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Abstract—The goal of this paper is to find Wardrop equilibrium 

in transport networks at case of uncertainty situations, where the 
uncertainty comes from lack of information. We use simulation tool 
to find the equilibrium, which gives only approximate solution, but 
this is sufficient for large networks as well. In order to take the 
uncertainty into account we have developed an interval-based 
procedure for finding the paths with minimal cost using the 
Dempster-Shafer theory. Furthermore we have investigated the users’ 
behaviors using game theory approach, because their path choices 
influence the costs of the other users’ paths. 
 

Keywords—Dempster-Shafer theory, S-O and U-O 
transportation network, uncertainty of information, Wardrop 
equilibrium. 

I. INTRODUCTION 
HIS paper is the extended version of the previous our 
work [25]. This paper is about the path optimization for 

transport networks, which is a current topic in the 
transportation literature. The paper is based on a previous 
work [18] of finding a solution for path planning in a road 
network, where the costs of roads are uncertain. Our concept 
is based on the Dempster-Shafer theory, which helps to model 
the uncertainty: the lack of the information. In [18] we have 
presented a path search algorithm for any individual driver 
taking this kind of uncertainty into account. New question 
arises in regard to this best path search: if every driver 
traveled on the base of his/her best path, they may influence to 
each other; so will be this situation the best for all 
participants? 

Wardrop [17] has investigated this question and he has 
recognized alternative possible behaviors of users of transport 
networks, and stated two principles, which are commonly 
named after him: 

• First principle: The journey times of all paths actually 
used are equal. These are equal or less than those 
which would be experienced by a single vehicle on any 
unused path. 

• Second principle: The average journey time is minimal. 
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The first principle corresponds to the behavioral principle 
in which travelers seek to (unilaterally) determine their 
minimal costs of travel whereas the second principle 
corresponds to the behavioral principle in which the total cost 
in the network is minimal. Many researches focus on this kind 
of equilibrium, e.g. on realizing Wardrop equilibria with real-
time traffic information [10], or on analysis of Wardrop 
equilibrium [12]. 

The equilibrium depends on many variables and parameters 
of the network structure. The Braess Paradox [16] is a well-
known phenomenon for this: adding a new road to a transport 
network reduces the total travel time in general, but in special 
cases the total travel time may be increasing. In fact, some 
road users may be better off, but they contribute to an increase 
in travel time for other users. This situation happens because 
drivers do not face the true social cost of an action. Many 
works [8] have analyzed this phenomenon, some works [14] 
have been proposed to at least minimize the effects of the 
paradox (by giving path recommendation to drivers). 

Two kinds of optimized system can be distinguished: user-
optimized (U-O) and system-optimized (S-O) transportation 
networks. In the former the users act unilaterally, in selecting 
their paths; and in the latter the users select paths according to 
what is optimal from a societal point of view, in that the total 
cost in the system is minimized. The former problem (the U-O 
network problem, also commonly referred to in the 
transportation literature as the traffic assignment problem [3], 
[4], [6], [7] or the traffic network equilibrium problem [9]) 
coincides with Wardrop’s first principle, and the latter with 
Wardrop’s second principle. In this paper we focus on both of 
them (U-O and the S-O transportation networks). 

II. FINDING EQUILIBRIUM 

A. Formalization of the Problem 
Consider a general network G = (N, E), where N denotes 

the set of nodes, and E the set of directed links (edges). Let e 
denote an edge of the network connecting a pair of nodes, and 
let p denote a path consisting of a sequence of edges 
connecting an origin/destination (O/D) pair. In transport 
networks the nodes represent the intersections (origins and 
destinations may be only nodes as well), and edges correspond 
to roads. Thus a path is a sequence of edges which comprise a 
path from an origin to a destination.  

We follow the formalization described in [1]. Let Prs denote 
the set of paths connecting the origin r to destination s pair of 
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nodes. Let S represent the set of origin/destination pairs of 
nodes, and Let P denote the set of all paths in the network 
assuming that S is given. Let xp represent the flow on path p 
and let fe denote the flow on edge e. The following 
conservation of flow equation must be held: 
 

Eexf ep
Pp

pe ∈∀⋅= ∑
∈

,δ  (1) 

 
where δep is equal to 1, if edge e is contained in path p, and 0, 
otherwise. Expression (1) states that the flow on an edge e is 
equal to the sum of all the path flows on paths p that contain 
(traverse) edge e. Let drs denote the demand associated with 
O/D pair rs, which should be the sum of the flows on different 
paths: 

 

Srsdx rs
Pp

p
rs

∈∀=∑
∈

,  (2) 

Ppx p ∈∀≥ ,0  (3) 

 
Let 1ce denote the edge cost associated with traversing edge 

e for a user. Assume that the edge cost function is given by a 
separable function, furthermore this function is assumed to be 
continuous and an increasing function of the edge flow fe in 
order to model the effect of the edge flow on the cost.  

 

Eefcc eee ∈∀= )(11  (4) 

 
Let ce denote the total cost of edge e for all users traversing 

this edge: 
 

Eeffcc eeee ∈∀⋅= )(1  (5) 
 
The total cost of the whole network is the sum of the all 

edge costs:    
 

∑
∈

=
Ee

eeSO fcC )(  (6) 

 
The system-optimization problem can be expressed by 

finding the minimum of CSO.  
The user-optimization problem is very similar, the 

constraint equations are identical in both of them, but the aim 
is different. The goal of the U-O problem is to minimize the 
following: 

 

∑ ∫
∈

=
Ee

f

eUO

e

dffcC
0

1 )(  (7) 

subject to (1)-(3).  
 

B. Problem with Uncertainty 
Some researches in this topic of the transportation literature 

deal with uncertainty by fuzzy logic [11] in path choice 
models, but not one of them handles the lack of information 
by Dempster-Shafer (DS) theory. 

In DS theory the set Ω = {H1, …, Hn} of all the possible 
states of the system, H1, … Hn still mutually exclusive. We 
denote by G(Ω) the powerset 2Ω, and by A an element of 
G(Ω). 

 
{ }Ω==Ω Ω },...,,{},...,{},{},{{},2)( 21321 HHHHHG  (8) 

 
DS theory defines functions (m) called basic belief 

assignment (BBA) on the G(Ω).  
 

[ ]1,02: →Ωm  (9) 

)(AmA →  (10) 
 
Thus it enables to work with non-mutually exclusive pieces 

of evidence, represented by powerset G(Ω). A basic belief 
assignment (m) function has to satisfy: 

 
( ) 0=φm  (11) 

( )
( )

1=∑
Ω∈GA

Am  (12) 

 
Using DS theory we can define a lower and an upper limit 

for prob(A), the real probability of the evidence. The belief 
function Bel(A) for a set A is defined as the sum of all the 
BBA of subsets of A, saying that a portion of belief assigned 
to B must be assigned to other hypothesis that it implies. The 
DS theory also defines the plausibility Pl(A) as the sum of all 
the BBA of sets B that intersects the set of A. Hereby: 

 
( ) ( )∑

⊆

=
ABB

BmABel
|  (13) 

( ) ( )∑
≠∩

=
0| ABB

BmAPl  (14) 

 
Then the measures are related to each other as follows: 
 

( ) ( )APlAprobABel ≤≤ )(  (15) 
 
Based on DS theory the cost of an edge can be expressed by 

an interval (we have called it cost-interval). The details of 
calculation of the cost-interval are described in [18]. The cost-
interval of an edge depends on the flow and on other 
influencing factors, like weather, actual lane numbers. Let us 
define k different influencing factors: g1, g2, …,gk. The actual 
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values of these factors for an edge e are: ge1, ge2, …,gek, 
briefly eg . 

 
The cost-interval of an edge for a user: 
 

Eecgfcc MaxeMine eee ∈∀≤≤ ,, 111 ),(~
 (16) 

 
where the left expression is the minimal, the right one is the 
maximal value of the interval. 

 
The total cost-interval of an edge for all user: 
 

EefgfcgfC eeeeeee ∈∀⋅= ),(~),(~
1  (17) 

 
The total cost-interval of all edges for the whole network at 

the system-optimization and at the user-optimization problem 
respectively: 

 

∑
∈

=
Ee

eeeSO gfCC ),(~~
 (18) 

∑ ∫
∈

=
Ee

f

eUO

e

dffcC
0

1 )(~~
 (19) 

 
The left size of (18) and (19) are intervals; at both problems 

the aim is to minimize these costs. In order to minimize we 
need a definition of interval comparison, this will be discussed 
in section III.B. (after that the uncertainty is represented by 
intervals). In this paper a simulation method is presented for 
solving the problem described above.  

III. SOLUTION WITH SIMULATION  

A. Structure of the solution procedure 
The aim of the drivers is to minimize their own travel times, 

for solving the problem described above so-called user-
equilibrium program solution algorithms (e.g. the Frank–
Wolfe algorithm) are well known. These theoretical 
algorithms are appropriate for small and average models, but 
not efficient for large networks. Some works [3] deals with 
changing state in time, e.g. the time expansion of the spatial 
network is solved in [2] by MILP (Mixed Integer Linear 
Programming), but this leads to a very large graph (the 
number of the nodes is the number of the original nodes 
multiplied by the number of the time steps). 

Other works [5], [13], [15] use simulation tools to find the 
equilibrium, which give only approximate solution (but this 
tends to theoretical solution by increasing simulation run 
length), but capable for large networks.  

Our solution based on work in [19] using simulation with 
an iterative procedure, which converges to the conditions 
mentioned above. The solution consists of two main 

components: a method to determine a new set of time-
dependent path flows given the experienced path travel times 
on the previous iteration, and a method to determine the actual 
travel times that result from a given set of path flow rates. The 
latter problem is referred to as the ‘‘network-loading 
problem’’, and can be solved using any path-based dynamic 
traffic model (e.g. INTEGRATION, CORSIM, AIMSUN2, 
VISSIM, PARAMICS, MITSIM). The iterative procedure 
furthermore requires a set of initial path flows, which are 
determined by assigning all vehicles to the shortest paths, 
based on free-flow conditions. The general structure of the 
procedure is shown schematically in Fig. 1. 

The inputs of the simulation model can be divided into two 
parts: common and unique. The common part contains the 
network structure with nodes, edges, cost functions, and the 
BBA functions for network parameters. The unique part of the 
input is unique for the given problem situation, so this consists 
of the user demands and the actual facts.  

The influencing factors of the edges using uncertain 
probabilities are described by probability intervals. Based on 
these intervals the cost-intervals of each edge can be 
calculated, so the “network with parameter” is given. The 
further part of the procedure takes the uncertain values of 
costs into account such a way.    

 

 
Fig. 1 Structure of the solution procedure 

 

B. Details about the solution of uncertainty 
The block “Demand ordering” of the procedure in Fig. 1 

determinates the order of the demands in the further 
execution, this order may influence the speed of the 
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convergence.  
The part “Determination paths and path flow” of the 

procedure in Fig. 1 determinates the paths in several 
iterations. In the first iteration the shortest (least cost) paths 
are based on free flow. At calculation for first demand the 
network is empty, then the edge travel times are updated and 
new shortest paths are computed for the second demand. The 
further calculations are similar, so this is repeated for all 
demands. At the end of the first iteration the network-loading 
is executed: this will be used for calculation the input flow for 
the next iteration.  

Starting at the second iteration, and up to a prespecified 
maximum number of iterations, the edge travel times after 
each loading are used to determine a new set of shortest paths 
(and path flows) that are added to the current set of paths (and 
path flows). At each iteration n the volume assigned as input 
flow to each path in the set is xp/n, where xp is the calculated 
flow on path p in the previous iteration. 

At the feedback we can use ordering optimization. Without 
this the order of the demands is random, but the iteration of 
the whole process may be faster by using optimization. The 
ordering optimization method tries to estimate the importance 
of the unique demands based on some features (e.g. how many 
other users would like to travel from the same origin to the 
same destination). This estimated importance can be used for 
ordering.   

The convergence criteria can be chosen from the known 
ones in the literature. This may be based on the iteration 
counter limit, the computational time limit, the changing lower 
limit. 

The finding the shortest path for a given demand at a given 
iteration is based on [18], where the uncertainty is taken into 
account, and intervals to model the uncertainty are calculated. 
An interval (cost-interval) is given by two boundaries: XMin, 
XMax: 

 

MaxMin XXX ≤≤ ~
 (20) 

 
The addition rules of some intervals are the following:  
 

∑∑ ==
i

MaxiMax
i

MiniMin XYXY ,, ,  (21) 

 
In some cases the result of the comparison of intervals is 

unambiguous; it can not been decided which interval is less, 
because the intervals are overlapped such way that one of the 
intervals contains the other interval (e.g. XMin < YMin and XMax 
> YMax). A rule from some predefined rules can be applied in 
order to solve this unambiguous situation according to the 
user decision. Three basic rules can be predefined based on 
the risk attitude of the user: 

• Pessimistic: If XMax < YMax, then interval X is 
considered as less. 

• Optimistic: If . XMin < YMin, then interval X is 
considered as less. 

• Centralistic: If {XMin + XMax}/2 < {YMin + YMax}/ 2, 
then interval X is considered as less. 

 

C. Heuristics 
The convergence of the iteration may be slow, we give a 

heuristic idea to reach the convergence criteria faster: Not all 
the possible paths are computed for a demand, but some of the 
best (smallest cost) ones based on the following rule: The 
paths with smallest cost are computed at the given iteration 
and situation, then its cost is stored as minimal cost (cmin). The 
further (second, third, etc.) paths are computed until the cost 
of the path is less, than the r · cmin, where r (1 ≤ r) is the 
predefined constant for acceptance. Thus the consequence of 
the reduced search space will be the faster running. The r is 
similar to parameter of the local beam search, where the 
search can be influenced by a focus parameter.  

D. Competition or Cooperation among the Users 
We can investigate the users’ behaviors in the transport 

system: they travel on the same transport network, and their 
path choices influence the costs of the other users’ paths 
(conflict can occur among them). There are three general 
strategies of conflict resolution in interpersonal relationships 
among the persons:  

• Avoidance behaviors: People employ no or indirect 
communication with denial, equivocation, changing 
the subject, noncommittal remarks, unfocused or 
rephrasing the question, joking.  

• Competitive behaviors: Persons involve negative 
communication with confrontative remarks, personal 
criticism, rejection, hostile questioning, sarcasm, 
denial of responsibility.  

• Cooperative behaviors: People involve open and 
positive communication with describing the problem, 
analytical remarks, open disclosure, soliciting 
criticism, great empathy, ability to concessions, 
accepting responsibility.  

Avoidance behaviors can not be implemented in the games, 
so the rest (competition or cooperation) lead to dilemma. This 
could be the key problem of any strategy maker in the games. 
There is a problem which is famous for this question, the 
prisoner’s dilemma [20][21]. This basic prisoner’s dilemma 
can be extended to several (N) people, this can be called N-
person prisoner’s dilemma [22]. The simplest version of this 
game, when each person should select between two 
alternatives: C and D, C represents the intention of the people 
to cooperation with others and D represents the uncooperative 
behavior, which leads to defection. Each player who selected 
C causes each of the other persons to receive $1. Each player 
who selected D gets $1, but this has no effect on the payoff 
for others. If everyone selects C, each gets N-1; in case of 
everyone selects D, each gets 1. Maximal gain is N, when 
everyone except one player selects C and this player select D. 
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In general in the game theory, the summation of pay-off 
functions of two persons is not zero. A finite (nonzero-sum) 
two-person game is usually referred to as a bimatrix game, 
since it is completely determined by the pay-off matrices of 
the players. The game is given by the pair of (A, B) pay-off 
matrices, and we can define the mixed extension of the game, 
where the average pay-off E1 and E2 (belonging to player 1 
and player 2 respectively) are the following: 

 
qBpEqApE TT ⋅⋅=⋅⋅= 21  (22) 

 
where the p and q are the distribution vectors of the two 
players. The pair of (p0, q0) strategies is the Nash equilibrium 
point, if: 
 

pqpEqpE ∀≥ ),(),( 0
1

00
1  (23) 

qqpEqpE ∀≥ ),(),( 0
2

00
2  (24) 

 
In the transport system the number of the users is not two, 

but very large (let us denote by n). The strategy n-tupple of 
the all users is the Nash equilibrium point, if: 
 

1
0
n

0
211

0
n

0
2

0
11 p)p,...,p,p(E)p,...,p,p(E ∀≥  (25) 

2
0
n2

0
12

0
n

0
2

0
12 p)p,...,p,p(E)p,...,p,p(E ∀≥  (26) 

 
end so forth, but this can be formalized in more general (i is 
an integer from 1 to n): 
 

ip)p,...,p,p(E)p,...,p,p(E i
0
ni

0
1i

0
n

0
2

0
1i ∀∀≥  (27) 

 
In general the computation of Nash equilibrium of 

noncooperative games is hard [24]. In the transport system the 
users’ pay-off (which should be maximized) is the opposite of 
the cost of the chosen path (which should be minimized). In 
order to compute the Nash equilibrium we should know all the 
users’ strategies (with hundreds of players), which leads a 
very complex mathematical problem. In the future work the 
fast solution of this problem is planned. 

IV. CONCLUSION 
The aim of this paper was to find Wardrop equilibrium in 

transport networks at case of uncertainty situations, where the 
uncertainty comes from lack of information. Two kinds of 
problems are investigated: user-optimized (U-O) and system-
optimized (S-O) transportation networks. In the former the 
users act unilaterally, they select their paths from own point of 
view; and in the latter the users select paths according to what 
is optimal for the whole community of users (minimized total 
cost). We have used simulation tool to find the equilibrium, 
which gives only approximate solution, but this is sufficient 
for large networks as well. In order to take the uncertainty into 
account we have developed an interval-based procedure for 
finding the paths with minimal cost using the Dempster-
Shafer theory. A game on the transport network (like game on 

graphs [23]) has been investigated, in which the users’ 
behaviors can be cooperative or competitive. In the future 
work an extension of our concept is planned with examination 
of transient phenomena. This is important in real situations, 
where the state is changed after the calculated Wardrop 
equilibrium. 
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