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 
Abstract—The connecting rod transmits the piston load to the 

crank causing the latter to turn, thus converting the reciprocating 
motion of the piston into a rotary motion of the crankshaft. 
Connecting rods are subjected to forces generated by mass and fuel 
combustion. This study investigates and compares the fatigue 
behavior of forged steel, powder forged and ASTM a 514 steel cold 
quenched connecting rods. The objective is to suggest for a new 
material with reduced weight and cost with the increased fatigue life. 
This has entailed performing a detailed load analysis. Therefore, this 
study has dealt with two subjects: first, dynamic load and stress 
analysis of the connecting rod, and second, optimization for material, 
weight and cost. In the first part of the study, the loads acting on the 
connecting rod as a function of time were obtained. Based on the 
observations of the dynamic FEA, static FEA, and the load analysis 
results, the load for the optimization study was selected. It is the 
conclusion of this study that the connecting rod can be designed and 
optimized under a load range comprising tensile load and 
compressive load. Tensile load corresponds to 360o crank angle at the 
maximum engine speed. The compressive load is corresponding to 
the peak gas pressure. Furthermore, the existing connecting rod can 
be replaced with a new connecting rod made of ASTM a 514 steel 
cold quenched that is 12% lighter and 28% cheaper. 

 
Keywords—Connecting rod, ASTM a514 cold quenched steel, 

static analysis, fatigue analysis, stress life approach. 

I. INTRODUCTION 

HE connecting rod is subjected to a complex state of 
loading. It undergoes high cyclic loads of the order of 105 

to 109 cycles, which range from high compressive loads due to 
combustion, to high tensile loads due to inertia. Therefore, 
durability of this component is of critical importance. Due to 
these factors, the connecting rod has been the topic of research 
for different aspects such as production technology, materials, 
performance simulation, and fatigue.  

Webster et al. [1] performed three dimensional finite 
element analysis of a high-speed diesel engine connecting rod. 
For this analysis, they used the maximum compressive load 
which was measured experimentally, and the maximum tensile 
load which is essentially the inertia load of the piston 
assembly mass. The load distributions on the piston pin end 
and crank end were determined experimentally. They modeled 
the connecting rod cap separately, and also modeled the bolt 
pretension using beam elements and multi point constraint 
equations. 

 
Mohammed Mohsin Ali H, Associate. Professor, Dept of Mechanical 

Engineering, Ghousia College of Engineering, Ramanagaram-562159, 
Karnataka, VTU, Belgaum, India, phone:09880922905; Fax: 080-27273474; 
(e-mail: mohsinaligce@gmail.com).  

Mohamed Haneef, Principal, Dept of Mechanical Engineering, Ghousia 
College of Engineering, Ramanagaram, Karnataka, Academic Senate member, 
VTU, Belgaum, India, phone: 09845142953; fax: 080-27273474; (e-mail: 
profhaneef@hotmail.com ). 

Yoo et al. [2] used variation equations of elasticity, material 
derivative idea of continuum mechanics and an adjoint 
variable technique to calculate shape design sensitivities of 
stress. The results were used in an iterative optimization 
algorithm, steepest descent algorithm, to numerically solve an 
optimal design problem. The focus was on shape design 
sensitivity analysis with the application to the example of a 
connecting rod. The stress constraints were imposed on 
principal stresses of inertia and firing loads. But, fatigue 
strength was not addressed. The other constraint was the one 
on thickness to bind it away from zero. They could obtain 
20% weight reduction in the neck region of the connecting 
rod.  

Folgar et al. [3] developed a fiber FP/Metal matrix 
composite connecting rod with the aid of FEA, and loads 
obtained from kinematic analysis. Fatigue was not addressed 
at the design stage. However, prototypes were fatigue tested. 
The investigators identified design loads in terms of maximum 
engine speed, and loads at the crank and piston pin ends. They 
performed static tests in which the crank ends and the piston 
pin end failed at different loads. Clearly, the two ends were 
designed to withstand different loads.  

Serag et al. [4] developed approximate mathematical 
formulae to define the connecting rod weight and cost as 
objective functions and also the constraints. The optimization 
was achieved using a Geometric Programming technique. 
Constraints were imposed on the compression stress, the 
bearing pressure at the crank and the piston pin ends. Fatigue 
was not addressed. The cost function was expressed in some 
exponential form with the geometric parameters.  

Imahashi et al. [5] presented a method to consider the 
fatigue life as a constraint in optimal design of structures. 
They also demonstrated the concept on a SAE key whole 
specimen. El-Sayed and Lund [6] conducted constant 
amplitude, load-controlled component axial fatigue tests on 
powder forged (PF) connecting rods. They reported that the 
factors which affect fatigue strength in PF connecting rod are 
hardness of the material, depth of decarburized layer, 
metallurgical structure, density, and surface roughness. They 
concluded that hardness has a large impact on fatigue strength. 
The fatigue properties were also compared to SAE 1055 steel. 
The comparison also showed that a major cost difference 
between hot forging and PF connecting rod is in machining, 
and that the energy saving for PF connecting rod, which is one 
half of that for the forged steel, is also mainly due to the 
machining process. However, in spite of the higher raw 
material weight for the steel forged connecting rod, the raw 
material cost is significantly lower than the PF connecting rod 
raw material. Sarihan and Song [7] presented a method to 
consider fatigue life as a constraint in optimal design of 
structures. They also demonstrated the concept on a SAE key 
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