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Abstract—Electricity has an indispensable role in human daily 

life, technological development and economy. It is a special product or 
service that should be instantaneously generated and consumed. 
Sources of the world are limited so that effective and efficient use of 
them is very important not only for human life and environment but 
also for technological and economic development. Competitive 
electricity market is one of the important way that provides suitable 
platform for effective and efficient use of electricity. Besides benefits, 
it brings along some risks that should be carefully managed by a 
market player like Electricity Generation Company. Risk management 
is an essential part in market players’ decision making. In this paper, 
risk management through diversification is applied with the help of 
Value at Risk methods for case studies. Performance of optimal 
electricity sale solutions are measured and the portfolio performance 
has been evaluated via Sharpe-Ratio, and compared with conventional 
approach. Biennial historical electricity price data of Turkish Day 
Ahead Market are used to demonstrate the approach.  

 
Keywords—Electricity market, portfolio optimization, risk 

management, Sharpe ratio, value at risk. 

I. INTRODUCTION 

LECTRICITY plays very important role in human life and 
it is an indispensable part of the daily lives of people and 

society. Furthermore, it has great effect on the environment 
depending on the type of source. Because, some of the primary 
energy resources have adverse effects on environment. 

World primary energy demand increased by 55% between 
1990 and 2013, and it is projected to grow by a further 45% to 
2040 in the Current Policies Scenario study of World Energy 
Outlook 2015 [1]. In a different study, 36% increase between 
2011 and 2030 is predicted [2]. Primary energy sources like 
coal, oil, natural gas, shell gas, nuclear energy, solar, wind, and 
hydropower are used to generate electricity needed, and 
electricity has a significant share within Primary energy 
demand. 

There are many stakeholders in electricity industry: 
Electricity generators, consumers, transmission system 
operators, regulatory bodies, dispatchers, industries, traders, 
market operators, retailers, non-profit organizations etc., 
Taking into account above mentioned facts, it is understood that 
electricity generation is a very strategic and important industry 
and it is a key input element of cost management calculations 
of other commercial and industrial businesses. 
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It has been considered that competitive, transparent and 
liquid electricity market provides a convenient environment for 
effective and efficient use of electricity. On the other hand, it 
brings a burden that appropriate risk management techniques 
should be used by market players to compensate risks arising 
from electricity market. Risk management can be divided to 
two main areas: Risk control and risk assessment. Hedging and 
portfolio optimization have been defined as two important tools 
for risk control area [3]. This paper concentrates on portfolio 
optimization which is an effective decision tool to evaluate 
tradeoff between risk and revenue and it is widely used in 
finance. 

Before demonstration of Modern Portfolio Theory (MPT) by 
H. M. Markowitz in 1950s, classical portfolio theory was 
widely accepted [4]. According to the classical portfolio theory 
approach, total portfolio risk of a portfolio can be decreased by 
diversification, moreover, it can converge the lowest risk 
(assumed as market risk) [5]-[8]. Diversity can be achieved by 
investing in different sectors or using different kinds of 
investments tools. The increase in the number of assets provide 
more diversified portfolios but this is not a systematic approach 
due to the fact that it does not take into consideration 
correlations of assets [4], [9], [10]. The presence of a positive 
high correlations between assets can avoid managing risk of 
portfolio effectively [11]. 

Portfolio optimization is described as the allocation of risky 
assets based on their relative risk and return. The main aim is 
whether maximization of return for a given value of risk or 
minimization of risk for a given value of target return [3], [5], 
[12], [13]. Markowitz’s approach is based on mean-variance 
optimization and an efficient frontier that provides minimum 
risk for a given level of return under predefined constraints is 
produced to reach effective solution. Markowitz separated 
efficient portfolios from inefficient ones. He determined 
“efficient frontier” as “set of efficient mean-variance 
combinations” [14]. Later on, MPT demonstrated by 
Markowitz was improved by Sharpe and Linther respectively 
[10], [15]-[17]. MPT and its derivatives have been widely used 
for the solution of portfolio optimization problems since MPT 
was demonstrated by Markowitz. However, it is more prevalent 
in stock exchange, foreign exchange and commodity markets 
than power markets [1], [3]-[5], [11], [12], [18]-[23]. 
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Value-at-Risk is other important ancillary tool for risk 
management. Even though, Value-at-Risk (VaR) was widely 
adopted for measuring market risk in trading portfolios, it did 
not find itself a place in the financial lexicon until the early 
1990s [24]. Its origin goes back to 1922 [25]. VaR mainly 
focuses on left hand side of return distribution and so unlike 
Markowitz it is a measure of losses resulting from “normal” 
market movements [27].  

This paper aims to provide a theoretical background for the 
improvement of portfolio optimization results obtained using 
VaR approach. As mentioned before, VaR is one of the 
important risk measurement tool widely used in finance 
literature. VaR method is applied for three different cases for 
risk management through diversification. Performance of 
optimal electricity portfolios are measured and evaluated by 
using performance measurement techniques. Biennial historical 
working days’ electricity price data of Turkish Day Ahead 
Market are used to demonstrate effectiveness of VaR.   

This paper is organized as follows: Section II introduces the 
theoretical background for MPT, VaR approach, and 
performance evaluation of portfolios, Section III provides a 
short glance into the Turkish Electricity Market. In Section IV, 
data, methodology, related assumptions, and the results of the 
study are demonstrated. In the conclusion section, important 
findings and future directions are listed. 

II. PORTFOLIO OPTIMIZATION AND PERFORMANCE 

EVALUATION 

A. MPT & Mean-Variance Optimization 

In the financial markets, investors can manage their risks by 
investing in stocks from different industries, treasury bills 
(different maturities) or different currencies as supported by 
classical portfolio theory. Sufficient level of diversification 
helps to reduce the total risk of a portfolio to a certain degree, 
on the other hand, co-movements of assets will negatively 
affect this process [8].  

MPT pays attention to co-movement/correlation of risky 
assets. Considering of the risky assets’ co-movements/ 
correlation satisfies the ability to construct a portfolio that has 
the same expected target return and less risky portfolio than the 
portfolios constructed ignoring these factors [3], [5], [18], [28]. 

H. M. Markowitz published the article, “Portfolio Selection” 
in the Journal of Finance in 1952 [14]. That article is assumed 
as the first milestone of MPT [4], [10]. In this article, 
Markowitz proposed that only expected return and variance of 
return of a portfolio were enough for portfolio selection [14]. 
Markowitz argued that the portfolio selection process can be 
divided into two stages: The first stage ends with beliefs about 
the future performance of securities, while the second stage 
ends with a choice of a portfolio. His paper is mainly concern 
about that second stage [4]. The theory demonstrated by 
Markowitz was improved and amplified by Sharpe in 1964, 
Linther in 1965, and Mossin in 1966 respectively and 
independently [10], [15]–[17]. With the addition of risk-free 
asset by Sharpe, Linther, and Mossin to portfolio optimization 

model, they improved the capital market line and developed 
Capital Asset Pricing Model (CAPM) [14], [29].  

Markowitz’s approach is based on mean-variance 
optimization methodology and it produces an efficient frontier 
that provides minimum risk for a given level of return or 
maximum return for given level of risk under predefined 
constraints. Markowitz (1952) distinguished between efficient 
and inefficient portfolios locate on the efficient set [14]. Theory 
assumes that returns on risky assets have normal distribution 
but this is not the case that you encounter often. According to 
theory, investors have all the information regarding to market, 
understand it in the same way, and they are risk averse. One of 
the other important assumption is that investors consider only 
expected returns, deviations, and co-variances of risky assets 
while taking investment decisions [30].  

Taking into account the normal distributions of assets’ 
return, return distribution of alternative portfolios can be 
estimated by using only their means and variances [12], [31]. 
The efficient frontier mentioned previously consists of efficient 
portfolios on it as illustrated in Fig. 1, where an efficient 
portfolio is the only portfolio that offers the highest return at the 
same level of risk. So as seen in Fig. 1, the upper part of the 
efficient set is known as the efficient frontier while lower part 
of the efficient set is called as inefficient set portfolios. 

 

 

Fig. 1 Efficient frontier for mean-variance optimization model  
  

The fundamental equation form of the Mean-variance 
optimization model with “n” risky assets includes three 
essential constraints as: 
 Expected return of the portfolio will be equal to a target 

return. 
 Non-negativity condition for assets’ portfolio weightings. 
 Total weights of risky assets are equal to 1. 

Object function and constraints for Mean-variance 
optimization are set as follows: 

 

. ∑ ∑       (1) 
 
s.t. 

∑         (2) 
 

∑ 1                                      (3) 
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0, ∀ ∈ 1,2,… ,                       (4) 
 

where expected return and variance of a portfolio are described 
as: 
 

∑          (5) 
 

∑ ∑         (6) 
 
where N describes a number of investable risky assets in the 
portfolio opportunity set, Xi denotes weights of ith asset in the 
portfolio while ri denotes expected return of ith asset. σij 
describes the covariance between ith and jth assets, and rtarget 
describes the target portfolio return for the minimization of the 
portfolio’s variances. 
 The solution of this problem produces efficient portfolios for 
every target return and these portfolios produce efficient set. 
The upper part of this set is known as the efficient frontier, as 
seen in Fig. 1. To reach the optimal solution, firstly the utility 
function that reflects an investor’s risk aversion level should be 
determined then utility function for mean-variance optimization 
is determined as a quadratic function and produces 
indifferences curves of investors. The value of utility never 
changes along this curve, so it is also called as the indifferences 
curve. The tangent between the differences curve and efficient 
frontier determines optimum portfolio as seen in Fig. 2. 
 

 

Fig. 2 Efficient frontier for mean-variance optimization model  
 
Utility function includes the terms variance of a portfolio σp

2 

expected return of a portfolio E(rp), and the representative risk 
aversion constant of an investor A [3], [5], [11], [12], [18], [19], 
[31], [32]. The equation set that provides the maximum utility 
value for the optimal portfolio solution is set up as: 

 

. 1/2       (7) 
 
s.t. 

∑ 1                                 (8) 
 

0, ∀ ∈ 1,2,… ,                     (9) 
  
where E(rp) and σp

2 can be seen in (5) and (6). In case of 
necessity a common upper investment limit like ψi for risky 

assets can also be determined as an additional constraint in the 
following form: 
 

, ∀ ∈ 1,2,… ,                      (10) 
   

Depends on the investors’ need for determination of bilateral 
contract or market share in their portfolio or trading electricity 
in derivative markets; the addition of risk-free asset, 
customizing the upper investment constraints for each risky 
asset, lending and borrowing, and other different issues can 
easily be modelled too [5], [11], [18], [28]. Indeed, all of these 
additional issues does not actually included in Markowitz 
Mean-variance approach. 

B. VaR Optimization 

VaR is a kind of statistical technique and an important 
ancillary tool for financial decision makers. Even though, VaR 
did not enter the financial lexicon until the early 1990s, it has 
found very large application area for measuring market risk in 
trading portfolios [24]. Its origin goes further back: New York 
Stock Exchange imposed the capital requirements on member 
firms in 1922 [25]. Thanks to RiskMetricsTM (J.P. Morgan), 
VaR became an important tool for the management of risk in 
financial industry after 1994 [26]. J.P. Morgan’s attempt to 
establish a market standard through its RiskMetricsTM system 
provided a great impetus to the growth of the method [27]. 
Additional regulatory VaR measures were implemented for 
banks or securities firms: UK Securities and Futures Authority 
(1992), Europe’s Capital Adequacy Directive (CAD-1993), 
Basel Committee’s (1996) [24].       

For a given time period and a confidence interval, a VaR 
measures the maximum amount of money that can be lost: VaR 
indicates a quantile, which is located in the left hand side of the 
probability distribution and it shows the loss of a portfolio for a 
specified time period [24]. VaR provides aggregating all of the 
risks of a portfolio into a single number which is suitable and 
understandable for decision makers (board of directors, risk 
managers, regulators, the other management levels etc.) [27].  

VaR focuses on left hand side of return distribution. VaR is 
a measure of losses resulting from normal market movements 
[27]. There are criticisms to Markowitz for getting into account 
not only negative deviations but also positive deviations from 
expected returns while positive deviations are not describing as 
loses.  

As to calculation of VaR, there are three basic calculation 
methods widely used for VaR: The Delta-normal approach 
(Mean-variance), Historical simulation, and Monte Carlo 
Simulation [24], [27], [33]. 

1) VaR with Delta-Normal Approach 

VaR concentrates on the left tail of distribution. Standard 
mathematical properties of the normal distribution are used to 
determine the loss that will be equaled or exceeded a predefined 
“x” percent during “t” period [27]. The key step in this approach 
is computation of standard deviations of portfolio and assets. 
Assuming the returns of portfolio have normal distribution, 
characteristic distribution curve can be produced by using only 
two parameters: Expected return of portfolio/asset and standard 
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deviation of portfolio/asset. Based on these simple parameters 
VaR (monetary value) of an asset or portfolio are calculated as: 

 
               (11) 

 
where VaRCL denotes VaR under “CL” confidence interval. Z1-

CL describes standard score of ”1-CL” and W describes initial 
total value of assets/portfolio. When W is taken as 1 then VaR 
(return) is calculated for the related period. Z1-CL is calculated 
as: 
 

      (12) 
 

95% and 99% confidence levels are common in calculations 
and Z scores of these values are equal to -1.645 and -2.575 
respectively [34]. In Fig. 3, the results of a sample calculation 
are graphically demonstrated for W=1. For instance, under 
normal distribution assumption with zero mean and 0.02 
standard deviation, VaR(5%) is calculated as -0.0329 while 
VaR(1%) is calculated as -0.0515.    

 

 

Fig. 3 VaR for a normal distribution with zero mean and 0.02 
deviation 

 
 VaR (return based) for a portfolio is defined as the loss of 

portfolio that is exceeded with a probability of “x” percent and 
formulized as: 

 

. 95% 1.6448 . 2 1/2
              (13a) 

 

. 99% 2.575 . 2 1/2              (13b) 
 
s.t. 

∑ 1                                 (14) 
 

0, ∀ ∈ 1,2, … ,                     (15) 
 
Here, VaR95% represents, only 5 in every 100 periods, 

portfolio return will be under VaR (95%). VaR99% represents 
that portfolio return will be under VaR (99%) in 1 in every 100 
periods. With increase in confidence interval, probability of 
occurrence decreases but value of VaR in negative direction 
increases. 

2) VaR with Historical Simulation  

Historical simulation is based on observations. In delta-
normal approach it is assumed that returns of portfolios or 
assets have normal distributions but this is not the case in real 
world. Historical distribution of returns doesn’t have to obey 
the normal distribution. According to Linsmeier and Pearson 
(1996) “The distribution of profits and losses is constructed by 
taking the current portfolio, and subjecting it to the 
actual changes in the key factors experienced during each of 
the last “α” periods… Once the hypothetical mark-to-market 
profit or loss for each of the last “α” periods have been 
calculated, the distribution of profits and losses and the value-
at-risk can then be determined.” [27]. 

Financial institutions and banks usually prefer historical 
simulations or hybrid approaches that include it. Number of 
data is utmost important to produce effective results in this 
methodology, otherwise some of the results cannot be 
applicable especially for VaR(99%). Because, it has 
concentrated on only 1 event in every 100. For illustration, in 
case 1000 continuous historical data, VaR(95%) of portfolio is 
51st lowest return of portfolio within this period. For limited 
number of data linear (ordinary) or polynomial interpolations 
can also be used to determine VaR values [24], [34]. 

3) VaR with Monte-Carlo Simulation 

The underlying fact in Monte-Carlo simulation is that the 
values of financial variables can be modelled and simulated for 
different kind of scenarios. It is assumed that the distributions 
of these variables are known. Portfolio values can be recreated 
according to this distribution [33]. Particularly, limited data can 
be enlarged or so many scenarios can be created to analyze the 
results. The Monte-Carlo simulation has a number of 
similarities to historical simulation. Main difference is that, 
rather than carrying out the simulation using observed changes 
in the market factors in Monte-Carlo Simulation, one chooses a 
statistical distribution that is believed to adequately capture or 
approximates the possible changes in the market factors [27]. 
The designer of the analysis is free to choose any distribution 
that represents or approximates the distribution of past/future 
changes [27].   

Monte-Carlo methods need more computational capacity 
regarding to others but the run times are dramatically improved 
with variance reduction techniques [24]. 

C. Sharpe Ratio and Treynor Ratio for Performance 
Evaluation 

There are many performance measurement indicators in 
portfolio performance measurement. Depending on need of the 
investor, these different approaches are used separately or 
together in the performance analysis of portfolios. The most 
common ones in finance are the Sharpe Ratio (reward to 
variability) and the Treynor Ratio (reward to volatility) [35]. In 
this paper the Sharpe Ratio and Treynor Ratio together with 1 
day real market data test analysis are used for performance 
evaluation of portfolios. 

The Sharpe Ratio is very well known and widely used 
performance indicator in finance literature. It is a kind of one 
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parameter the risk/return measurement method and refers to as 
the reward to variability. It is calculated by the division of 
adjusted returns of the portfolio (residual return) to standard 
deviation of the portfolio itself as: 

 

         (16) 

 
Treynor Ratio (reward to volatility) is the other very 

important performance indicator. While Sharpe Ratio measures 
the performance of portfolio by dividing residual return to 
standard deviation of portfolio, Treynor Ratio measures the 
performance of portfolio with the division of residual return of 
it to beta constant of portfolio. Treynor Ratio is calculated as: 

 

         (17) 

 
where β is calculated by the division of covariance of 
benchmark and optimal portfolio to benchmark portfolio’s 
variance. 

One of the important aims of this paper is the optimization 
and improvement of the optimal portfolio solutions, 
comparison of results obtained from mean-variance and VaR 
approaches by using performance indicators widely used in 
finance lexicon. 

III. TURKISH ELECTRICITY MARKET 

Turkey is an important emerging country, and was listed as 
the 18th biggest economy in the world in 2015. Turkey also has 
an important geopolitical position between Asia and Europe 
and Turkey is a unique energy corridor between Caucasia, 
Middle East and Europe [36].  

The electricity industry of Turkey dates back to 1902 when a 
2 kW dynamo system was connected to a water mill by Italian 
and Swedish producer in Tarsus which lays in the south of 
Turkey [37]. Installed capacity in Turkey was risen only about 
408 MW at the beginning of 1950s and the total amount of 
electricity generation had reached 789.5 GWh [37]. There was 
public ownership and a vertically integrated structure in the 
electricity industry and it continued until 1984, at which time a 
reform programme was initiated [18]. After the Electricity 
Market Law (No. 4628) entered into force in 2001, the reform 
programme gained momentum [12], [38]. The total installed 
capacity of Turkey has reached 78,072 MW as of October, 2016 
[39]. Deregulation and construction process in the electricity 
market is in progress [13]. Authorized regulatory body of 
Turkey (Republic of Turkey Energy Market Regulatory-
EMRA) took a decision to decrease the limit of eligible/free 
customers (3600 kWh) at the end of 2015 and the market 
openness ratio reached over 85% after this decision [40]. This 
limitation can be derestricted and reset but infrastructure of 
power dispatchers is not ready yet. 

After 2001, which was the establishment date of the EMRA, 
many developments were put into practice. The Turkish 
electricity market structure consists of an ancillary services 
market operated by a Transmission System Operator, a 

balanced market for real time balancing of load imbalances, a 
day-ahead market as a spot market, and an intra-day market 
operated by market operator and Over The Counter (OTC) for 
bilateral contracts. Hourly uniform marginal pricing 
mechanisms are used in the spot markets with daily (24 hours) 
settlement periods. Supply and demand lines are produced by 
using bids and demands offered by market players. Final 
clearing prices are produced by the intersection of these lines. 
Turkey is assumed as one region and one uniform hourly 
marginal price is used at clearing process. Turkey is aiming to 
adopt a European market model (NordPool) to itself [18]. 

In Turkish Spot Electricity Market, participants can tender 
hourly, block (4 consecutive hours) and flexible offers, but 
hourly and block offers have priority against flexible offers. In 
the day-ahead market, all offers for each hour of next day are 
gathered 11-35 hours before real consumption time [13]. While 
determining the final uniform clearing price, transmission 
system constraints are taken into consideration and applied to 
all market participants. In the intra-day market, participants can 
give their offers up to 90 minutes before operation hour [41]. 

IV. DATA, METHODOLOGY AND RESULTS OF STUDY 

A. Data and Methodology 

Assuming that the characteristic consumption behavior of 
costumers is different in weekdays and weekends, within the 
scope of this study, only weekdays’ day-ahead electricity prices 
of Turkish day-ahead market are taken into account. It is 
assumed that investor (Generation Co.-GenCo) has a daily 
investment horizon. Prices for two years period between 28th of 
April, 2014 and 24th of April, 2016 are used as an historical 
database. All prices in Turkish Liras (520 data for each of the 
24 hour, total 12480 data) are converted to EUR (€) by using 
related daily exchange rates declared by the Central Bank of the 
Republic of Turkey.   

There is very high level of positive correlations between the 
hourly electricity market prices of same weekdays (see Table 
I). The correlations between weekdays’ same hourly electricity 
market prices are changing between 0.6170-0.8024 and the 
average of them is equal to 0.7320. Representative graphic of 
average hourly electricity prices for a given period of time can 
be seen in Fig. 4. This shape is very characteristic and moreover 
it has a very high positive correlation with the five days 
consumption curve in Fig. 5 that reflects the consumption 
characteristics of customers. 

 
TABLE I 

CORRELATION MATRIX FOR WEEKDAYS  

ρ Mon Tue Wed Thu Fri 

Mon 1 - - - - 

Tue 0.7974 1 - - - 

Wed 0.7181 0.8024 1 - - 

Thu 0.6592 0.7316 0.7882 1 - 

Fri 0.6170 0.7096 0.738 0.7582 1 
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Fig. 4 Average hourly prices 
 

 

Fig. 5 Electricity consumption between 10th -14th of October, 2016 
 

Rate of return concept of electricity markets is different from 
the other exchange markets. Normally rate of return for a stock 
market asset is calculated with division of price difference of an 
asset for a period to the value of asset at the beginning of this 
period. If investment period is short there is no need for 
adjustment for return but for long periods some adjustment 
mechanism (inflation) can be used [10]. Rate of returns in this 
study are calculated by using previously experienced 
approaches applied in this field: Market prices are normalized 
by the fixed generation cost for electricity [5], [11]–[13], [18], 
[28].  

In the real life, the generation cost for electricity depends on 
so many factors: The age of plant, the efficiency of the power 
plant, technology, maintenance procedures, operation 
conditions, weather conditions (temperature differences, 
humidity, pressure etc.), and the quality of human resources, 
etc. Actually, the changes in generation costs can happen on a 
daily, weekly, and/or seasonal basis. In fact, the generation cost 
of a power plant is assumed strictly confidential and 
commercially sensitive information in electricity market 
environment. It cannot be disclosed by GenCos. Under the 
assumption of very short term investment period, generation 
cost of electricity is assumed constant and 35 €/MWh for the 
purpose of this study.   

The hourly rate of returns for the day-ahead electricity 
market are calculated as: 

 

, , ⁄ , 1,2, … ,520        (18) 
 

,

,

⋮
⋮

,

,

,

,
⋮
⋮

,

, ……… ,

,

,
⋮
⋮

,

       (19) 

 
where rn,m indicates the hourly rate of returns against an,m hourly 
weekdays’ spot prices for nth hour of mth day for the given two 
years period. Here, Ck is constant and equal to 35 €/MWh. The 
rate of return vectors for nth hour represents rn as seen in (19). 
The average rate of returns and related standard deviations for 
risky assets are calculated as: 
 

1 520⁄ ∑ ,         (20) 
 

∑ , 520 1        (21) 

 
Statistical data obtained after conducting calculations in 

(18)-(21) are demonstrated below (see Table II). 
 

TABLE II 
HOURLY ELECTRICITY RETURNS AND DISTRIBUTION CONSTANTS 

Hour Mean Standard Deviation Skewness Excess Kurtosis 

1 38,27% 38,24% -0,239 0,796 

2 22,20% 42,60% -0,616 1,191 

3 5,00% 45,72% -0,294 0,323 

4 -8,73% 47,10% -0,154 -0,304 

5 -10,98% 45,50% -0,235 -0,175 

6 -7,72% 42,80% -0,184 0,260 

7 1,21% 43,84% -0,392 0,618 

8 29,46% 37,72% -0,412 1,718 

9 61,06% 36,19% -0,426 0,152 

10 75,27% 32,55% -0,771 1,160 

11 76,35% 33,65% -0,533 2,166 

12 77,08% 32,41% -0,660 0,004 

13 60,70% 40,69% -0,447 -0,192 

14 66,60% 37,47% -0,421 -0,520 

15 71,31% 35,72% -0,461 -0,556 

16 68,47% 36,22% -0,384 -0,621 

17 67,79% 37,03% -0,354 -0,655 

18 60,95% 41,67% -0,156 -0,432 

19 53,88% 38,94% -0,134 -0,422 

20 50,54% 35,95% 0,151 -0,509 

21 49,13% 34,42% 0,299 -0,518 

22 42,53% 37,19% 0,266 -0,473 

23 43,98% 39,31% -0,100 -0,174 

24 31,41% 43,92% -0,293 0,376 

  
Under normal circumstances, skewness and excess kurtosis 

for a normal distribution should be equal to “0”. In addition, as 
seen the histograms of some of the hours are demonstrated in 
Fig. 6 and they are not only different from normal distribution 
but also different from each other’s. Except 20, 21, and 22nd 
hours, the return distribution of all other hours have longer left 
tails (Skewness is negative) and the mass of the distributions 
are concentrated on the right of the figures.  
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Fig. 6 Histograms for electricity returns  

B. Case Studies 

Day–ahead hourly weekdays’ electricity market prices of the 
Turkish electricity market from 28th of April, 2014 to 24th of 
April, 2016 are assumed data interval for this study. Each of the 
24 hours of a weekday is assumed as a separate risk asset [5], 
[12], [13], [18], [28]. Bilateral contracts (forward etc.) under the 
guarantee of a clearing house or other similar guarantee 
mechanisms are assumed as risk free assets or fixed price assets 
for electricity markets [13]. 3 main scenarios were formed and 
they are listed as Case a, Case b, and Case c. 
 Case a: Portfolio optimization with 24 risky assets, 
 Case b: Portfolio optimization with 24 risky assets and 

upper investment constraints, 
 Case c: Portfolio optimization with 24 risky assets, 1 risk 

free bilateral contract, and upper investment constraints, 
In each case, 7 portfolio optimization solutions are obtained: 

according to Benchmark portfolio (equally weighted portfolio), 
Mean-variance approach, VaR (delta-normal), VaR (historical 
simulation). Results of the portfolio solutions obtained via VaR 
are compared to the others based on their Sharpe and Treynor 
Ratio performances and the solution are evaluated. The 
assumptions of study are listed as: 
 There is no transaction cost and tax. 
 Investor has a one-day investment horizon (electricity 

selling). 
 Generation cost of electricity is constant (35 €/MWh).  
 Market is deep enough and it is not affected by the amount 

of electricity offered by the investor. 
 Rate of return for a risk-free asset is assumed as 15% 

(approximately one third of average returns of 24 hours). 
so, that bilateral contract price is taken 40.25 €/MWh.  

 Bids can be divided into infinitesimal parts. 
 All bids will be bought by market. 
 Investors are rational and prefer less risky portfolio at the 

same level of return, and highest return at the same level of 
risk. 

 There is no congestion for transmission. 
 Generation units have 100% availability for proposed 

hours. 
 Rate of returns have normal distribution (it is not a 

necessary condition for historical simulation of VaR 

application). 
 Generation units are flexible to operate at every level of 

generation without efficiency lost. 
The credentials and parameters of the empirical case studies 

are demonstrated in Table III. 
 

TABLE III 
CASE STUDY CREDENTIALS 

Topic Case Value 

Type of Power Plant Hydraulic 

Installed capacity 250 MWe 

Number of units 5x50 MW 

Total available electricity energy 2500 MWh 

Investment period 1 day (weekday) 

Generation cost 35 €/MWh 

Risk-free rate of return 15% 

Bilateral contract price 40.25 €/MWh 

Weekdays for electricity selling 
Monday, Tuesday, 

Wednesday, Thursday, 
Friday (5 days) 

Market Data 
Turkish day-ahead electricity 

Spot market prices (from 
April 28, 2014 to April 24, 2016) 

Number of risky assets 24 

Number of risk-free assets 1 

Upper investment constraint 
10% for risky assets 

40% for risk-free asset 

Optimization Methods 

Equally weighted portfolio, 
Mean-variance (A=3) 
Mean-variance (A=7) 

VaR (5%) 
VaR (1%) 

VaR Historical (5%) 
VaR Historical (1%) 

Performance Method Sharpe Ratio, Treynor Ratio 

 
Hourly Turkish day-ahead electricity market prices are 

converted to the rate of return vectors. 24 risky assets have been 
produced as seen in Table II. A covariance matrix with 
dimensions 24x24 is produced by using the rate of return 
vectors of each asset. Covariance matrix is used in Mean-
variance and VaR computations. Equally weighted portfolio is 
assumed as a benchmark market portfolio.   

C. Results of Study 

In optimization computations “MatLab” tool was used with 
below mentioned “options” parameter settings and ‘interior-
point’ algorithm was used to minimize ‘fmincon’ object 
function: 

 
                    TolCon: 1.000000000000000e-06 
                    TolFun: 1.000000000000000e-06 
                      TolX: 1.000000000000000e-10 
            FinDiffRelStep: 1.490116119384766e-08 
               FinDiffType: 'forward' 
 
MS-Excel was used for table formations and graphical 

demonstrations.  
In Case a, there are 24 risky assets, no upper investment 

constraints and no risk-free asset. Weighting percentages of 
portfolio optimization results and performance evaluation 
results are demonstrated in Tables IV and V respectively. 
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TABLE IV 
WEIGHTING PERCENTAGES OF PORTFOLIO SOLUTIONS FOR CASE A 

HOUR 
Equally 
Weight 

MV 
A=3 

MV 
A=7 

VaR 
5% 

VaR 
1% 

HVaR 
5% 

HVaR 
1% 

1 4.17 - - - - 0.11 1.22 

2 4.17 - - - - 0.08 0.31 

3 4.17 - - - - 0.04 0.17 

4 4.17 - - - - 0.03 0.13 

5 4.17 - - - - 0.03 0.12 

6 4.17 - - - - 0.03 0.14 

7 4.17 - - - - 0.04 0.18 

8 4.17 - - - - 0.12 0.27 

9 4.17 - - - - 0.07 2.09 

10 4.17 24.76 38.16 34.73 39.61 29.75 9.65 

11 4.17 - - - - 16.30 22.88 

12 4.17 75.23 61.84 65.26 60.38 37.61 10.79 

13 4.17 - - - - 0.30 0.88 

14 4.17 - - - - 0.10 2.39 

15 4.17 - - - - 10.17 32.11 

16 4.17 - - - - 0.21 2.36 

17 4.17 - - - - 0.17 1.55 

18 4.17 - - - - 0.09 0.53 

19 4.17 - - - - 4.23 0.70 

20 4.17 - - - - 0.17 2.16 

21 4.17 - - - - 0.14 3.50 

22 4.17 - - - - 0.08 1.34 

23 4.17 - - - - 0.07 4.01 

24 4.17 - - - - 0.05 0.52 

 
TABLE V 

PERFORMANCE EVALUATION OF PORTFOLIOS IN CASE A 

HOUR Return Std.Dev. VaR 
Sharpe 
Ratio 

Treynor 
Ratio 

1d 
Test 

Eq. Weighted 
Portfolio 

0.4274 0.3338 - 0.8310 0.2774 0 

Mean-variance 
Port. (A=3) 

0.7663 0.3167 - 1.9460 0.7386 115 

Mean-variance 
Port. (A=7) 

0.7639 0.3148 - 1.9501 0.7369 9 

VaR Portfolio 
 (5%) 

0.7645 0.3152 0.2461 1.9496 0.7373 8 

VaR Portfolio 
 (1%) 

0.7636 0.3147 -0.047 1.9498 0.7366 15 

Historical Sim. 
 VaR (5%) 

0.7430 0.3171 0.2345 1.8701 0.6860 2 

Historical Sim. 
 VaR (1%) 

0.6861 0.3263 0.0446 1.6430 0.5782 1 

 
According to the optimal portfolio solutions of 7 

methodological approach: Mean-variance (for A=3 and A=7) 
and VaR (5% and 1% based on normal distributions) are 
produced very similar results and their solutions include only 
10th and 12th hours in their portfolios with different weighting 
ratios. Historical VaR approach is not based on normal 
distribution assumption and it takes into account all historical 
combinations of possible portfolios. There are 520 historical 
data so that HVaR (5%) tries to maximize 27th lowest historical 
value of portfolio while HVaR (1%) tries to maximize 6th 
lowest historical value of portfolio. As seen from Table IV, the 
increment in confidence interval causes dramatic change in 
optimal portfolio solutions. On the other hand, 10th, 11th, 12th, 
and 15th hours have very significant weights in HVaR solutions. 

By applying integer programming weighting percentages less 
than 1% can be adjusted to get more clear solution. 

As to performance of portfolios, Sharpe and Treynor ratios 
are used to measure backward performances of optimal 
portfolios and real market data set between 25th of April and 
26th of October (this is the test period that is not included in the 
analysis but it covers 124 business days after two years 
historical data used in analysis). According to performance 
results Sharpe and Treynor ratio performances of Mean-
variance and VaR (based on normal distribution) are very close 
and better than others. Mean-variance with A=7 has the best 
Sharpe performance ratio while Mean-variance with A=3 has 
the largest Treynor performance ratio and the highest rate of 
return. Performance of portfolios are also compared by using 
real market data that belongs to following 124 business days 
period. The best performing results of each day was determined 
and methods were scored based on this. It is seen that mean-
variance (with A=3) has obtained the best in 115 of 124 days. 
Even though there is not normal distribution in historical data, 
the methods based on this assumption are found very 
successful.     

In Case b, there are 24 risky assets with an upper investment 
constraints and no risk-free asset. Weighting percentages of 
portfolio optimization results and performance evaluation 
results are demonstrated in Tables VI and VII respectively. 

 
TABLE VI 

WEIGHTING PERCENTAGES OF PORTFOLIO SOLUTIONS FOR CASE B 

HOUR 
Equally 
Weight 

MV 
A=3 

MV 
A=7 

VaR 
5% 

VaR 
1% 

HVaR 
5% 

HVaR 
1% 

1 4.17 - - - - 0.51 3.55 

2 4.17 - - - - 0.29 0.21 

3 4.17 - - - - 0.19 0.18 

4 4.17 - - - - 0.14 0.14 

5 4.17 - - - - 0.14 0.14 

6 4.17 - - - - 0.14 0.21 

7 4.17 - - - - 0.24 0.21 

8 4.17 - - - - 0.75 0.50 

9 4.17 10.00 10.00 10.00 10.00 8.56 4.42 

10 4.17 10.00 10.00 10.00 10.00 9.41 7.75 

11 4.17 10.00 10.00 10.00 10.00 8.76 9.08 

12 4.17 10.00 10.00 10.00 10.00 9.43 9.31 

13 4.17 10.00 - - - 2.00 1.13 

14 4.17 10.00 10.00 10.00 10.00 8.58 8.73 

15 4.17 10.00 10.00 10.00 10.00 7.85 9.30 

16 4.17 10.00 10.00 10.00 10.00 8.73 8.74 

17 4.17 10.00 10.00 10.00 10.00 8.81 8.89 

18 4.17 10.00 - 8.29 - 6.20 2.71 

19 4.17 - - - - 3.23 4.99 

20 4.17 - 10.00 1.74 10.00 3.04 8.41 

21 4.17 - 10.00 9.96 10.00 7.70 8.46 

22 4.17 - - - - 2.99 1.39 

23 4.17 - - - - 1.67 1.30 

24 4.17 - - - - 0.64 0.26 

 
In Case b, very similar portfolio results are obtained as in 

Case a. When portfolio solution combinations are analyzed, it 
is noticed that 9, 10, 11, 12, 14, 15, 16, and 17th hours are 
common in all solutions even in HVaR results. Depending on 
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the methodology used in optimization, it is seen that some 
diversified solutions are emerging especially in HVaR 
optimizations. Apparently, normal distribution based portfolio 
optimization methods have significant performance over 
historical based ones again. This shows us, even though normal 
distribution is an assumption it works very well.  

 
TABLE VII 

PERFORMANCE EVALUATION OF PORTFOLIOS IN CASE B 

HOUR Return Std.Dev. VaR 
Sharpe 
Ratio 

Treynor 
Ratio 

1d 
Test 

Eq. Weighted 
Portfolio 

0.4274 0.3338 - 0.8310 0.2774 0 

Mean-variance 
Port. (A=3) 

0.6856 0.3402 - 1.5744 0.5555 79 

Mean-variance 
Port. (A=7) 

0.6636 0.3259 - 1.5759 0.5508 29 

VaR Portfolio 
 (5%) 

0.6722 0.3307 0.1283 1.5791 0.5533 15 

VaR Portfolio 
 (1%) 

0.6636 0.3259 -0.094 1.5761 0.5508 29 

Historical Sim. 
 VaR (5%) 

0.6424 0.3301 0.1610 1.4917 0.5169 0 

Historical Sim. 
 VaR (1%) 

0.6329 0.3284 0.0112 1.4705 0.5082 3 

 
TABLE VIII 

WEIGHTING PERCENTAGES OF PORTFOLIO SOLUTIONS FOR CASE C 

HOUR 
Equally 
Weight 

MV 
A=3 

MV 
A=7 

VaR 
5% 

VaR 
1% 

HVaR 
5% 

HVaR 
1% 

1 4.17 - - - - 0.22 1.18 

2 4.17 - - - - 0.18 0.18 

3 4.17 - - - - 0.14 0.16 

4 4.17 - - - - 0.10 0.13 

5 4.17 - - - - 0.09 0.13 

6 4.17 - - - - 0.14 0.19 

7 4.17 - - - - 0.21 0.19 

8 4.17 - - - - 0.56 0.38 

9 4.17 10.00 4.03 0.09 5.45 1.25 1.19 

10 4.17 10.00 10.00 10.00 10.00 9.23 2.13 

11 4.17 10.00 10.00 10.00 10.00 9.01 7.75 

12 4.17 10.00 10.00 10.00 10.00 9.66 8.81 

13 4.17 9.99 - - - 0.53 0.62 

14 4.17 10.00 - - - 2.32 4.99 

15 4.17 10.00 10.00 10.00 10.00 7.07 8.68 

16 4.17 10.00 10.00 9.99 5.56 3.78 4.98 

17 4.17 10.00 10.00 9.92 8.98 4.57 6.77 

18 4.17 10.00 - - - 3.03 1.12 

19 4.17 - - - - 2.50 1.49 

20 4.17 - - - - 5.74 4.10 

21 4.17 - - - - 3.31 3.96 

22 4.17 - - - - 1.12 0.74 

23 4.17 - - - - 0.42 0.69 

24 4.17 - - - - 0.35 0.22 

Rf - - 35.97 40.00 40.00 34.56 39.23 

 

As to Sharpe and Treynor ratio performance of portfolios, 
VaR (5%) has the best Sharpe ratio while Mean-variance (for 
A=3) has the best Treynor ratio. Performance of portfolios are 
also compared by using real market data that belongs to 
following 124 business day period. The best performing results 
of each day was determined and methods were scored based on 
this period. It is seen that mean-variance (with A=3) has 

obtained the best in 79 of 124 days. Average rate of returns of 
optimal portfolios are located within a few percentages. 
Standard deviations of optimal solutions are also very close to 
each other. HVaR (1%) has the second lowest performance in 
this case same in previous case. 

 
TABLE IX 

PERFORMANCE EVALUATION OF PORTFOLIOS IN CASE C 

HOUR Return Std.Dev. VaR 
Sharpe 
Ratio 

Treynor 
Ratio 

1d 
Test 

Eq. Weighted 
Portfolio 

0.4274 0.3338 - 0.8310 0.2774 0 

Mean-variance 
Port. (A=3) 

0.6856 0.3402 - 1.5744 0.5555 105 

Mean-variance 
Port. (A=7) 

0.5148 0.2095 - 1.7413 0.6226 2 

VaR Portfolio 
 (5%) 

0.4962 0.1970 0.1722 1.7574 0.6315 13 

VaR Portfolio 
 (1%) 

0.4923 0.1951 -0.101 1.7545 0.6277 3 

Historical Sim. 
 VaR (5%) 

0.4854 0.2119 0.1725 1.5828 0.5522 2 

Historical Sim. 
 VaR (1%) 

0.4558 0.1999 0.0730 1.5298 0.5326 0 

         
In Case c, there are 24 risky assets with upper investment 

constraints (40% for risk-free asset and 10% for risky assets) 
and a risk-free asset (40.25 €/MWh bilateral contract). 
Weighting percentages of portfolio optimization results and 
performance evaluation results are demonstrated in Tables VIII 
and IX respectively. 

In the last case study (Case c), again common results are 
obtained with previous cases. Hour 10, 11, 12, 15, 16, and 17 
together with risk-free asset have significant weights in the 
portfolio optimization solutions. Except mean-variance (for 
a=3) solution, all the solutions give place to risk-free asset in 
their optimal portfolio solutions. VaR(5%) has the best Sharpe 
and Treynor ratio. On the other hand, 1 day test results obtained 
using consecutive 124 business days show that Mean-variance 
(for A=3) has the best in 105 of 124 days. Again, normal 
distribution based portfolio optimization methods have 
significant performance over historical based ones. Average 
rate of return for Mean-variance (for A=3) is very high respect 
to other solutions, on the other hand, the standard deviation 
value of it is very high mostly because of absence of risk-free 
asset in the portfolio.   

V. CONCLUSION 

In this paper, Mean-variance, VaR (delta-normal), and VaR 
(Historical Simulations) are applied to Turkish Day-ahead 
electricity market, performance of optimal portfolios have 
measured, and then comparison of methodologies have been 
conducted successfully. 

Two main methodologies widely used in finance literature 
are used in the study. Two year data of Turkish Day-ahead 
market were used for application. Using these data sets, risky 
assets have been created and determined according to an 
empirical electricity cost value (see Table II). A benchmark 
portfolio is determined as an equally weighted portfolio. For 
each of three different cases, 7 portfolio solutions are obtained 
and total 19 optimization codes are run with MATLAB tool. 4 
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of 7 optimal solutions are based on normal distribution 
assumption: Mean-variance (A=3 and A=7) and VaR (5% and 
1%) while 2 of 7 are based on historical simulation, and there 
is one benchmark portfolio.  

In all cases Mean-variance (for A=3) is produced the best 
performance results according to one day test period. On the 
other hand, with increase in A from 3 to 7 (to a more risk 
aversion level) performance of Mean-variance optimal 
portfolio decrease dramatically even though Mean-variance 
(A=7) has better Sharpe Ratio performance. In Case a, and b, 
Mean-variance (A=3) has the highest Treynor Ratio scores. 

As seen from Table IX, adding a risk free asset to portfolio 
changes the deviation of portfolio based on the portion of risk 
free asset. With the decrease of average standard deviation of 
overall portfolio, σ and β values of portfolio solutions decrease 
and the value of Sharpe and Treynor Ratios start to increase. 
Financial decision makers should be careful about using these 
performance indicators for the comparison of performances of 
portfolios including risk free assets. It is understood that using 
these indicators for comparison of similar portfolio structure 
produces better comparison results. 

During application of HVaR, it is noticed that number of data 
is very important. Increase in number of data or decrease in 
confidence integral will provide more accurate and clear results. 

By using VaR, in two of the cases better Sharpe Ratio and in 
one of the cases better Treynor Ratio results have been 
obtained; however, Mean-variance (for A=3) has produced 
better results in 1 day tests in all cases.    

As a result, as seen from Tablea IV, VI, and VIII; normal 
distribution based methodologies are produced very similar and 
close optimal portfolio solution results (there are some 
differences). According to the all of the three performance 
measures, normal distribution assumption based methods have 
an obvious superiority over historical simulation based VaR in 
all cases. This shows that even though returns of risky assets do 
not have normal distribution, normal distribution assumptions 
are working very well in our cases. 

As to future directions for VaR application on electricity 
markets; effect of different confidence level on the performance 
of VaR optimization for electricity markets can be further 
evaluated to improve the performance methodology against 
other methods.   
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