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Abstract—In this paper we consider quantum motion integrals
depended on the algebraic reconstruction of BPHZ method for
perturbative renormalization in two different procedures. Then based
on Bogoliubov character and Baker-Campbell-Hausdorff (BCH) for-
mula, we show that how motion integral condition on components
of Birkhoff factorization of a Feynman rules character on Connes-
Kreimer Hopf algebra of rooted trees can determine a family of fixed
point equations.
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I. INTRODUCTION

THE study of perturbative Quantum Field Theory (QFT)
underlying the scheme minimal subtraction in dimen-

sional regularization with respect to the Connes-Kreimer Hopf
algebraic approach determines important physical informa-
tion of a given theory for instance counterterms, renormal-
ization group and β−function in a combinatorial algebro-
geometric setting. In other words, firstly with attention to the
Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) method in
perturbative renormalization and with the help of a decorated
version of the Connes-Kreimer Hopf algebra of rooted trees,
a hidden Hopf algebra from the process of renormalization
can be described [14], [15]. Secondly the Riemann-Hilbert
correspondence introduces a new algebraic reinterpretation
from physical theory such that it is formulated by the Birkhoff
decomposition of loops with values in an infinite dimensional
Lie group (induced with the Hopf algebra) [4], [5], [6], [9],
[14], [16], [22]. And finally in a more general configuration,
one can associate a neutral Tannakian category to each theory
such that its objects (i.e. equisingular flat connections) enable
to store a completely geometric description from counterterms.
Connes and Marcolli developed this story until they introduced
a universal treatment in the study of renormalizable QFTs. [7]

The value of this point of view to QFT will be cleared
more, when we consider its application in the analyzing of
gauge theories and non-perturbative QFT [17], [25]. Kreimer
in [1] characterizes non-perturbative situations based on a new
version of Dyson-Schwinger equations namely, combinatorial
level. It is necessary to know that these equations can be
studied with Hochschild one cocycles of the Hopf algebra of
renormalization.

Relation between the perturbative renormalization and the
Riemann-Hilbert correspondence is capsulated in the Birkhoff
factorization and moreover the existence of this unique de-
composition is strongly related with an algebraic condition
(namely, Rota-Baxter property) of the couple regularization

scheme and renormalization map. It shows that Rota-Baxter al-
gebras play the role of a bridge between the study of ill-defined
divergent Feynman integrals in QFT (by renormalization) and
the extraction of finite values based on the Riemann-Hilbert
problem in the study of a special class of differential systems.
[9], [10], [11], [13], [16]

It is also interesting to know that this group of algebras
determines (modified) classical Yang-Baxter equations ([9],
[10], [11], [18]) such that their solutions apply to consider
quantum integrable systems [8], [19], [20]. On the other hand,
with working at the level of Lie bialgebras in [2], the authors
provide the semisimplicity of the Lie algebra of infinitesi-
mal characters and then they apply Connes-Kreimer Birkhoff
decomposition to a Feynman rules character to identify its
corresponding Lax pair equation.

Therefore it does make sense to say that Rota-Baxter type
algebras enable to obvious an interesting notion for the study
of integrable systems in QFTs underlying the Connes-Kreimer
theory.

With attention to this foundation, we are going to apply the
Rota-Baxter property of the scheme dimensional regularization
in minimal subtraction to introduce its related integrals of
motion with respect to two different strategies namely, Rosen-
berg’s approach and noncommutative differential forms. After
that based on Bogoliubov character and Baker-Campbell-
Hausdorff (BCH) formula and with using integral renormal-
ization theorems, we characterize a family of fixed point
equations related to Feynman rules characters and connected
with Nijenhuis type flows. Specially in this process a class of
equations associated to the renormalization group flow will be
determined.

II. FROM CLASSICAL YANG-BAXTER EQUATIONS TO THE
CONCEPT OF FLOW IN CONNES-KREIMER THEORY

For each renormalizable theory Φ, the reconstruction of
its associated Hopf algebra of Feynman diagrams HF (Φ) is
available with a decorated version of the Connes-Kreimer
Hopf algebra Hrt of rooted trees such that primitive (sub-
)divergences of Feynman graphs are reserved in these labels.
It is a free (as an algebra) connected graded commutative
non-cocommutative Hopf algebra on the set of all non-planar
rooted trees such that its coproduct structure is given by

ΔB+(t1...tn) = t ⊗ I + (id ⊗ B+)Δ(t1...tn)

= t ⊗ I + I ⊗ t +
∑

c

Pc(t) ⊗ Rc(t) (1)

where B+ : Hrt −→ Hrt is an isomorphism of graded vector
spaces and it maps a forest to a rooted tree by connecting
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the roots of rooted trees in the forest to a new root. And also
the sum is over all possible non-trivial admissible cuts c on
t. With induction, one can induce the antipode of this Hopf
algebra given by

S(t) = −t −
∑

c

S(Pc(t))Rc(t). (2)

This Hopf algebra contains a connected graded commutative
cocommutative Hopf subalgebra Hlrt of ladder trees. [4], [9],
[10]

It is observed that Hopf algebra Hrt has universal property
with respect to the Hochschid cohomology theory and there-
fore it is reasonable to apply this Hopf algebra, as kind of
a simplified model, to consider perturbative renormalization.
[4], [14], [16]

BPHZ method in renormalization can be reconstructed in a
algebraic procedure such that regularization is described with
the unital commutative algebra Adr = C[[z, z−1] of Laurent
series with finite pole part and renormalization scheme Rms

is determined with the projection of a Laurent series onto its
pole part. It means that

Rms(
∞∑

i≥−m

ciz
i) :=

−1∑
i≥−m

ciz
i. (3)

[7], [9], [13]

Definition II.1. For a given unital associative algebra A over
a field K of characteristic zero together with a K−linear map
R : A −→ A, the pair (A, R) is called Rota-Baxter algebra,
if for all x, y ∈ A, it satisfies

R(x)R(y) + R(xy) = R(R(x)y + xR(y)).

Remark II.2. For a given Rota-Baxter algebra (A,R),
(i) The map R̃ := IdA − R has the Rota-Baxter property,
(ii) Its related Lie algebra (A, [., .]) (such that [., .] is the

commutator with respect to the product of A) obeys from the
equation

[R(x), R(y)] + R([x, y]) = R([R(x), y] + [x,R(y)]).

(iii) The pair (Adr, Rms) is an idempotent Rota-Baxter
algebra.

The consideration of different Poisson Lie brackets on
a given Lie algebra is an important part of the study of
integrable systems such that in this process for instance
one can find a closed relation between classical r-matrices
and factorization in Lie bialgebras [20], [21]. There is also
another procedure closely related to the Rota-Baxter theory
namely, deformation of the initial associative product of a
given algebra such that at the Lie algebra level, a general
version of the (modified) classical Yang-Baxter equation can
be investigated [10], [11], [18], [20]. This technique provides
a new direction to proceed the study of integrable systems
based on a particular group of deformed products such that
they are determined by an algebraic formula. It can be seen
that this condition has a mutual source with the existence of
Birkhoff factorization and therefore one can apply this process
to investigate integrable systems with respect to the Connes-
Kreimer perturbative renormalization.

For a given associative algebra A and a linear map N :
A −→ A, consider a new product on this algebra defined by

(x, y) �−→ x ◦N y := N(x)y + xN(y) − N(xy). (4)

The associativity of this new product makes clear one impor-
tant and interesting equation.

Theorem II.3. The product (4) is associative iff for each
x, y ∈ A,

N(x ◦N y) − N(x)N(y) = 0.

The pair (A,N) together with this condition is called Nijen-
huis algebra. [3]

One essentially note is that a Nijenhuis algebra (A,N)
provides the relation

[N(x), N(y)] = N([N(x), y]) + N([x,N(y)]) − N2([x, y])
(5)

on the Lie algebra (A, [., .]) such that it applies to induce a
new Lie bracket

[x, y]N := [N(x), y] + [x,N(y)] − N([x, y]). (6)

The compatibility of this bracket is derived from the given
condition in II.3 and moreover it is observed that

[x, y]N = x ◦N y − y ◦N x (7)

[3], [10], [11].
An interesting family of Nijenhuis algebras is introduced

with Rota-Baxter maps. For a given Rota-Baxter algebra
(A,R) with the idempotent map R and each λ ∈ K, one can
show that the operator Rλ := R−λR̃ has Nijenhuis property.
The pair (Adr, Rms) is the most important example for this
class of Rota-Baxter algebras in physics.

Let L(Hrt, Adr) be the set of all linear maps on Hrt

with values in Adr. The convolution product ∗ determines
a complete filtered noncommutative associative unital Rota-
Baxter algebra such that its idempotent Rota-Baxter map R is
defined by

R : L(Hrt, Adr) −→ L(Hrt, Adr), R(f) := Rms ◦ f (8)

[9]. It is clear that for each λ ∈ K, Rλ has Nijenhuis property
and in addition theorem II.3 shows that each of these maps
defines a new associative product ◦λ and a new compatible
Lie bracket [., .]λ on L(Hrt, Adr). It means that one can
have different deformations from the main algebra (based on
Rλs) such that they will be applied to introduce new Poisson
brackets.

Proposition II.4. Consider the associative algebra Cx
λ :=

(L(Hx, Adr), ◦λ) with the center Zx(λ) such that x = lrt, rt.
There is a differential graded algebra Ω•

Der(C
x
λ) based on the

space of all derivations of Cx
λ .

Proof: With help of the results in [12], [23], [24], define
Ω•

Der(C
x
λ) =

⊕
n Ωn

Der(C
x
λ) such that

- Ω0
Der(C

x
λ) = Cx

λ ,
- Ωn

Der(C
x
λ) is the set of all Zx(λ)−multilinear antisym-

metric maps from Der(Cx
λ)n into Cx

λ ,
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- For each ω ∈ Ωn
Der(C

x
λ) and θi ∈ Der(Cx

λ), the anti-
derivation differential operator dλ is defined by

(dλω)(θ0, ..., θn) :=
n∑

k=0

(−1)kθk ◦λ ω(θ0, ..., θ̂k, ..., θn)

+
∑

0≤r<s≤n

(−1)r+sω([θr, θs]λ, θ0, ..., θ̂r, ..., θ̂s, ..., θn).

The Lie brackets [., .]λ make available two procedures to
study integrable systems at this level namely, identifying
integral curves from a Lax pair equation or inducing motion
integrals depended on symplectic structures.

First Approach. Consider the loop algebra of the semisim-
ple trivial Lie bialgebra C(x, λ) = Cx

λ ⊕ Cx∗
λ such that

Cx
λ := (Cx

λ , [., .]λ). One can show that C(x, λ) is the associated
Lie algebra of the Lie group C̃(x, λ) := Cx

λ �σ Cx∗
λ such that

σ : Cx
λ × Cx∗

λ −→ Cx∗
λ , (f, X) �−→ Ad∗(f)(X). (9)

[2]. The loop algebra of this Lie bialgebra is given by the set

LC(x, λ) := {F (c) =
∞∑

j=−∞
cjFj , Fj ∈ C(x, λ)} (10)

and the Lie bracket

[
∑

ciFi,
∑

cjGj ] :=
∑

k

ck
∑

i+j=k

[Fi, Gj ]λ. (11)

Decompose this set of formal power series into two parts

LC+(x, λ) = {
∞∑

j=0

cjFj}, LC−(x, λ) = {
−1∑

j=−∞
cjFj} (12)

and let P± are the natural projections on these components
where P := P+ − P−. It is proved that for a given Casimir
function α on LC(x, λ), integral curve G(t) of the Lax pair
equation dG

dt = [M,G] where M = 1
2P (I(dα(F (c)))) ∈

LC(x, λ) is determined by

G(t) = Ad∗
LC̃(x,λ)

γ±(t).G(0) (13)

such that smooth curves γ± solve the Birkhoff factorization
problem

exp(−tX) = γ−1
− (t)γ+(t) (14)

where X = I(dα(F (c))) ∈ LC(x, λ). It is important to know
that one can project the above Lax pair equation to an equation
on loop algebra of the original Lie algebra Cx

λ . [2], [21]
Second Approach. The Lie bracket [., .]λ is naturally a

Poisson bracket such that for each element f ∈ Cx
λ , its

associated Hamiltonian vector field is defined by

ham(f) : g �−→ [f, g]λ. (15)

This class of derivations can give us a symplectic structure.
On the other hand, with restriction to the Zx(λ)−module
DerHam(Cx

λ) (generated by all Hamiltonian derivations), one
can induce a symplectic structure ωλ in Ω2

DerHam
(Cx

λ) given
by

ωλ(θ1, θ2) :=
∑
i,j

u1
i ◦λ u2

j ◦λ [fi, gj ]λ (16)

such that θ1 =
∑

i u1
i ◦λ ham(fi), θ2 =

∑
j u2

j ◦λ ham(gj).
The Hamiltonian vector field θλ

f is the unique solution of
the equation

iθλ
f
ωλ = dλf. (17)

and in fact it can be a description from the correspondence
between Hamiltonian derivations (related to ◦λ) and closed
noncommutative deRham one forms on the algebra Cx

λ [12],
[23], [24]. Moreover based on these Hamiltonian derivations,
one can obtain a new Poisson bracket on Cx

λ (associated with
the symplectic structure) such that for each f, g ∈ Cx

λ , it is
defined by

{f, g}λ := iθλ
f
(dλg) = iθλ

f
iθλ

g
ωλ. (18)

Generally Poisson brackets [., .]λ are degenerate and it
means that all derivations of Cx

λ are not Hamiltonian ( i.e.
Der(Cx

λ) 	= DerHam(Cx
λ)). It provides this fact that for each

λ, the bracket {., .}λ (defined by the symplectic structure ωλ)
may not coincide with [., .]λ.

We know that for each Hamiltonian derivation (vector field)
θλ

g on the algebra Cx
λ , the one parameter group {exp(tθλ

g )}t

are integral curves generated by this infinitesimal automor-
phism ([12]) and therefore constant elements along these
integral curves will identify the associated integrals of motion.
It means that integral of motion f of θλ

g is determined by the
equation

{f, g}λ = 0. (19)

In the next section, by applying integral renormalization, we
will lift the equation (19) to the level of fixed point equations.

III. INTEGRAL RENORMALIZATION AND MOTION
INTEGRALS

Physical information of a given renormalizable QFT Φ are
stored in Feynman diagrams equipped with related Feynman
rules. Kreimer shows that one can find these rules in very
specific characters of the Hopf algebra HF (Φ). In better
words, components of the Birkhoff factorization of a Feynman
rules character are another characters such that they determine
renormalized values, counterterms, renormalization group and
β−function [4], [5], [7], [13], [22]. This fact shows that
these Birkhoff components have the ability of saving physical
meanings and it can be interested to find situations for these
characters to play the role of integral of motion for the given
Feynman rules character. Working on this problem clarifies
more hidden physical nature in these characters and moreover
it helps to study the compatibility of the condition (19) with the
Connes-Kreimer renormalization group flow. In this section
we consider this question underlying the context of integral
renormalization and in this process some reformulations from
the equation (19) with respect to Bogoliubov character and
BCH series are obtained such that they apply to induce a
family of fixed point equations related to integrals of motion.

The mathematical description of the BPHZ method in renor-
malization is designed basically by the Atkinson’s theorem.
It provides inductive formulaes (i.e. integral renormalization
theorems) for components of the Birkhoff factorization of
characters on rooted trees such that at this level one can find
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the notion of a decomposition of determined Lie algebras with
the Connes-Kreimer theory.

Let charAdr
Hx be the infinite dimensional Lie group of all

characters with corresponding Lie algebra ∂ charAdr
Hx (i.e.

the set of all infinitesimal characters (or derivations)). This Lie
algebra is generated by derivations Zt indexed by ladder tree
(rooted tree) t and defined by the natural paring < Zt, s >=
δt,s. There is a natural bijection between charAdr

Hx and
∂ charAdr

Hx such that for each character g, its corresponding
derivation Zg given by the exponential map

g = exp∗(Zg) =
∞∑

n=0

Z∗n
g

n!
. (20)

One can show that the Lie algebra ∂ charAdr
Hx together

with the map R define a Lie Rota-Baxter algebra such that
each derivation Z of this Lie algebra has a unique decom-
position Z = R(Z) + R̃(Z). On the other hand, idempotent
property of R provides a decomposition Adr = A+

dr + A−
dr

such that it can be extended to ∂ charAdr
Hx and it means

that

∂ charAdr
Hx = (∂ charAdr

Hx)++(∂ charAdr
Hx)− (21)

where

(∂ charAdr
Hx)+ := R̃(∂ charAdr

Hx),

(∂ charAdr
Hx)− := R(∂ charAdr

Hx) (22)

[9], [10], [11].
For a fixed character g ∈ Cx

λ , let f be its integral of motion.
Product ◦λ and equations (17), (18), (19) provide that

{f, g}λ = iθλ
g
iθλ

f
ωλ = ωλ(θλ

f , θλ
g ) = [f, g]λ = 0. (23)

Relation (6) and equation (23) show that

[Rλ(f), g] + [f,Rλ(g)] −Rλ([f, g]) = 0 ⇐⇒
Rλ(f) ∗ g − g ∗ Rλ(f) + f ∗ Rλ(g)

−Rλ(g) ∗ f −Rλ(f ∗ g) + Rλ(g ∗ f) = 0. (24)

Lemma III.1. For a given character g ∈ Cx
λ with the Birkhoff

factorization (g−, g+),
(i) g = g−1

− ∗ g+, Rms ◦ g− = g−, Rms ◦ g+ = 0.
(ii) The negative component g− is an integral of motion for

g iff

g+ − g ∗ g− + (1 + λ)g− ∗ R(g) − (1 + λ)R(g) ∗ g−

+(1 + λ)R(g ∗ g−) = 0.

(iii) The positive component g+ is an integral of motion for
g iff

−λg+ ∗ g + λg ∗ g+ + (1 + λ)g+ ∗ R(g) − (1 + λ)R(g) ∗ g+

−(1 + λ)R(g+ ∗ g) + (1 + λ)R(g ∗ g+) = 0.

With the help of ladder tree version of the integral renormal-
ization (based on the Atkinson’s theorem and the abelianess
of ∂ charAdr

Hlrt) given in [10], one can obtain a unique

Birkhoff factorization for each character φ ∈ charAdr
Hlrt

given by

φ = exp∗(R(Zφ) + R̃(Zφ)) = exp∗(R(Zφ)) ∗ exp∗(R̃(Zφ))
(25)

such that components of the decomposition are determined
with

φ− = exp∗(−R(Zφ)), φ+ = exp∗(R̃(Zφ)). (26)

Moreover in general, components of the character ψ ∈
charAdr

Hrt such that

ψ = exp∗(Zψ) = exp∗(R(χ(Zψ))) ∗ exp∗(R̃(χ(Zψ))) (27)

(where infinitesimal character χ is characterized with the BCH
series) are given by

ψ− = exp∗(−R(χ(Zψ))), ψ+ = exp∗(R̃(χ(Zψ))). (28)

Therefore by applying (26) and (28) in the lemma III.1, one
can receive equations at the level of Lie algebra for while these
components are motion integrals of a given character in the
algebra Cx

λ .
In addition, there is another representation from components

based on the double Rota-Baxter structures such that it can be
applied to characterize a class of fixed point equations related
to the condition (19). With help of the Rota-Baxter map R,
one can deform the convolution product ∗ to obtain a well
known associative product on the set L(Hx, Adr) given by

f ∗R g := f ∗ R(g) + R(f) ∗ g − f ∗ g. (29)

It is easy to show that Cx
R := (L(Hx, Adr), ∗R,R) is a Rota-

Baxter algebra with the corresponding R−bracket

[f, g]R = [f,R(g)] + [R(f), g] − [f, g]. (30)

For each infinitesimal character Z, it can be seen that

exp∗(R(Z)) = R(exp∗R(Z)), exp∗(R̃(Z)) = −R̃(exp∗R(−Z)).
(31)

From equations (23), (29) and (30), one can prove that

Lemma III.2. For a given character g ∈ Cx
R with the Birkhoff

factorization (g−, g+), the components are integrals of motion
for g iff

(i) [g−,R(g)] = 0,
(ii) [g+,R(g)] − [g+, g] = 0, respectively.

Now from (28), (31) and lemma III.2, the following equa-
tions at the level of infinitesimal characters are introduced.

(i) R(exp∗R(−χ(Zψ))) ∗ R(exp∗(Zψ))

−R(exp∗(Zψ)) ∗ R(exp∗R(−χ(Zψ))) = 0, (32)

(ii) − R̃(exp∗R(−χ(Zψ))) ∗ R(exp∗(Zψ))

+R(exp∗(Zψ)) ∗ R̃(exp∗R(−χ(Zψ)))

+R̃(exp∗R(−χ(Zψ))) ∗ exp∗(Zψ)

−exp∗(Zψ) ∗ R̃(exp∗R(−χ(Zψ))) = 0. (33)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:3, No:11, 2009

980

On the other hand, one can approximate the Bogoliubov
character b[ψ] := exp∗R(−χ(Zψ)) by the formula

R(b[ψ]) = −Rms ◦ {exp∗(Zψ) + αψ} (34)

such that

αψ :=
∑
n≥0

1
n!

n−1∑
j=1

n!
j!(n − j)!

R(−χ(Zψ))∗(n−j) ∗ Z∗j
ψ (35)

[9], [11]. Based on this estimation, it is possible to rewrite the
equations (32) and (33). We have

(i)′

−R(ψ+αψ)∗R(exp∗(Zψ))+R(exp∗(Zψ))∗R(ψ+αψ) = 0
(36)

and

(ii)′ R̃(ψ+αψ)∗R(exp∗(Zψ))−R(exp∗(Zψ))∗R̃(ψ+αψ)

−R̃(ψ+αψ)∗exp∗(Zψ)+exp∗(Zψ)∗R̃(ψ+αψ) = 0. (37)

Moreover we know that the Birkhoff factorization of characters
of the Connes-Kreimer Hopf algebra are characterized with the
special infinitesimal character χ such that for each infinitesi-
mal character Z ∈ ∂charAdr

Hrt, χ(Z) = Z +
∑∞

k=1 χ
(k)
Z .

The sum is a finite linear combination of infinitesimal charac-
ters such that χ

(k)
Z s are determined by unique solution of the

fixed point equation

E : χ(Z) = Z −
∞∑

k=1

ckK(k)(R(χ(Z)), R̃(χ(Z))) (38)

where terms K(k)s are identified by BCH series. By putting
the equation E in the Bogoliubov character and with notice
to the relations (36) and (37), one can reformulate the motion
integral condition (19) for components of a given character
underlying the fixed point equation E.

In this procedure it should be important to consider the
behavior of β−function and renormalization group. These
physical information are based on the grading operator Y
(that providing the scaling evolution of the coupling constant).
This element is defined with the extension of the Lie algebra
∂ charAdr

Hrt by an element Z0 such that for each rooted
tree t, we have [Z0, Zt] = Y (Zt) = |t|Zt. For each character
ψ ∈ charAdr

Hrt, its related β−function is given by

β(ψ) = ψ− ∗ [Z0, ψ−1
− ] = ψ− ∗ Z0 ∗ ψ−1

− − Z0. (39)

With applying the exponential map, its related renormalization
group is determined by Ft = exp∗(tβ). For each t ∈ R, Ft is a
character given by a polynomial of the variable t and therefore
Rms ◦ Ft = 0 ([7], [10], [22]). Equations (24) and (30) show
that each element of the renormalization group plays the role
of an integral of motion for ψ in the algebras Cx

λ and Cx
R if

and only if

−λ[Ft, ψ] + [Ft,Rλ(ψ)] −Rλ([ψ, Ft]) = 0, (40)

[Ft,R(ψ)] − [Ft, ψ] = 0, (41)

respectively. The condition (41) is corresponded with a fixed
point equation related to the Feynman rules character ψ and
its related β−function.

Corollary III.3. For a given Feynman rules character ψ ∈
charAdr

(Hrt), an element Ft of the related renormalization
group plays the role of integral of motion for ψ iff the
β−function satisfies in the equation

[exp∗(tβ),R{exp∗(R(E)) ∗ exp∗(R̃(E))}]
−[exp∗(tβ), exp∗(R(E)) ∗ exp∗(R̃(E))] = 0.

At last relation between the renormalization group flow
and the determined Nijenhuis type flows should be empha-
sized. We know that the renormalization group {Ft}t is
a 1−parameter subgroup of characters and it means that
Ft ∗ Fs = Ft+s. Therefore it is easy to show that in the
cases Cx

0 and Cx
R, each Ft is an integral of motion for a

fixed element Ft0 of the renormalization group.

IV. CONCLUSION

Connes-Kreimer treatment to perturbative renormalization
provides a very practical instruction to study QFTs based
on a combinatorial Hopf algebra such that rooted trees can
give us a toy model to consider this interesting Hopf algebra.
This approach determines important physical parameters in
an algebro-geometrical constructive procedure. In this short
article we applied the Rota-Baxter nature of the scheme BPHZ
in renormalization (i.e. its algebraic reformulation) to charac-
terize quantum motion integrals with respect to two different
techniques namely, Rosenberg’s strategy in identifying Lax
pair equations and noncommutative differential forms. Then
with using the representation of Birkhoff components based
on integral renormalization, we considered the possibility of
saving motion integrals in Birkhoff components of Feynman
rules characters on Connes-Kreimer Hopf algebra of rooted
trees such that it was formulated with specific family of fixed
point equations. The very essential fact is that this type of
motion integrals can address Connes-Kreimer renormalization
flow. Finally, one can not ignore the role of Birkhoff factor-
ization in both indicated techniques such that it would be an
important signal about the study of integrable systems based
on the Riemann-Hilbert correspondence.
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