  is the 

density of the particles. The stretching/shrinking parameter is 
  with 1   for stretching and 1   for shrinking. 

The governing equations (1)–(5) subject to the boundary 
conditions (6) can be expressed in a simpler form by 
introducing the following transformation: 
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where   is the similarity variable and   is the stream 

function defined as = /u y   and = /v x  , which 

identically satisfies (1). Employing the similarity variables (7), 
(2), (3), (4) and (5) reduce to the following ordinary 
differential equations: 
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subjected to the boundary conditions (5) which become 

 (0) = , (0) = , (0) = 1, 0 1f S f      

  ( ) 0, ( ) 0, 0 asf                 (11) 

 

where  1 2

0S V a   is the constant mass transfer parameter 

with 0S   for suction and 0S  for injection. In the above 
equations, primes denote differentiation with respect to   and 

the five parameters are defined by 
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where Pr  is the Prandtl number, Le  is the Lewis number, 
Nb  is the Brownian motion parameter and Nt  is the 
thermophoresis parameter. 

The physical quantities of interest are the skin friction 
coefficient fC , the local Nusselt number xNu  and the local 

Sherwood number xSh  which are defined as 
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where the wall shear stress w , the local heat flux wq  and the 

local mass flux mq  are given by  
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with  , k  and BD  being the dynamic viscosity, thermal 

conductivity and the Brownian duffusion coefficient of the 
nanofluids, respectively. Using the similarity variables (7), we 
obtain 
 

1 2 = (0),x fRe C f                  (15) 

 

    1 2 = (0),x xRe Nu                    (16) 
 

       1 2 = (0),x xRe Sh                   (17) 
 

where = /x wRe U x   is the local Reynolds number. 

III. RESULTS AND DISCUSSION 

Numerical solutions to the governing ordinary differential 
equations (8)-(10) with the boundary conditions (11) were 
obtained using a shooting method. The analysis reveals the 
conditions for the existence of the steady boundary layer flow 
due to shrinking of the sheet and it is found that when the 
mass suction parameter S exceeds a certain critical value, say 
Sc, steady flow is possible. The similarity solution exists when 
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the mass suction parameter S satisfies the condition cS S and 

consequently for cS S  the flow has no similarity solution. 

Based on our computation, the critical value of S is 1.9999.  
Different from the stretching case, which shows the unique 

solution, the solution for the shrinking case as presented in 
Figs. 1-4 are non-unique. The existence of dual solutions for 
the shrinking case was first reported by Miklavcic and Wang 
[3]. Figs. 1 and 2 shows the effects on Le and Pr numbers on 
the temperature distribution for selected values of Nb, Nt and S 
parameters. As expected, the boundary layer profiles for the 

temperature function     are essentially the same form as in 

the case of a regular fluid. It is observed that the temperature 
increases with the increase in both Le and Pr numbers. The 
effects of Le and Pr numbers on the concentration profiles for 
selected values of Nb, Nt and S parameters are shown in Figs. 
3 and 4. It is clear that the concentration decreases as the Le 
and Pr numbers increase.  

 

 

Fig. 1 Effect of Le number on temperature distribution for selected 
values of Nb, Nt, Pr and S when 1    (shrinking case) 

 

 

Fig. 2 Effect of Pr number on temperature distribution for selected 
values of Nb, Nt, Le and S when 1    (shrinking case) 

 

 

Fig. 3 Effect of Le number on concentration distribution for selected 
values of Nb, Nt, Pr and S when 1    (shrinking case) 
 

 

Fig. 4 Effect of Pr number on concentration distribution for selected 
values of Nb, Nt, Le and S when 1    (shrinking case) 

 
Next, the variation in dimensionless heat transfer rate vs Nt 

parameter is shown in Figs. 5 (a) and (b). They show that the 
effects of Nb parameters and Pr numbers on the dimensionless 
heat transfer rates for the same Le number. It is clear that the 
dimensionless heat transfer rate decrease with increase in Nb 
and Nt parameters but increase with the increase in Pr 
numbers. However, a decrease in the dimensionless heat 
transfer rates was observed with the increase in Le numbers. 
This is shown in Fig. 6. The change in the dimensionless heat 
transfer rates is found to be higher for smaller values of the 
parameter Nb and this change decreases with the increase of 
Nt.  
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(a) 
 

 

(b) 

Fig. 5 Effect of Nb and Pr numbers on dimensionless heat transfer 
rates 

 

 

(a) 

 

(b) 

Fig. 6 Effect of Nb and Le numbers on dimensionless heat transfer 
rates 

IV. CONCLUSION 

The characteristics of boundary layer flow and heat transfer 
past a permeable shrinking sheet in a nanofluid was 
investigated. The similarity equations were obtained and 
solved numerically by the shooting method. The study 
revealed that the steady boundary layer flow due to shrinking 
of the sheet is possible only when the mass suction parameter 
exceeds a certain value. It was found that the reduced Nusselt 
number is decreasing function of each value of the parameters 
Pr, Le, Nb and Nt considered. 
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