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Abstract—In this paper the design of maximally flat linear phase 

finite impulse response (FIR) filters is considered.  The problem is 

handled with totally two different approaches. The first one is 

completely deterministic numerical approach where the problem is 

formulated as a Linear Complementarity Problem (LCP). The other 

one is based on a combination of Markov Random Fields (MRF's) 

approach with messy genetic algorithm (MGA).  Markov Random 

Fields (MRFs) are a class of probabilistic models that have been 

applied for many years to the analysis of visual patterns or textures. 

Our objective is to establish MRFs as an interesting approach to 

modeling messy genetic algorithms. We establish a theoretical result 

that every genetic algorithm problem can be characterized in terms of 

a MRF model. This allows us to construct an explicit probabilistic 

model of the MGA fitness function and introduce the Ising MGA. 

Experimentations done with Ising MGA are less costly than those 

done with standard MGA since much less computations are involved. 

The least computations of all is for the LCP.  Results of the LCP, 

random search, random seeded search, MGA, and Ising MGA are 

discussed. 

Keywords—Filter design, FIR digital filters, LCP, Ising model, 

MGA, Ising MGA. 

I. INTRODUCTION

HE linear phase finite impulse response (FIR) filters are 

very important since they are highly required in 

applications where the linear phase restriction is crucial. Due 

to the linear phase restriction the design of these filters is 

converted to real approximation problem. The problem of 

designing such types of filters has been studied extensively 

and solved using a number of different methods [1]–[12]. 

Vaidyanathan and Nguyen [2] used a minimization of a 

quadratic measure of the error in the pass-band and stop-band. 

This method is based on the computation of eigenvector of an 

appropriate symmetric and positive definite matrix. In 

reference [3] the Lagrange multipliers were applied in the 

design of FIR filters. Er and Siew [4] applied a quadratically 

constrained quadratic programming method. In this method 

the mean-square error between the desired response and the 
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filter response over the pass-band of interest is subject to a 

mean-square stop-band constraint. In the previous methods the 

numerical techniques were iterative. The bulk of the design 

computation in these methods is concerned with a matrix 

inversion in order to solve a system of equations. One of the 

methods used in the present paper is the formulation of the 

problem as a Linear Complementarity Problem (LCP). The 

given rise problem can be solved with iterative algorithms 

[27] or a direct algorithm such as Lemke's algorithm [26]. 

In designing of optimal FIR filters, it is necessary to 

optimize a desired frequency response by minimizing an error 

norm. The mean-square error in the pass-band and stop-band 

are combined through a convex combination in order to obtain 

the objective function of the minimization problem. The 

flatness conditions are applied to form the constraints of the 

optimization problem. 

The filter coefficients are written as a difference of two 

nonnegative coefficients in order to formulate the problem in 

a compact form as a Linear Complementarity Problem (LCP). 

This extends the results of the work of Hanna [13] where the 

minimization problem is solved using Lagrange multipliers. 

The presented formulation can be solved using many different 

iterative algorithms (see [26]). 

Markov Random Fields (MRFs) [14]-[17], on the other 

hand, are a class of probabilistic models. They have been 

applied for many years to the analysis of images specially 

pattern recognition and detection. Probabilistic information is 

used to characterize particular pixel values in terms of their 

neighbors. Moreover, MRF theory may be used for analyzing 

spatial or contextual dependencies. We investigate a MRF 

approach to modeling messy genetic algorithms (MGA's).  

The motivation behind this is the fact that chromosomes in the 

MGA population are, after all, a sequence of patterns that are 

controlled by the fitness function. Moreover, the order of the 

coefficients for the FIR filter is very important; any alteration 

in the coefficients sequence may change the whole 

characteristics of the filter. The most important thing is that 

patterns of order similarities are noticed among the FIR filter 

coefficients, especially for linear phase filters. These 

similarities require a fitness that is directly related to the 

structure of the chromosomes and not their phenotypes only. 

Messy genetic algorithms are different than standard genetic 

algorithms in their ability to deal with chromosomes with 

different lengths within a single population, and hence exploit 

various patterns and similarities. The least computations of all 
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is that for the LCP.  Results of the LCP, random search, 

random seeded search, MGA, and Ising MGA are discussed. 

The paper is structured as follows. In section II we provide 

a description of the problem formulation necessary to build 

the cost function and its associated constraints.  In section III, 

the LCP is formulated in a compact form, and in section IV 

the LCP is solved using Lemke algorithm. Examples solved 

with this method are shown. In section V, the second part of 

the paper is handled. Here, an MGA problem description as an 

instance of the Labeling Problem is presented. We also prove 

a theorem showing that every MGA encoding can be modeled 

as a Markov Random Field with respect to some 

neighborhood relation on the chromosome alleles. The 

theorem also establishes an explicit relationship between the 

MRF parameters and the MGA fitness function. In section V, 

we focus on MRF modeling of MGA, in section VI, we 

deduce the Ising MGA model.  In section VII, we show some 

experiments on the FIR filter design using the Ising MGA 

model and standard MGA model. Discussions of these two 

methods and the LCP method are presented in section VIII. 

II. PROBLEM FORMULATION 

An FIR filter with length N has a frequency response given 

by

H( ) = 
1

0

)(
N

n

jnenh  (1) 

where the values of impulse responses h(n) may be complex 

or real numbers. In this paper, the impulse responses are 

assumed to be real. If h(n) satisfies some symmetry 

constraints, then H( ) has linear phase response and can be 

written as 

H( )  = jMeA )(  (2) 

where A( ) is a real-valued amplitude. Real coefficients linear 

phase filters are classified into four types. These types depend 

on symmetry of the impulse responses and on whether the 

filter length is even or odd [24-25]. For each type the 

amplitude function A( ) can be expressed as follows 

A( ) = 
1

0

)(
N

n
nna   (3) 

where )(n is a set of appropriate trigonometric functions 

depends on the filter type and M is the number of the 

independent coefficients in the filter. The filter design 

problem is approximated to a given frequency response. That, 

is, to find the coefficients an such that the amplitude response 

A( ) is close to a given amplitude response Ad( ). If the 

performance of the filter is controlled precisely for obtaining a 

good approximation for maximally flat frequency response the 

following flatness condition is applied 

)()( mdk

k

mk

k

A
d

d
A

d

d
 (4) 

for k = 0, 1, …, K - 1 at a given frequency point m where K is 

called the degree of flatness. The constraints obtained from 

equation (4) can be expressed in compact form as follows: 

Ca =  (5) 

where C K M, a = [ao a1 … aM]T represents the independent 

coefficients vector of the filter. The weighted mean-square 

error in the passband can be expressed as 

Ep = pW( )|A( ) - Ad( )|2 d  (6) 

where W( ) a positive weighting function and the subscript p

denotes pass-band. Using (3) and (6) the weighted mean-

square error in the stop-band can be written as follows: 

Ep = a
T
Qp a (7) 

The weighted mean-square error in the stop-band is given 

by the relation 

Es = pW( )|A( )|2 d  (8) 

where the subscript s denotes stop band. Using (3) and (8) the 

weighted mean-square error in the stop-band can be expressed 

as 

Es = a
T
Qs a (9) 

The mean-square errors in the pass-band and stop-band can be 

combined through a convex combination. Let [0, 1], the 

convex combination is given by [13] 

E =  Es + (1 - ) Ep (10) 

Substituting (7) and (9) in (10), the following is obtained 

E = a
T
Q a (11) 

where 

Q = Qs + (1 - )Qp (12) 

For the convenience of formulation the coefficient vector a

can be written as a difference of two nonnegative vectors 

a = a+ - a- (13) 

where 

a
+ = 0

2

aa
, and a- = 0

2

aa

Using equations (5) and (13) the flatness constraints can be 

written as follows: 

B x =  (14) 

where 

B = [C   - C] and x = [a+
a

-]
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Substituting (13) in (11) the total mean-square error can be 

written as follows: 

E = xTDx (15) 

Here 

D = 
QQ

QQ

The constraints equation (14) can be written as inequality 

constraints 

G x F (16) 

Here 

G =
B

B
, F = 

III. LINEAR COMPLEMENTARITY PROBLEM (LCP)

FORMULATION 

The minimization problem defined by (15) and (16) can be 

written now 

Minimize (x) =  xT
Dx

Gx F

   x 0

The necessary and sufficient KKT optimality conditions for 

this minimization problem are 

2 D x + GT
u - y  = 0

G x – F 0

u 0, y 0

u
T(Gx – F) = 0,  yT

x =  0 

By introducing the vector of slack variables v the previous 

problem can be written in the form of a linear 

complementarity problem (LCP) [26] 

Fu

x

G

GD

v

y T 0

0

2

0
v

y
, 0

u

x
 and 0

u

x

v

y
T

 (19) 

In compact form the LCP can be written as 

w - Mz = b

w  0, z 0, w
T
z =  0 

Here 

M =
0

2

G

GD
T

, w =
v

y
, z =

u

x
, b = 

F

0

It is clear that D is PSD matrix then M is PSD matrix [26]. 

Theorem [26]: If D is PSD and x is a KKT point of (17), x is 

an optimum feasible solution of (17). 

IV. DESIGN EXAMPLES 

In this section a design examples of maximally flat FIR 

filters using the LCP formulation are presented. The 

performance characteristics of the proposed design approach 

are demonstrated by the presented examples. 

Example 1: In this example, design of 9th-order (10th-length) 

linear phase low-pass FIR filter with pass-band and stop-band 

cover the intervals [0, 0.318 ] and [0.477 , ] is considered. 

The used  in this example was 0.8 and flatness degree was 3. 

Fig.1 shows the amplitude response. Fig.2 shows the phase 

response. It can be shown that the proposed method is able to 

give linear phase property. 

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency in rad / sample

M
ag

n
it

u
d

e 
re

sp
o

n
se

Figure 1: Amplitude response for example 1 
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Figure 2: Phase response for example 1 

Example 2: 78th-order (79th-length) linear phase low-pass 

FIR filter will be designed in this example. The used  in this 

example was 0.8 and flatness degree was 3. The pass-band 

and stop-band cover the intervals [0, 0.4 ] and [0.45 , ]. 

Fig.3 shows the magnitude response. The phase response is 

shown in Fig.4 which is also very close to linear phase 

property. 
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Figure 3: Amplitude response for example 2 
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Figure 4: Phase response for example 2 

Example 3: 36th-order (37th-length) linear phase low-pass 

FIR filter will be designed in this example. The used  in this 

example was 0.8 and flatness degree was 3. The pass-band 

and stop-band cover the intervals [0, 0.156 ] and [0.305 , ]. 

Fig.5 shows the magnitude response. Fig.6 shows the phase 

response. Again the proposed method is able to give a linear 

phase property. 
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Figure 5: Amplitude response for example 3 
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Figure 6: Phase response for example 3 

V. THE LABELING, THE MRF MODELING, AND THE

ISING OF THE MGA 

The second part of this work is concerned with using the 

MGA through MRF modeling and then building an Ising 

model for our MGA to be used in the proposed optimization 

problem. Assume we have a problem, G, to which messy 

genetic algorithms are to be applied. G consists of an 

encoding of chromosomes of length n, where n is a positive 

integer variable, with an associated fitness function f. The 

objective is to search for a chromosome that maximizes f.

Let A denote the set of chromosome alleles, and let L

denote the set of possible allele values (bits). A particular 

chromosome cn represents the assignment of an element of L

to each element of A. In other words, each chromosome with 

length n is a labeling cn: A L. Each labeling cn has a fitness 

value f(cn), and we wish to find a chromosome that maximizes 

fitness. Thus we have the Labeling Problem for G:

Find a labeling cn: A L  which maximizes f(cn)

Encoding here is quite general, encompassing bit-string, 

other finite alphabet and floating-point encodings. In this 

section, we describe the MRF approach to the labeling 

problem. We begin with some notation and definitions. 

Given a set A of locations, let us define the following: 

1. Neighborhood system N on A.

2. A set of neighboring locations Nk for each location k.

3. A clique, k, is a single location or a set of mutual locations. 

4. The set of all cliques are denoted by K.

Then it is important to say that Markov Random Field 

Modeling [15, 17, 18] regards locations as random variables 

and assigns each label cn a non-zero probability P(cn). Now, 

for each clique k, we define a function Vk: k  (- ,+ ). This 

function encapsulates information about related locations. 

For any MRF with probability P the Hammersley-Clifford 

Theorem (HCT) [14] states that for any MRF, with probability 

function P, there is non-unique formulation: 
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P(cn) = 
Z

e T

cU n )(

 (21) 

Here 

Z = 
c

T

cU n

e

)(

 (22) 

where T is cooling constant and set to 1. The energy function 

U is defined by: 

U(cn) = 
k

kV   (23) 

Theorem: Let G be some encoding for  messy Genetic 

algorithm MGA, and f is a given some fitness function, then G

is an MRF with respect to neighborhood system N, if f(cn) > 0  

for all members of the population of G that have labeling cn.

Proof: Let us define: 

P(cn) = 
Z

cf n )(

where Z =   
s

sf )(  is the sum of all chromosomes fitness. If 

we assume a clique potential function Vk: k  (- ,+ ) as 

follows: 

Vk = 
Ntobelongskif

cf

Ntobelongnotdoeskif

n

)
)(

1
ln(

0

If  the cooling constant is set to 1 then P(cn) = 
Z

e ncU )(

 for 

all chromosomes cn belongs to c. Using equation (22) one can 

found that P(cn) = 
Z

cf n )(
 for all k N. Invoking the converse 

of the HCT we deduce that G defines an MRF with respect to 

N.

It is worth telling that this G system is not unique. 

VI. THE ISING MGA MODEL 

In a simple MGA chromosomes are encoded in binary bits. 

In a neighborhood system we assume that number of 

neighborhoods is equal to n 2-cliques, where n is the length of 

the chromosome, and the 2-clique has the form {k, k+1} for 

each allele (bit) of the chromosome. It assumed that the last bit 

in each chromosome is a neighbor of the first bit (Fig. 7). 

Figure 7: Chromosome bits configuration 

The Ising model [17] is defined by assigning clique 

potential function as follows: 

U(cn) = 11, kk
k

kkkk ccc  (25) 

where  and  are real coefficients called MRF parameters. 

Using equation (23), we will have for each chromosome cn in  

the MGA population the following relation: 

ln(f(cn)) = - { 11, kk
k

kkkk ccc } (26) 

Each chromosome at the MGA provides an equation of the 

form above.  Since the length of the chromosomes is variable, 

it is essential to have a number of different chromosomes (>> 

2nmax), where nmax is the number of bits of the chromosome 

with highest length among the population. It is necessary to 

have 2nmax equations in order to solve this set of linear 

equations and find values for the coefficients. Those 

coefficients are used to build the probabilistic model of the 

fitness based on the MRF theory.  Note that we do not need to 

find the f(cn) for the whole population, instead we need to find 

it for the 2nmax equations only. In our case, finding the 

fitness function is costly since the binary bits need to be 

encoded into real coefficients and then those coefficients are 

passed to the model that designs the FIR filter and finds its 

amplitude response and its phase response. Then these 

responses are measured using some cost function against the 

desired filter characteristics to calculate the fitness. This is 

done for every chromosome in the population every 

generation. 

With this Ising MGA model, once we have a model for the 

fitness, and a neighborhood system (with the coefficients that 

identify the cliques) we can now implement one step of the 

standard MGA (i.e. selection, crossover, and mutation) on the 

current population and move further to the next generation.  

The process is repeated until the maximum number of 

generations is reached or until the fitness saturates and the 

population consequently, converges to a group of different 

chromosomes that are less in number than 2nmax. In that case, 

the set of equations described in (26) can not be solved and 

we have to stick with the last group of MRF parameters we 

found and go on with the MGA alone. 

VII. EXPERIMENTATIONS WITH STANDARD MGA

AND ISING MGA 

The chromosomes in MGA in general consist of varying 

number of bits.  In a problem like the FIR filter design, major 

part of solving the problem is finding the optimum number of 

coefficients (degree of filter) that would accomplish the 

required characteristics.  This requirement ultimately sets up 

the need for a variable length search parameter such as the 

variable length chromosomes in the MGA. The fitness 

function used for the MGA has to reflect the required criteria 

for both amplitude and phase transfer functions. A possible 

fitness function for the cn (chromosome with length n) may be 

given by: 

f(cn)= 1 -  (
i i

iiii YYXX /))()( 2'2'  (27) 
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where Xi and Xi' are the amplitude response values of the 

filters, the optimum one and the one generated from 

coefficients extracted from cn, respectively and Yi and Yi' are 

the phase response values of the filters, the optimum one  and 

the one generated from coefficients extracted from cn,

respectively.  and  are weighting constants. i is frequency 

index.  is a normalization factor and is  given by: 

 = (
i i

ii YX )
22  (28) 

In the random experiment we performed 10 runs with 

populations of 200 chromosomes. The chromosomes lengths 

varied between 24 bits and 80 bits, 8 bits per coefficient. The 

chromosomes were generated at random. The random 

experiments were implemented using the Random-Mutation 

Hill-Climbing algorithm (RMHC) on the Royal Road problem 

[20]. We recall RMHC method as follows: 

1. Generate a chromosome c at random. 

2. For N iterations, repeat: 

i. Mutate an allelle k chosen at random to produce 

co.

ii. If f(co) > f(c), set c = co.

3. Terminate with answer c.

We, also, performed two seeded experiments consisting of 

10 runs and 200 chromosomes in which 175 chromosomes 

where generated in random, and 25 were seeded. Seeded 

chromosomes are chromosomes with high fitness values. In 

the MGA experiment, we made 10 runs using population of 

200. Here, we used standard MGA with 0.6 probability of 

crossover and 0.01 probability of mutation. In the last 

experiment we made 10 runs using the Ising MGA with 

population of 200.  The Ising MGA was implemented by 

solving the system of equations generated by (26). 

In the random experiments, we observed the mean fitness, 

the best fitness for the population. We also observed the mean 

MRF (Markov Random Field) fitness and the best MRF 

fitness to investigate how these values are compared to 

associated values with the seeded, MGA, and Ising MGA 

experiments.  Both the population fitness and the MRF values 

will have values not less than 0 and not more than 1 (  and 

are real positive coefficients in (26). In the random 

experiments and in each generation, the chromosomes are 

selected randomly, without any regard for fitness, however, 

the chromosomes have variable lengths and at the end of 

every generation S number of chromosomes is selected, where 

S is the length of the chromosome with the maximum length 

in the population.  If a selected chromosome has a length less 

than other chromosomes it is padded with 0's until it has the 

length of the maximum length chromosome. This will not 

affect the real fitness value which is calculated for each 

chromosome in the S group, equation (26) is formulated for 

every chromosome resulting in S linear equations system. This 

system of linear equations is solved using standard numerical 

method techniques [19]. If a problem of ill conditioned for a 

non-singular set of equations is faced, a new group S is 

selected from the population, and k and k,k+1 coefficients are 

calculated. As soon as, those coefficients are calculated, the 

MRF equation (i.e. equation (26)) is set and then it can be 

used in calculating the MRF fitness for rest of the 

chromosomes in the population.  The MRF equation is a 

probabilistic model for the fitness function that is based on a 

sample from the population. This model will be used as a 

qualitative measure for the goodness of chromosomes. The 

biggest advantage here is that we had to solve a linear system 

of equations for every generation one time and then calculate 

the MRF fitness directly for the rest of the population. This is 

much less exhaustive than finding the fitness for every 

chromosome, which implies designing an FIR filter for each 

chromosome, finding its responses (amplitude and phase) and 

then calculating the fitness. 

In the random seeded experiment, the whole process is 

repeated except for initially inserting chromosomes with high 

fitness using some standard techniques for designing FIR 

filters [1]. For the MGA experiment, the initial population is 

randomly generated with chromosomes with different lengths. 

Applying the standard GA operations reproduction, crossover, 

and mutation will take us to the next generation. The process 

continues until the population converges to a set of a few 

distinct chromosomes. Finally, for the Ising MGA experiment 

the same steps applied by the MGA are applied here except 

that the MRF fitness coefficients are calculated using the 

previously described method. However, as the MGA draws 

close to convergence, the number of distinct chromosomes in 

the group S tends to become less than the number of 

coefficients. In other words, we will have under-specified 

system of equations to solve. In that case, we used the last set 

of coefficients we had to model the MRF fitness. This can be 

justified by the fact that as the MGA converges very little 

modifications is done on the labeling of the chromosomes and 

the MRF coefficients could also be considered stable. 

The FIR filters being designed in this work are low-pass 

filters mostly suitable for medical applications where the 

range of the frequencies is relatively low and the phase 

response is required to be linear. The linearity of the phase is 

essential to avoid any distortions of the signals. For those 

reasons, FIR filters are more preferred in medical applications 

than IIR filters. The optimum amplitude response of the filter 

we are seeking is a step function that has value 1 for the pass-

band range and 0 for the stop-band range, with linear phase 

response having -45o degrees with x-axis. The pass-band ends 

where stop-band starts at a normalized frequency of /4, no 

tolerance is specified. Definitely, this requirement is not 

realistic; it is only a theoretical criterion for this optimization 

problem. Also note that the order of the filter is not specified 

here, it is left open as long as the criterion is met. This, 

however, laid more burdens on the used optimization 

algorithm. The results of the experiments are shown in Table 

1.

TABLE I 

SUM MARY OF FITNESS VALUES EXPERIMENTS DONE WITH THE 

FOUR ALGORITHMS 

 Population Fitness 

Experiment Mean Fitness Best Fitness 

Random 

Seeded Random 

MGA 

0.053 

0.346 

0.798 

0.334 

0.677 

0.899 
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Ising MGA 0.899 0.956 

 MRF Fitness 

Experiment Mean Fitness Best Fitness 

Random 

Seeded Random 

MGA 

Ising MGA 

0.078 

0.413 

-

0.912 

0.334 

0.756 

-

0.987 

VIII. DISCUSSIONS 

In each experiment we used 500 chromosomes for 

population size.  The purpose of the random and the seeded 

random experiments is to demonstrate how MRF fitness can 

reflect status of chromosomes under blind and totally 

unguided search. 

MRF parameters are hypothesized to be able to detect the 

presence of preferred schemata in a population. The random 

and seeded experiments are considered first. In the random 

and seeded populations, the mean MRF fitness is better than 

population mean fitness in all cases. The best MRF fitness 

agrees closely with the best population fitness.  In the random 

and seeded experiments it is likely to end up with some good 

members in the population, however, the average fitness of 

the population is not expected to be as good as in the MGA 

where all members of the population go through selection and 

evolution.  The MGA works totally independent of any 

MRF's. It uses (27) and (28) to evaluate each member of the 

population independently. 

In the Ising MGA, MRF's fitness helped to characterize a 

model for the fitness at every generation, therefore preventing 

costly usage of the FIR filter modules, and providing a 

qualitative helpful measure for the energy embedded within 

the labels of the population members.  The mean fitness and 

the best fitness in Ising MGA are higher than those for the 

MGA.  Those may be due to two major factors; the used MRF 

fitness function provides a better utility to evaluate the strings 

and classify them through the generations, the other factor is 

that in the MGA, calculating the fitness successively for each 

string in every generation involves an FIR filter design for 

each calculation of fitness, and this process itself has some 

approximations that will eventually result in accumulated 

errors. Moreover, equation (26) itself is a heuristic measure; 

there is no guarantee that it is the perfect measure to evaluate 

the strings. 

The LCP method, on the other hand, is a totally different 

approach. It is not an iterative method that involves repetitive 

evaluations of some fitness function.  It is based on 

formulating a constrained quadratic energy function and, 

consequently an LCP, then finding the minimum of this 

function by solving the associated LCP. It is required, as 

shown in the previous examples, to give some specifications 

such as the stop-band and the pass-band frequencies, and the 

order of the filter. As shown in Figures 1-6, the amplitude 

responses and the phase responses are acceptable. 

Figures (8 - 11) show the magnitude and phase responses 

for the random method and the random seeded method 

respectively.  It is obvious that the seeded method had a better 

performance than the random method.  In Figs. (12 -15), the 

amplitude and frequency responses for the MGA, and the 

Ising MGA are depicted. The order of the filter is kept open. It 

is part of the search space as the length of the string in the 

MGA is variable. The used cut off frequency was /4 and note 

that the filter order is not required here.  The coefficients of all 

FIR filters are shown in Figs. (8-15) coming from the best 

strings in the population. 
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Figure 8: Magnitude response using random method 
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Figure 9: Phase response using random method 
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Figure 10: Magnitude response using random seeded method 
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Figure 11: Phase response using random seeded method 
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Figure 12: Magnitude response using MGA method 
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Figure 13: Phase response using MGA method 
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Figure 14: Magnitude response using Ising MGA method 
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Figure 15: Phase response using Ising MGA method 

For what is shown, it is fair to conclude that the 

evolutionary based methods such as the MGA and Ising MGA 

gave good results in terms of the final outcome. However, we 

should bear in mind that the GA based techniques are far more 

computationally exhaustive than the other standard numerical 

techniques. Moreover, the LCP method does not require any 

FIR filter design stages during the optimization process, in the 

contrary to the GA based techniques which require substantial 

usage of the fitness function that implies the usage of external 

objective functions utilities ( i.e. the modules used to build the 

filter each time the fitness is calculated). 

IX. CONCLUSION

A maximally flat FIR digital filter is presented. The 

problem is handled using two totally different approaches. 

The first one is completely deterministic method where the 

problem is formulated as LCP. The formulation is based on 

minimization of a suitable mean square error. Numerical 
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results show that the proposed method is effective. The other 

approach was based on a combination of MRF's approach 

with MGA. 

In this paper we have demonstrated how a mathematical 

relation can be defined between a MGA fitness function and a 

MRF model of fitness, derived from the fitness of a 

population of chromosomes. Our theorem shows that such a 

link can always be defined for a very general class of MGA 

encodings. In practice, the strength of this link depends on the 

choice of neighborhood system, and the clique potential 

functions. We used a two neighbors system to build our 

potential function. 

It should be noted that this approach is distinct from the 

work done in modeling the evolution of a GA using Markov 

chains. We do not model the evolution. 

However, since the transition probabilities in the Markov 

chains models require the calculations of the fitness, then the 

MRF approach could be incorporated in the derivation of the 

Markov chains model. 

The Bayesian Optimization Algorithm (BOA) developed in 

[21]-[22], and is applied to Probabilistic Model-Building 

Genetic Algorithms (PMBGA) [22]-[23], uses totally different 

approach than that of the MRF models, BOA approach is 

based on the inheritance of the alleles between the children 

and the parents, while the MRF model is based on the 

neighborhood between alleles.  BOA calculates the fitness 

according to the objective of some external utility, while the 

MRF model does not assume that the fitness is directly related 

to the external objective function. 

In general, iterative techniques that are adaptive give better 

results for the FIR filter design.  Here, we present novel 

technique for optimizing multivariable functions based on 

labeling based genetic algorithm, and then we used it in 

solving a standard application such as the FIR filter design 

problem. We also managed to formulate an LCP for the FIR 

filter design problem and solve it using Lemke algorithm. 

Two basic approaches that are totally different were presented 

in this paper and used in solving a benchmark application. The 

Ising MGA, however, is less exhaustive than the MGA since 

less usage of the external objective function utility is used. 

Once the MRF model is established, it will be used in 

calculating the fitness for Ising MGA. 

Future work will include further modeling of the Ising GA 

and using different labeling systems. More emphasis will be 

put in designing different types of digital filters, including two 

dimensional filters. Real life applications will be used to 

demonstrate the robustness of the designed filters. 
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