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FEM Simulation of Triple Diffusive
Magnetohydrodynamics Effect of Nanofluid Flow
over a Nonlinear Stretching Sheet
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Abstract—The triple diffusive boundary layer flow of nanofluid
under the action of constant magnetic field over a non-linear
stretching sheet has been investigated numerically. The model
includes the effect of Brownian motion, thermophoresis, and cross-
diffusion; slip mechanisms which are primarily responsible for the
enhancement of the convective features of nanofluid. The governing
partial differential equations are transformed into a system of
ordinary  differential equations (by wusing group theory
transformations) and solved numerically by using variational finite
element method. The effects of various controlling parameters, such
as the magnetic influence number, thermophoresis parameter,
Brownian motion parameter, modified Dufour parameter, and Dufour
solutal Lewis number, on the fluid flow as well as on heat and mass
transfer coefficients (both of solute and nanofluid) are presented
graphically and discussed quantitatively. The present study has
industrial applications in aerodynamic extrusion of plastic sheets,
coating and suspensions, melt spinning, hot rolling, wire drawing,
glass-fibre production, and manufacture of polymer and rubber
sheets, where the quality of the desired product depends on the
stretching rate as well as external field including magnetic effects.

Keywords—FEM, Thermophoresis, Diffusiophoresis, Brownian
motion.

1. INTRODUCTION

HERMAL properties of liquids play a decisive role in

heating as well as cooling applications in industrial
processes. Commonly used heat transfer fluids such as water,
ethylene glycol, toluene, or oil have inherently poor thermal
conductivity which makes them inadequate for ultra-high
cooling applications. A recent technique to improve the
thermal conductivity of these fluids is to introduce nanosized
metallic particles such as aluminum, iron, gold, copper, or
their oxides, and carbides in the fluids by suspension.

Masuda et. al. [19] and Choi et.al. [20] have affirmed that
the addition of a very small amount of nanoparticles (usually
below 5%) can provide remarkable improvement in thermal
conductivity and heat transfer coefficient as compared to the
base fluid. The term nanofluids was proposed by Choi and
Eastman [21] to describe this new class of nanotechnology—
based heat transfer fluids that exhibit thermal properties
superior to those of their base fluids or traditional particle
fluid suspensions. A comprehensive study of convective
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transport in nanofluids was made by Buongiorno [2]. He
discussed the reasons of heat transfer enhancement for
nanofluids and concluded that Brownian diffusion and
thermophoresis are two important nanoparticle/base-fluid slip
mechanisms. The flow over a stretching sheet has important
engineering applications, especially in the field of metallurgy
and chemical engineering processes that involve cooling of
continuous strip or filament by drawing them through a
dormant fluid. Sakiadis [16] initiated a study in stretching
sheet by investigating the boundary layer flow due to a sheet
issuing with constant speed from a slit into a fluid at rest. An
extension to this problem was made by Crane [22]. After this
pioneering work, analysis of flow, and heat transfer over a
stretching surface has drawn considerable attention and have
been studied in recent years [1], [8]-[10]. All the above
mentioned studies were performed by taking into account
either a constant value for the velocity wall or a linearly
stretching sheet problem (i.e., uy(x)= ax). However, the
stretching of the sheet may not necessarily be linear. With this
idea in mind, flow over a non-linear stretching sheet was
analysed by many researchers. Vajravelu [17] numerically
discussed the viscous flow over a stretching sheet moving with
nonlinear velocity (i.e., uy(x)=ax"). He computed numerical
solutions for various values of power law index n. Cortell [3]
extended this model by considering two different types of
thermal boundary conditions on the sheet, constant surface
temperature, and prescribed surface temperature. Kumaran
and Ramaniah [8] studied the boundary layer fluid flow
where, the stretching sheet is assumed to be quadratic. Kechil
and Hashim [6] derived analytic solutions for MHD flow over
a non-linear stretching sheet by Adomian decomposition
method. Hamad et. al. [5] provided the similarity solutions to
flow and heat transfer of nanofluid over non-linear stretching
surface. Ziabakhsh et al. [23] studied the impact of chemical
reaction on the flow over a non-linear stretching sheet
embedded in porous medium. Narayana et al. [12] and
Vajravelu et al. [18] studied the nanofluid flow over a
nonlinear stretching sheet. Goyal and Bhargava [4] studied the
thermodiffusion effects on boundary layer flow of nanofluids
over a power law stretching sheet. In such problems,
magnetohydrodynamics (MHD) effects are considered
important since these allow for control of the rate of cooling in
order to achieve a final product with the desired characteristics
as well as the separation of molten metals from non-metallic
impurities. The MHD flow over a moving plate is of interest
due to its increasing importance in a great deal of processing
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industries such as petroleum engineering, metallurgy industry,
chemical engineering, and so on. Researchers have studied the
MHD effects on fluid flow in the past [11], [13], [14].

Inspired by the above investigations, authors contemplate to
study the heat and mass transfer for the flow of nanofluid over
a non-linear stretching sheet with thermodiffusion effects
under constant magnetic field. To the best of our knowledge,
FEM simulation of this problem has not been done so far.

II. MATHEMATICAL ANALYSIS

A steady state two dimensional natural convection
boundary layer flow of Al,Os-water nanofluid on a nonlinear
stretching sheet with variable magnetic field is considered.

The sheet is saturated in a medium which is a binary fluid
with dissolved solutal and containing nanoparticles in
suspension. The nanoparticle concentration by volume is 0.04.
The nanoparticles and fluid phase are assumed to be in
thermal equilibrium state. The x-axis is assumed to be in the
direction of the flow and the y-axis to be perpendicular to it.
The x-axis is taken to be in horizontal direction. The plate is
considered at y=0. In its plane, the sheet is stretched with the
velocity U= u,(x)=ax™ (where m is the nonlinear stretching
parameter, a>0 is the constant acceleration parameter). The
temperature at the sheet (Ty) is larger than the ambient
temperature (T.). The pressure gradient and external forces
are neglected.

For incompressible fluid flow, with the boundary layer
approximation, the field equations as derived by Buongiorno
[2] and Khan et. al. [7] representing conservation of mass,
momentum, thermal, solute, and nanoparticles, can be written
as

au ov
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ou ou_ du oB]
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The boundary conditions for the velocity, temperature, and
concentration fields are given as follows:

u=u,(x),v=0T =T,(x),C=C,(x),p=4¢,(x)at y=0
u=0,T=T,C=C_,g=¢ asy—>x (6)

where the subscripts w and oo indicate the conditions at the
wall and at the outer edge of the boundary layer, respectively.

(u,v) are the velocity components in (X, y) directions, pr is
the density of base fluid, pj, is the nanoparticle density, p is
the dynamic viscosity of the base fluid, v is the kinematic
viscosity of the base fluid, o is the electrical conductivity of
the base fluid, By is the strength of magnetic field, T is the
fluid temperature, a,, is the thermal diffusivity, T (=
(pC)p / (pC)f) is the ratio of effective heat capacity of the
nanoparticle material to heat capacity of the fluid, is the
nanoparticle volume fraction, Dy and Dt are the Brownian
diffusion coefficient and the thermophoresis diffusion
coefficient, Dg is the solutal diffusivity, Drc and D¢t are the
Dufour and Soret type diffusivity, T, is the free stream
temperature, C, is the specific heat at constant pressure, and g,
k are the acceleration due to gravity, the thermal conductivity
of the fluid, respectively. The last term on the right-hand side
of the energy equation (3) and diffusion equation (4) signifies
the diffusion-thermo effect and the thermal-diffusion effect,
respectively.

The last term of right hand side of (2) represents the
magnetic flux. The functional form of magnetic field is as

m—1
By(x) = 2x 2z . The new set of dimensionless parameters
defined to transform (1)-(5) and (6) into a set of non-
dimensional equations are:
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The continuity equation is automatically satisfied. The
transformed momentum, energy and concentration equations
together with the boundary conditions can be written as

2m
S"+ss"———s"”—Ms'=0 (8)
m+1

i49"+s6"+ Nb@' f '+ Ntd”+Ndy"=0 (9

Pr
y"+Lesy'+LdO"=0 (10)
f 1 Lnsf 4L g an
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And the corresponding boundary equations are transformed to

5(0)=0,s'0)=16(0)=1Ly(0)=1,f(0)=1, at =0

12
5'(00) =0,6(0) >0, y(0) >0, f (0) >0, as 7 —>o0 (12)

where primes denote differentiation with respect to 1, and the
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six parameters appearing in equations are defined as follows:

pretn=le= 1d=Lre0u=T.)
a, DB Ds Ds (Cw _Cw)
Nd:DTC(CW‘Cw),M: 8o
v(T,-T.) pra(m+1) (13)
Nb:(pC)pDB(ww—%) t:(pC)pDT(TW—Tw)
(pC);v (p0); T, v

Pr, Ln, Le, Ld, m, M, Nd, Nb, and Nt denote the Prandtl
number, the nanofluid Lewis number, regular Lewis number,
Dufour-solutal Lewis number, the stretching parameter, the
magnetic parameter, modified-Dufour parameter, the
Brownian motion parameter, and the thermophoresis
parameter, respectively.

[II. NUMERICAL IMPLEMENTATION: FINITE ELEMENT
METHOD

The finite element method (FEM) is a computer-based
numerical method, which is used for solving various practical
engineering problems that occur in many fields such as, in
heat transfer, fluid mechanics [15], chemical processing [24],
rigid body dynamics [25], solid mechanics [26] and so on. It is
one the most powerful method in its application to real-world
problems that involve complicated physics, geometry, and/or
boundary conditions. As the name suggests, the basic concept
lies in dividing the whole domain into smaller elements of
finite dimensions. The governing differential equations are
solved by transforming them into a matrix equation.

The given domain is viewed as a collection of subdomains,
and over each subdomain the governing equation is
approximated by any of the traditional variational methods.
The reason behind finding approximate solution on the
subdomains is that it is easier to represent a complicated
function as a collection of simple polynomials. The essential
step is to assume the piecewise continuous function for
obtaining the solution. We have a set of simultaneous partial
differential equations, given in (8)-(11), with (12) representing
the boundary conditions. For the solution of these equations,
assume that

s'=h (14)
After substituting this, the system of (8)-(11) is reduced to

h'ssh'——2"_h? _Mh =0 (15
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and the corresponding boundary conditions are as follows

s(0)=0,h(0)=1,0(0)=1Ly(0)=1,f(0)=1, at =0 (19)
h(0) =0,8(0) — 0,7(0) —> 0, f () >0, as 17 >

The weighted residual formulation of the given differential
equations over the typical linear element denoted by Qe
having coordinates (ne, ne+1) is given by

Tes1
[ W {s'=h}dn=0

e
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e
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e Nb (20)
where W, W,, W3, Wy, and W5 are arbitrary test functions.
They can be considered as functions in s, h, 6, y, and f,
respectively.

In our computation, the shape functions for a typical
element are taken as quadratic element. The finite element
model thus formed is given by

0] e (6] (6 (k)77 [
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where [K,,,] and [b,,] (m, n=1,2,3.,4,5) are defined as:

435



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934

Vol:10,

Mes1 81//
1 _ i 12 _
Kij = ’_7[ Vi on dn, Kij = ;7[

21 23 24 25
K2 =K =K¥* =KX =0

Mes1

No:9, 2016

13 14 15
‘//i‘//jdﬂaKij =Kij =Kij =0

Mes1 al// a Me+1 al// Me+1 Tes1
K> =— '—d s—Ldn - hy dnp —M d
! ﬂj on 0on I on (. IV/' el ){V/'WJ g
17,
e+1 al// aw
31 _ 32 _ 35 _ 34 ]
Kij _Kij _Kij _O’Kij =-Nd 8—77'%(177
1,
Mes1 a Me+1 _ a ) Met1 - 8 )
Ky =—— [ g+ [y s idnnb [ o, T2y
Pr ;> on 0dn o on b
Me+1 6l//
+Nt 0'——1d
f vi8'5 Edn
Nt Tes1 al// 8(//
S 152 _ oS4 53 _ j
Kij _Kij _Kij _O’Kij __Nb P : P dn,
e 77 77
7 7
e+l 6 e+l _a ]
KSS——I V/' 77+Lﬂ_[1//§ d dn
on on " on
Te+1 : a )
K = Ky =K =0k, =—Ld [ 1Yy,
. On on
Mes1 : a ) Mes1 _ (22)
i=- %ﬂdn+Le y,s—dn
. on on n
where
_ 3 _ 3 _ 3 _ 3 _
szzsil/jl,s'zzsl%,h:zhll/,”hv:z i%
i=l i=1 n i-l - on
(23)
3 35— 0
Q' = Z 8_l//’]/ zyll//” Z]/I Gl/jl’fvzz I%
i=1 i=1

For quadratic element case, the entire flow domain is
divided into a set of 5000 quadratic elements. As every
element is three-noded; therefore, the total number of nodes in
domain are 10,001, and hence, a system of 50,005 nonlinear
equations are obtained. An iterative scheme must be used to
solve the system of equations. Gauss elimination method is
used to solve the system while maintaining the accuracy of
0.00002. The relative difference between the current and
present iterations is used as the convergence criterion. The

integrations are solved by using the Gaussian quadrature
method. MATLAB is used for executing the code of the
algorithm. Multiple Regression Estimates (MRE) can be used
for the comparison of various parameters namely, Nur, Shr,
and Shrn. This is proposed in the next paper.

IV. RESULTS AND DISCUSSIONS

To provide a physical insight into problem, numerical
computations have been conducted for different values of
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parameters that describe flow characteristics. The results are
presented both in tabular form and graphically. The system of
non-linear ordinary differential equations together with the
boundary conditions are numerically solved by using FEM.

An extensive mesh testing procedure is conducted to
suitably guess the value of n,, (Ilength of domain), ensuring the
grid independence solution of given boundary value problem.
The region of integration 1 is considered from 0 to n,.= 10,
where 1, corresponds to n—oo which lies well outside the
momentum and thermal boundary layer (Table I).

The numerical values of reduced Nusselt number Nur,
reduced local Sherwood number Shr and reduced nanofluid
Sherwood number Shrn is presented in Table II.

From Table II, it can be observed that the magnitude of

heat, regular and nano mass transfer rate is decreasing with the
presence of magnetic parameter M for all values of Prandtl
number Pr and Lewis number Ln. It is interesting to note that
with the nanofluid Lewis number does not follow the same
trend. With the increase in Ln, heat transfer rate decreases
while the regular and nano fluid mass transfer rate increase.
The profiles of all the functions decrease monotonically
with an increase in m. As n—oo, which represents the
characteristic of boundary layer flow, the value reaches to zero
asymptotically. Figs. 1-4 illustrate the effect of magnetic
parameter M on velocity distribution s'(1) temperature profile
0(n), solutal concentration y(n), and nanoparticle
concentration f(n) through the boundary layer regime.

TABLE I
CALCULATION OF NUR, SHR AND SHRN WHEN NB=NT=0.5, ND=0.2, LD=0.1, LN=LE=PR=2.0, M=2, M=2
Step size Nur Nur Nur Shr Shr Shr Shrn Shrn Shrn
Moo= 8 N= 10 Noe= 12 M= 8 M= 10 Noe= 12 M= 8 Ne=10  m.=12

0.2 0.22340  0.22355  0.22358  0.79974  0.79961 0.79968 0.71123 0.71007 0.71014
0.1 021790  0.21806  0.21812  0.80318  0.80305 0.80309 0.71945 0.71829 0.71829
0.04 0.21469  0.21485  0.21489  0.80433  0.80420 0.80425 0.72344 0.72228 0.72229
0.02 021364  0.21379  0.21385 0.80456  0.80443  0.80448 0.72461 0.72345 0.72349
0.01 021311  0.21327  0.21332  0.80464  0.80451 0.80457 0.72516 0.72400 0.72406
0.005 0.21285 0.21301  0.21308 0.80467  0.80454 0.80458 0.72543 0.72426 0.72429
0.002 021178 021285 0.21285 0.80498  0.80467 0.80456 0.72597 0.72442 0.72442
TABLE 11
VARIATIONS IN NUR, SHR AND SHRN WITH PR AND LN WiTH M=0,2 WHEN NB=NT=0.5, ND=0.2, LD=0.1, LE=2.0, M=0.2

Pr Ln Nur Nur Shr Shr Shrn Shrn

M=0 M=2 M=0 M=2 M=0 M=2

0.7 5 0.23493 0.16069 0.93820 0.76778 1.57195 1.38186

15 022901 0.15759 0.93926 0.76833 2.92396 2.72508

25 0.22748 0.15688  0.93962 0.76852  3.83781  3.63819

20 5 020985 0.15513 094554 0.76881 1.65367 1.40920

15 0.18376 0.13680 0.94925 0.77144 3.03136  2.78399

25 0.17762 0.13295 0.95045 0.77226  3.95140 3.70638

50 5 0.05137 0.04313 0.96162 0.77991 1.80158 1.51497

15 0.03262 0.02673 096518 0.78287 3.15331 2.87875

25 0.03078 0.02559 0.99664 0.78385 4.06256  3.79633

Fig. 1 Effect of magnetic parameter M on velocity distribution

Fig. 2 Effect of magnetic parameter M on temperature distribution
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Fig. 4 Effect of magnetic parameter M on solutal concentration

With the presence of magnetic parameter M, the nanofluid
velocity s'(n) tends to decrease. This is because an increase in
Lorentz drag force opposes the fluid motion. On the other
hand, it can be well determined from the table that the
presence of magnetic parameter M leads to an increase in
temperature profile 6(n), solutal concentration y(n), and nano
particle concentration f(n). This lowers the heat, regular, and
nano mass transfer rate between the surface and the nanofluid.
As name suggests, the values of Brownian motion parameter,
Nb describe the strength of Brownian motion (random motion
of particles). The effects of Brownian motion parameter Nb on
the dimensionless heat, regular and nano mass transfer rate is
shown in Figs. 5 (a)-(c). In case of M=0, the obtained profiles
for Nur, Shr, and Shrn are in good agreement with results
reported by Goyal and Bhargava [4].
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Fig. 5 (a) Effect of magnetic parameter M and Brownian motion
parameter Nb on Nur
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Fig. 5 (b) Effect of magnetic parameter M and Brownian motion
parameter Nb on Shr
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Fig. 5 (c) Effect of magnetic parameter M and Brownian motion
parameter Nb on Shrn

With an increase in Nb, the thickness of thermal boundary
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layer increases because of the increased Brownian motion of
nanoparticles, whereas an increase in M leads to an increase in
Lorentz drag force opposing the fluid motion. The combined
effect of increase of both the parameters causes the
temperature to increase, thus reducing the effective heat
transfer (Fig 5 (a)). Figs. 5 (b) and (c) show the effect of
Brownian motion along with the magnetic parameter on
regular and nano mass transfer rate, respectively. With an
increase in Nb, the increased random motion of particles
serves to warm the boundary layer leading to the effective
movement of nanoparticles from the wall of the stretching
sheet to the inactive fluid. This intensifies the particle
deposition away from the fluid, thereby justifying for the
reduced concentration magnitudes (y(n)and f(n)) and an
increase in the regular mass transfer rate Shr and nano mass
transfer rate Shrn.

The diffusion of particles under the effect of a temperature
gradient is termed as thermophoresis. The thermophoresis
parameter Nt is used to gauge this effect. Figs. 6 (a)-(c) show
the effects of thermophoresis parameter Nt on the
dimensionless heat, regular and nano mass transfer rate. Fig. 6
(a) shows the effect of thermophoresis parameter along with
the magnetic parameter on heat transfer rate Nur. The
thermophoretic force generated by the temperature gradient
creates a fast flow away from the stretching surface. The
simultaneous increase of both Nt and M causes an increase in
heat transfer and consequently decreases the heat transfer rate
Nur.

The thermophoretic effect Nt on regular and nano mass
transfer rate can be observed in Fig. 6 (b) and (c). A decrease
in magnetic parameter M supports the fluid flow motion
because of the decrease in Lorentz drag force, causing an
increase in mass flux.
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Fig. 6 (a) Effect of magnetic parameter M and Thermophoresis
parameter Nt on Nur
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Fig. 6 (b) Effect of magnetic parameter M and Thermophoresis
parameter Nt on Shr
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Fig. 6 (c) Effect of magnetic parameter M and Thermophoresis
parameter Nt on Shrn

V. CONCLUSION

In the present paper, we have studied the boundary layer
flow resulting from non-linear stretching of sheet embedded in
a nanofluid, incorporating the effects of thermophoresis and
Brownian motion along with variable magnetic field. The
results can be summarized as follows:

1. Increasing the value of the magnetic parameter M
decreases the momentum boundary layer thickness and
increases the thermal, solutal and nano-mass volume
fraction boundary layer thickness. An external magnetic
fluid gives rise to magnetic body force (i.e. Lorentz drag
force) opposing the fluid motion. By adjusting the
external magnetic field, the heat transfer can be
controlled. Recent development of “smart” cooling
devices is based on this idea.

2. With the increasing value of Brownian motion parameter
Nb and thermophoresis parameter Nt, the local heat
transfer rate and local solutal and nano mass
concentration decrease for an increase in the value of
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magnetic parameter M. As different combinations of
nanoparticles and base fluids have different values for
these parameters (i.e. Nb and Nt), thus having different
heat transfer rates. This idea can be used for customizing
the heat transfer in stretching sheet problems.

With an increase in nanofluid Lewis number Ln, heat
transfer rate decreases while the regular and nano fluid
and mass transfer rate increases. Ln defines the ration of
thermal diffusivity to mass diffusivity. It is used to
characterize fluid flow when there is simultaneous heat
and mass transfer by convection. With an increase in Ln,
the Brownian diffusion decreases, hence forcing the
concentration to decrease.

The magnitude of heat, regular, and nano mass transfer
rates decreases with the increase in the magnetic
parameter M because of an increase in Lorentz drag force.
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