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Abstract—A numerical method is proposed to calculate damping 

properties for sound-proof structures involving elastic body, 

viscoelastic body, and porous media. For elastic and viscoelastic body 

displacement is modeled using conventional finite elements including 

complex modulus of elasticity. Both effective density and bulk 

modulus have complex quantities to represent damped sound fields in 

the porous media. Particle displacement in the porous media is 

discretised using finite element method. Displacement vectors as 

common unknown variables are solved under coupled condition 

between elastic body, viscoelastic body and porous media. Further, 

explicit expressions of modal loss factor for the mixed structures are 

derived using asymptotic method. Eigenvalue analysis and frequency 

responded were calculated for automotive test panel laminated 

viscoelastic and porous structures using this technique, the results 

almost agreed with the experimental results. 

 

Keywords—Damping, Porous Media, Finite Element Method, 

Computer Aided Engineering. 

I. INTRODUCTION 

AMPING and sound-insulation measures are strictly 

applied to automotive body panels to prevent noise in the 

vehicle cabin. Automotive body panels, which are made of steel 

sheet press-molded into a required form, are laminated with 

damping materials to reduce the vibration level. Furthermore, 

porous media, resin sheets (surface) a carpet are laminated on 

the damping materials. Sandwiching the porous media between 

the panel and the rubber sheet realizes a double-walled sound 

insulation structure (Fig. 1). In this way, solid materials (elastic 

and viscoelastic), porous media and gas (air) coexist in the 

sound isolation structure for the automotive body panels. Fig. 2 

shows the results of vibration level measurement of the front   

floor (acceleration response). In this measurement the front 

suspension mounting part was selected as vibration excitation 

point of estimated road noise input. The vibration was 

measured under the panel (“panel” in the figure) and on the 

rubber sheet (“pane + felt + resin sheet”). The difference of the 

vibration levels of the two areas is small until about 180 Hz, 

while it becomes greater at larger noises. 

From the above, for predicting the high-frequency road noise 

(180 to 500 Hz), it is essential to predict the vibration noise 

characteristics of the sound-proof structure, especially the 

surface sheet which emits in-vehicle noise, and numerical value 

calculation is a possible technique for this [1], [2]. This study 
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proposes a numerical analysis method for a sound-proof 

structure where elastic materials, viscoelastic materials, porous 

media and air, designed with complex sound-proof structures of 

automotive body panels. The finite element method is used to 

handle any forms and boundaries. Besides the single damping 

of the viscoelastic materials and the porous media, the method 

is designed to solve coupled problems of solid materials, 

porous media and air. In addition, an approximate calculation 

method is proposed for the modal loss factor of the complex 

sound-proof structure. With this new technique, a vibration 

analysis of a simple panel that mimics the automotive panels 

was performed and the results were compared with 

experimental results for accuracy verification. 

 

 

Fig. 1 Automotive panel laminated with viscoelastic body and porous 

media 

 

 

Fig. 2 Effect of porous media to reduce vibration of front floor 

(Excitation point: front cross member) 

II.  ANALYSIS METHOD 

This chapter introduces a numerical analysis method for 

vibration damping characteristics of coupled problems of 

vibration and acoustics in a field where an elastic, a 

viscoelastic, porous media and gas. These components are 
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expressed as a finite element and stacked in consideration of 

coupling in order to handle any structures regardless their 

forms. First, the Section II A will suggest a numerical analysis 

method by discretizing particle displacement in a damped 

sound field. Then the Section II B will explain finite elements 

of the displacing field for solid bodies (elastic and viscoelastic). 

The Section II C will explain the discrete equation for the 

global coordinate where solid bodies, porous media and gas 

coexist. In the Section II D, an equation will be derived that 

approximately calculates the modal loss factor of the global 

coordinate by applying the asymptotic method. Finally, the 

Section II E will introduce an equation for damped vibration 

response using the MSKE (Modal Strain and Kinetic Energy) 

method. 

A. Descretized Equation for Internal Gas in Porous Media 

First, the sound field of internal air in porous media is 

discretized using finite elements. Assuming infinitesimal 

amplitude, the equation of motion of inviscid compressive 

perfect fluid can be expressed under periodic oscillation as 

follows [5]-[7]. 

 

{ } 02 =+∇− fuP ρω                           (1) 

 

The equation of continuity is represented by the following 

equation [5]-[7]. 

 

{ } 0=+ fuEdivP                              (2) 

 

P is the pressure. { }fu  is the displacement vector of 

particles. E is the volume elasticity and ρ is the effective density 

of the internal air in porous media. ω is the angular frequency. 

Conventional acoustic analysis often eliminates the particle 

displacement in (1) and (2), and derives an equation of motion 

which treats the pressure as unknown. In this study, however, 

the pressure is eliminated from the two equations and the 

particle displacement is retained as unknown. An advantage of 

this technique is that the displacement can be used as a common 

unknown for solid bodies. This allows the simplified stack of 

solid bodies and the sound field factors [7], and makes the 

calculation method more suitable for complex sound problems 

where solid bodies, porous media and gas scatter. On the other 

hand, while the unknown for the pressure is a scalar variable, 

the unknown for the particle displacement is a vector variable, 

which requires a larger number of calculations. 

Relations between { }
fu  and the particle displacement { }

feu    

at nodal points in the element can be approximated as follows. 

 

{ } [ ]{ }
eff

t

f uNu =                              (3) 

 

[ ]f

t
N  represents a matrix comprised of appropriate shape 

functions. Irrotational condition is { } 0=furot  

The kinetic energy 
fT

~
, the strain energy 

fU
~

, and external 

work 
fV

~
 are obtained from (1), (2), and (3). The following 

expressions can be derived by applying the minimum energy 

principle ( ) 0
~~~

=−− fff VTUδ . 

 

[ ] [ ]( ){ } { }
fefefefe fuMK =− 2ω                     (4)                  

[ ] [ ]feefe MM
~

ρ=                                   (5) 

[ ] [ ]feefe KEK
~

=                                   (6) 

 

{ }
fef  is the nodal force vector, [ ]feK  is the element stiffness 

matrix, and [ ]feM  is the element mass matrix. 
eρ  and 

eE  are 

the effective density and the volume elasticity for media in the 

region of element. [ ]feK
~  and [ ]feM

~  are the matrix consisted 

of the shape functions and their derivatives. 

Equations (4), (5), and (6) are kinetic equations for the 

element that is linear compressible perfect fluid. These 

equations can be used as element equations for acoustic 

problems of gas under undamped conditions. 

For expressing the sound in the porous media, a model is 

proposed which converts the complex effective density and the 

acoustic velocity or complex volume elasticity, and its 

effectiveness is confirmed [4], [5], [10]-[12]. Based on this 

method, the following equations are obtained. 

 

eIeRee jρρρρ +=⇒ *                         (7) 

eIeRee jEEEE +=⇒ *                         (8) 

 

This model is mainly applied to textile materials such as 

glass wool. It ignores the impact of the elastic wave which 

transmits the frames of porous media, and assumes that the 

motion of gas is the dominant determiner. The model 

effectiveness is verified for porous media when their frame 

materials have adequate flexibility and large damping [4], [5], 

[9], and automotive sound-proof materials are often the case. 

On the other hand, when the frame materials of porous media 

are made of rigid materials such as metal, the elastic wave 

transmitting through the frames has larger impact than the air 

wave. In this case other models such as Biot’s model will be 

required [13], [14]. 

The element mass matrix [ ]feM  is obtained as follows by 

substituting (7) into (5). 

 

[ ] [ ] ( )efeRfe jMM χ+= 1                    (9) 

eReIe ρρχ =                                 (10) 

 

[ ]
feRM  is the real part of [ ]feM . The imaginary part of the 

effective density 
eIρ  is a term related to the flow resistance of 

the porous media, and 
eReIe ρρχ /=  corresponds to the 

material dumping caused by the flow resistance. 
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In the same way, the element stiffness matrix [ ]eK  is 

obtained by substituting (8) into (6). 

 

[ ] [ ] ( )efeRfe jKK η+= 1                        (11) 

eReIe EEE =                                 (12) 

 

[ ]
feRK  is the real part of the [ ] feK . 

eη  is the material 

damping corresponding to the hysteresis in the relationship 

between the pressure and the volume strain (loss factor; all the 

damping values below are loss factors). 

From the above, among the elements for the sound field in 

the porous media, the element stiffness matrix [ ] feK  and the 

element mass matrix [ ] feM  are both expressed with complex 

quantities. Gas such as air can be expressed by lowering their 

damping parameters, 
eχ  and 

eη . The parameters 
eχ , 

eRρ , 
eη  

and 
eRE  can be identified by experiments using a impedance 

tube [5], [10].  

Prior to this study, we proposed an analysis method of the 

field using the fine element method where solid bodies are not 

included but porous media and air coexist. This method 

consists of the procedure similar to the above, except that the 

pressure is treated as unknown instead of the particle 

displacement. The effectiveness of the method is confirmed 

regarding the damped response and the modal loss factor [4], 

[11], [12].
 
The proposed method in this new study is an 

enhanced version of the previous method to apply to coupled 

problems which also include solid bodies. 

B. Discretized Equations for Vibration in Damped Solid 

Bodies 

The vibration field of a solid bodies is discretized 

conventionally with the finite element method
 
[15], using the 

following equations (13) – (17). 

The relationships between the stress ant the strain, and the 

strain and the displacement are expressed as follows. 

 

{ } [ ]{ }εσ D=                                     (13)  

                { } [ ]{ }suA=ε                                    (14) 

 

where, { }σ  is the stress vector, { }ε  is the strain vector, and 

{ }su  is the displacement vector of the solid bodies. [ ]D  is the 

matrix including modulus of elasticity and Poisson's ratio, and 

[ ]A  is the matrix comprised of differential operators. 

By using the matrix comprised of shape functions [ ]t

sN , the 

relationship between the element displacement { }su  and the 

nodal displacements { }seu  is approximated as follows. 

 

{ } [ ]{ }ses

t

s uNu =                                  (15) 

 

The following equation is obtained by obtaining the kinetic 

energy 
sT

~
, the strain energy 

sU
~

, and the external work 
sV

~
, and 

applying the minimum energy principle ( ) 0
~~~

=−− sss VTUδ . 

 

[ ] [ ]( ){ } { }sesesese fuMK =− 2ω                     (16) 

 

where, { }sef  is the nodal force vector in an element e for solid 

bodies, [ ]seK  and [ ]seM  are the element stiffness matrix and 

the element mass matrix for solid bodies, respectively. 

In order to express the viscoelastic material with hysteresis 

damping as a finite element, it is necessary to convert the 

elasticity [ ]D  in (13) into a complex modulus [3], [16]. By 

doing this, the element stiffness matrix in (16) is also 

represented by complex quantities as follows. 

 

)1(][][ eseRse jKK η+=                           (17) 

 

where, 
eη  is the material loss factor corresponding to each 

element e, and [ ]
seRK  is the real part of the element stiffness 

matrix for solid bodies. 

C. Discretized Equation in Global System 

At the boundary of solid bodies and gas or a solid bodies and 

porous media, only the displacement in the normal direction 

toward the boundary is continuous. By taking this into account 

and using (4) – (17), all the elements in an intended field (the 

complex space of gas, porous media and solid bodies) are 

stacked to obtain the following discrete equation for the global 

coordinate [7]. 

 

[ ] [ ] ( )( ){ } { }FujMjK
e

e

eeeReeR =+−+∑
=

max

1

2 1)1( χωη     (18) 

 

maxe  is the total number of elements and { }F  is the external 

force vector. { }eu  is the nodal displacement vector in global 

system, which consists of { }
feu  and { }seu . Similarly, [ ]

eRK  

consists of [ ]
feRK  and [ ]

seRK , while [ ]
eRM  consists of  

[ ]
feRM  and [ ]

seRM . In this equation, 
eχ  of the solid elements 

must be null. 

From the above, for the system where solid bodies, porous 

media and gas coexist, the stiffness matrix and the mass matrix 

are both expressed as complex quantities. 

D. Approximate Computation of Modal Damping 

This section explains the approximate calculation of the 

mode damping of the global coordinate. The complex 

eigenvalue problem of (18) is represented by the following 

equation: 

 

[ ] ( )( ) ( )( )[ ] ( )( ) ( ){ } { }011)1(
max

1

*2
=++−+∑

=

e

e

n

eeR

n

tot

n

eeR jMjjK φχηωη (19) 
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( )( )2nω  is the real part of the n'th order complex eigenvalue, 

( ){ }∗nφ  is the n'th order complex eigen mode, and ( )n

totη  is the n'th 

order modal loss factor. 

Among the material damping 
eχ , 

eη  (e=1,2,3,…,
maxe ), the 

most largest number is expressed as 
maxη . In addition, the 

following value is defined and introduced. 

 

1,/,1,/ maxmax ≤=≤= keekeseese βηχββηηβ       (20) 

 

Here, by assuming 1max <<η  and introducing the small 

parameter 
maxηµ j= , (19) is asymptotically expanded as 

follows. 

 

{ } { } { } { } ⋅⋅⋅+++= 2

)(2

1

)(

0

)(*)( nnnn φµφµφφ             (21) 

⋯,)()()()( 2)(

4

42)(

2

22)(

0

2)( +++= nnnn ωµωµωω    (22) 

   ⋯,)(

7

7)(

5

5)(

3

3)(

1

)( ++++= nnnnn

totj ηµηµηµµηη       (23) 

 

In these equations, under conditions of 1≤keβ , 1≤seβ  and 

1max <<η , we can obtain 1max <<keβη  and 1max <<seβη . Thus, 

both 
seµβ  and 

keµβ  is regarded as small parameters like µ . In 

addition, ( ){ } ( ){ } ( ){ } ⋯,,, 210

nnn φφφ , ( )( ) ( )( ) ( )( ) ⋯,,,
2

4

2

2

2

0

nnn ωωω  and 

( ) ( ) ( )
⋯,,, 531

nnn ηηη   are real quantities. 

Then by substituting (21) – (23) into (19), the orders 0µ  and 

1µ  are respectively combined as the following equations: 

0µ  order: 

[ ] ( )( ) [ ]( ) ( ){ } { }00

max

1

2

0 =−∑
=

n
e

e
eR

n

eR MK φω               (24) 

 
1µ  order: 

[ ] ( ) ( )( ) [ ] ( )( ) [ ]( ) ( ){ }
0

1

2

0

2

01

n
e

e
eR

n

keeR

nn

eRse

mav

MMK φωµβωµηµβ∑
=

−−  

[ ] ( )( ) [ ]( ) ( ){ } { }∑
=

=−+
max

1

1

2

0 0
e

e

n

eR

n

eR MK φωµµ    (25) 

 

Furthermore, by arranging (24) and (25), (26) is obtained. 

 
)()()( n

se

n

ke

n

tot ηηη −=                              (26) 

∑
=

=
max

1

)()( )(
e

e

n

kee

n

ke Sηη ,   ∑
=

=
max

1

)()( )(
e

e

n

see

n

se Sχη  

0

)(

0

)(

1

0

)(

0

)(
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n
e

e
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ke
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Τ
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Τ
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0
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1
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0
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n
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e

n
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∑
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According to these expressions, modal loss factor )(n

totη  can 

be approximately calculated using material loss factors 
eη  of 

each element e concerning elasticity, share ( )n

seS  of strain 

energy of each element to total strain energy, material loss 

factors 
eχ  of each element e concerning effective density and 

share ( )n

keS  of kinetic energy of each element to total kinetic 

energy. The eigen modes in (26) are real, which is easily 

obtained by solving (24), which is obtained by ignoring all the 

damping terms, as real eigenvalue problem. Equation (26) is an 

extended method of the MSE method, which calculates the 

modal loss factor of a structure where an elastic and a 

viscoelastic coexist, and Modal Strain and Kinetic Energy 

Method (MSKE method), which calculated the modal loss 

factor of a sound field where porous media and gas coexist [4], 

[11], [12]. 

E. Damped Vibration Response Using MSKE Method 

The acceleration response that uses the modal loss factor 

obtained from (26) and the modal parameter obtained from real 

eigenvalue analysis is represented by the following equation: 

 

{ }
( ){ } { } ( ){ }

( ) ( )[ ]∑
= −+−

−
=

max

1
)(2)(2)(22)()(

2

n
n

ke

n

se

nnn

nTn

jjm

F
A

ηωηωωω

φφω
   (27) 

 

{ }A  is the acceleration vector at the response, { }F  is the 

external force vector at the excitation point, { })( nφ  is the n'th 

order mode vector at the excitation point, and )(nm  is n'th order 

modal mass. 

III. ANALYSIS RESULTS AND TEST VERIFICATION 

A vibration analysis was performed with finite elements 

model. A base panel, porous media (felt) and a upper panel 
(steel) were laminated, as shown Fig. 3. When we made this 

model, we use HyperMesh (Altair Engineering Inc.) ver.11.0 at 

meshing. With a similar test piece, as shown Fig. 4, the 

vibration response (hereafter “response” means acceleration 

response) was also measured. The base panel was made of 

1.6mm thick steel sheet and constrained by edging its frame 

with a jig and bolting. The felt was 25mm thick. Around the felt 

was the wall of the jig, which prevented the leakage of air in the 

felt and closed boundary condition could be assumed. The 

boundary condition of the upper panel (1.6mm thick steel) was 

free. Although the base panel and the felt, the felt and upper 

panel were not adhered, there was no clearance between them. 

The finite element model was solid elements with the mesh 

pitch of 5mm (the thickness direction is excluded). For the 

boundary condition of the base panel, springs were installed in 

the rectilinear X, Y, and Z directions to account for the support 

stiffness of the jig. For the boundary condition of the beaded 

panel, springs were installed in the rectilinear X, Y, and Z 

directions to account for the support stiffness of the jig. The 

boundary conditions of the sides of the felt were rigid wall in 

the normal direction and free in the tangential direction. The 
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upper panel displacement and the particle displacement in the 

internal air are continuous only in the normal direction towards 

the boundary surface. This continuous condition is applied to 

the particle displacement in the air in the felt and the base panel 

displacement. 

First of all, the vibration response of only the base panel was 

measured and the spring constants in the X, Y and Z directions 

which were set on the boundary of the finite element model 

were tuned so that the resonance frequency and the acceleration 

response (= inertance) agree with the measurement results. The 

lower left end of the base panel was made into the origin of 

coordinate (0.0, 0.0, 0.0). The point of coordinate (50.0, 50.0, 

0.0) was inputted with the hammer, and measured the point of 

coordinate (75.0, 25.0, 0.0) with the laser doppler vibrometer. 

The unit of coordinate was [mm]. The inertance level shows 

0[dB] = 20log(1). Fig. 5 shows the tuning results. The blue line 

shows the calculation results, the red line shows the 

experimental results. The calculated value agrees well with the 

experimental value overall, far to 500 Hz.  
 

 

Fig. 3 Finite element model of test piece 

 

 

Fig. 4 Test piece for experiment 

 

 

Fig. 5 Response level (base panel only) 

 

Secondly, analysis and measurement were performed for the 

laminated model shown in the Fig. 3. The material data of the 

air in the felt was identified by improved two-cavity method 

[8]. Specifically, the real part of the effective density 
310kg/m1.98  ×=eRρ , the imaginary part -1.33=eχ , the real part 

of the volume elasticity 21.19N/m=eRE , the imaginary part 

0.151=eη . The excitation point was the same position as the 

case of only the base panel. The measured point of response 

was coordinate (45.0, 95.0, 26.6). Fig. 5 shows response 

measurement results of only the base panel (blue line in Fig. 6) 

and the panel which was laminated with upper panel and felt 

(red line). Fig. 7 shows the calculation results of the same 

conditions. Compared Fig. 6 with Fig. 7, it was confirmed that 

resonance frequencies and response levels were enough 

calculation precision. Also, an effect of the porous media was 

reproduced fairly well.  

 

 

Fig. 6 Response level (experimental results) 
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Fig. 7 Response level (calculation result

 

Figs. 8 and 9 show the four vibration modes resulting 

from experimental modal analysis and eigenvalue 

analysis. The experimental modal 

vibration modes from 25 points of 

functions measurement results on the upper

of the point that mentioned above. The sufficient calculation 

accuracy for mode shapes, resonance freq

loss factors was confirmed. 

 

Vibration mode A 

Experimental modal analysis: 145.5Hz

Eigenvalue analysis: 144.6Hz, η: 0.0

 

 

Vibration mode B 

Experimental modal analysis: 198.5Hz

Eigenvalue analysis: 201.7Hz, η: 0.01
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IV. CONCLUSION

An analysis method based on the finite e

proposed for the analyzing the vibration characteristics of the 

structure in which an elastic, a viscoelastic, porous media, and 

gas coexist in order to analyze by CAE the vibration damping 

problem of complex sound

automotive panels. The obtained results are summarized as 

follows: 

1) Porous media was formulated by the model which 

expressed the sound field of the internal air with complex 

effective density and the complex volume elasticity, and 

discretized with the 

displacement as unknown. Elastic and viscoelastic 

materials were discretized and formulated by the element 

which treats displacement as unknown. By combining 

these, the coupled problem where 

porous media and gas coexist in any form was modeled 

with finite elements and formulated with displacement as 

common unknown. 

2) A Modal Strain and Kinetic Energy Method (MSKE 

method) was developed to apply the approximate 

calculation of the modal loss factor by

asymptotic method (MSE method) to complex 

400 500

mode D 

 

Vibration mode C 

 
analysis: 237.0Hz, η: 0.012 

 
Eigenvalue analysis: 243.3Hz, η: 0.009 

 

Comparison of vibration mode A,B,C 
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Experimental modal analysis: 354.5Hz, η: 0.031 

 
Eigenvalue analysis: 344.7Hz, η: 0.021 

Comparison of vibration mode D 

ONCLUSION 

An analysis method based on the finite element method was 

proposed for the analyzing the vibration characteristics of the 

structure in which an elastic, a viscoelastic, porous media, and 

gas coexist in order to analyze by CAE the vibration damping 

problem of complex sound-proof structures used for 

automotive panels. The obtained results are summarized as 

Porous media was formulated by the model which 

expressed the sound field of the internal air with complex 

effective density and the complex volume elasticity, and 

 element which treats particle 

displacement as unknown. Elastic and viscoelastic 

materials were discretized and formulated by the element 

which treats displacement as unknown. By combining 

these, the coupled problem where an elastic, a viscoelastic, 

media and gas coexist in any form was modeled 

with finite elements and formulated with displacement as 

A Modal Strain and Kinetic Energy Method (MSKE 

method) was developed to apply the approximate 

calculation of the modal loss factor by based on the 

asymptotic method (MSE method) to complex 
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sound-proof structures. With this method the modal loss 

factor was obtained from the results of real eigenvalue 

analysis and the number of calculations required was 

considerably reduced. 

3) A calculation method of the vibration was developed based 

on the modal method which uses the modal loss factor 

obtained by the above MSKE method. An experimental 

modal analysis  were performed with the test pieces 

laminated with porous media, and the sufficient calculation 

accuracy for mode shapes,  modal loss factors and 

inertance was confirmed. 
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