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Abstract—This paper discusses the propagation of sound waves in 

air, specifically in narrow rectangular pathways of an occluded-ear 

simulator for acoustic measurements. In narrow pathways, both the 

speed of sound and the phase of the sound waves are affected by the 

damping of the air viscosity. Herein, we propose a new finite-element 

method (FEM) that considers the effects of the air viscosity. The 

method was developed as an extension of existing FEMs for porous, 

sound-absorbing materials. The results of a numerical calculation for a 

three-dimensional ear-simulator model using the proposed FEM were 

validated by comparing with theoretical lumped-parameter modeling 

analysis and standard values.  

 

Keywords—Ear simulator, FEM, simulation, viscosity. 

I. INTRODUCTION 

 conventional acoustic-analysis approach is used 

predominantly for relatively large structures and 

equipment. There are very few methods for analyzing the 

sound-propagation of equipment with a small volume, such as 

an occluded-ear simulator used for measurements of insert-type 

earphones, which was standardized by the international 

standard, IEC60318-4: Occluded-ear simulator for the 

measurement of earphones coupled to the ear by means of ear 

inserts (International Electro technical Commission, or IEC). 

Fig. 1 shows a space model of an inside-of-ear simulator. This 

ear simulator is often used for earphone and headphone 

measurements, and has very narrow pathways to control the 

acoustic resistance. 

In narrow sound pathways, the speed and phase of the sound 

waves are affected by the damping of the air viscosity. 

Therefore, to conduct an accurate acoustic analysis of small 

equipment such as an ear simulator, the effect from the air 

viscosity should be considered, which is not typically done in a 

conventional acoustic analysis. In the present study, we 

propose a new finite-element method (FEM) that considers the 

effects of air viscosity in narrow areas of sound pathways. This 

method was developed as an extension of the acoustic FEMs 

proposed by Biot [1], [2] and Yamaguchi [3]–[5] for porous, 

sound-absorbing materials. 

We attempted a numerical analysis in the frequency domain 

using our acoustic solver, which utilizes the proposed FEM [6]. 
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For the numerical calculations, we used an occluded-ear 

simulator model having narrow rectangular cross sections. We 

compared the results obtained by the proposed FEM with those 

of a traditional lumped-parameter modeling (LPM) analysis 

and the international standard values of IEC60318-4. 

 

 

Fig. 1 Space model of inside-of-ear simulator 

 

 

Fig. 2 Direct Cartesian coordinate system and constant strain element 

II. NUMERICAL PROCEDURES 

We developed a new FEM that incorporates the air viscosity 

at small amplitudes. Fig. 2 shows a direct Cartesian coordinate 

system, nodes, and a constant strain element of a 

three-dimensional (3D) tetrahedron. Here, ux, uy, and uz are the 

displacements in the x, y, and z directions, respectively, at 

arbitrary points in the element. In this case, the strain energy U
~

 

is expressed as 
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where E is the bulk modulus of the air elasticity, and u

．
 is the 

time derivative of the particle displacement. Therefore, the 

kinetic energy T
~

 is expressed as 
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where ρ is the effective density of the element, and T represents 

a transposition. The viscosity energy D
~

 of a viscous fluid is 

expressed as 

 

FEM Analysis of Occluded Ear Simulator with Narrow 

Slit Pathway 
M. Sasajima, T. Yamaguchi, M. Watanabe, Y. Koike 

A



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:9, 2015

1610

 

 

{ } { }dxdydzTD
T

e
Γ= ∫∫∫ 2

1~ ,                       (3) 

 

where { }T  is the stress vector attributable to the viscosity. The 

relationship between the particle velocity and stress can be 

expressed as 
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where u

．
x, u

．
y, and u

．
z are the particle velocities in the x, y, and z 

directions at arbitrary points in the element, respectively, and μ 

is the coefficient of viscosity of the medium. In the above 

equation, ｛Γ｝is the strain vector. Next, we considered the 

formulation of a motion equation of an element for an 

acoustic-analysis model used to consider the viscous damping. 

The potential energy V
~

 is expressed as 
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e
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where { }P  is the surface force vector, ｛Ｆ｝is the body force 

vector, and ∫Γ
Γd  is the integral of the element boundary. The 

total energy E
~

 is derived using 

 

VTDUE
~~~~~

−−+= .                              (6) 

 

Using Lagrange’s equations, we obtain the following 

discretized equation for an element: 
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where 
eiu  is the i

 th
 component of the nodal displacement vector 

{ }eu , and eiu&  is the i
 th

 component of the nodal 

particle-velocity vector { }eu& . We obtain the following 

discretized equation of an element by substituting (1)–(5) into 

(7):  

 

[ ]{ } [ ]{ } [ ]{ } { }eeeeeee fuCjuKuM =++− ωω 2 .       (8) 

 

Here, we use { } { }ee uju ω=&  because a periodic motion with 

angular frequency ω is assumed. In addition, [Me], [Ke], [Ce], 

and ｛fe｝are the element-mass matrix, element-stiffness matrix, 

element-viscosity matrix, and nodal force vector, respectively. 

All nodal particle displacements can be calculated by solving 

(8). In addition, the strain and sound pressure of all elements 

can be calculated from the nodal particle displacements. 

III. CALCULATION 

A. Damping Analysis using Proposed 3D FEM 

To verify our method, we conducted an acoustic-damping 

analysis of inside the ear simulator. As shown in Fig. 3, the 

model used is a half-solid and is symmetrical about the center 

plane, with a height of 14.0 mm, and a main cavity radius of 7.5 

mm. Narrow pathways from the main cavity lead to two 

Helmholtz resonance cavities at heights of only 0.69 and 0.17 

mm. The size of the two resonators of ring shape is as the size 

occurring resonance at 1,800 Hz and 5,000 Hz. The model 

employs tetrahedral elements with four nodes, and we used 

HyperMesh v12.0 (Altair Engineering Inc.) for the meshing. 

The narrow pathways were divided into five elements in the 

height direction. 

The boundary conditions are similar between both ends of 

the main cavity. We set the effective density as ρ0 = 1.2 kg/m
3
, 

the coefficient of viscosity μ as 1.82 × 10
–5

 Ns/m
2
, the real part 

of the complex volume elasticity E0 as 1.4 × 10
5
 Pa, and the 

sound propagation speed c as 340 m/s in air. The excitation 

surface was on top of the main cavity. The reference point was 

the center of the bottom of the main cavity. For the boundary 

conditions, the particle displacements of all nodes on the 

outside in contact with the surfaces were fixed, with exception 

of the nodes in the plane of symmetry. 

 

 

Fig. 3 3D model for FEM (1/2 symmetric model) 

 

 
 

Fig. 4 Distribution of element pressure at each resonance 

 

Fig. 4 shows contours for the calculated element pressure of 

the model for the proposed FEM near the resonance conditions 

of the two annular Helmholtz resonance cavities and the main 
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cylindrical cavity. Red indicates a high presser, whereas blue 

indicates a low presser. Fig. 5 shows contours for the calculated 

particle displacements, and is a surface view of the model. Here, 

red indicates a large amount of displacement, and blue indicates 

a small amount of displacement. The isosurface of the 

displacement of the particles changes significantly in the 

narrow pathway at 1,800 Hz. 

 

 

Fig. 5 Distribution of particle-displacement contour in a surface view 

of the narrow pathway (1,800 Hz) 

 

Fig. 6 shows the analysis results of the bottom reference 

point for the sound-pressure level versus the frequency 

obtained using the aforementioned model. Here, the 

sound-pressure level is normalized at 500 Hz.  
 

 

Fig. 6 Normalized sound-pressure level of proposed FEM 

B. Theoretical Damping Analysis 

To verify the results of the proposed FEM, we conducted a 

theoretical analysis using LPM for the frequency domain, 

which is widely used for simulations of acoustic equipments 

simulation. The equivalent electrical circuit diagram of the 

LPM model for the ear simulator is shown in Fig. 7 [7]. The 

electrical resistance (Ra), inductance (ma), and capacitance 

(Ca) match the acoustical resistance, mass, and compliance, 

respectively. 

In this LPM model, the resistances of the narrow pathways 

are Ra5 and Ra7, which represent the effect of the air viscosity. 

Therefore, the ear simulator is tuned by adjusting the height of 

the narrow pathways to control the middle frequency property. 

The masses of air in the narrow pathways are ma5 and ma7, and 

the compliances of the Helmholtz resonators are Ca5 and Ca7. 

  

 

Fig. 7 Impedance-type equivalent circuit diagram of the ear simulator 

 

We employed the following parameters from the 

IEC60318-4 standard, which are based on 

acoustical-impedance measurements of the average impedance 

of the human ear. 

 

ra5 = 506 Ω      ma4 =  78.8 × 10
-5

 H   Ca4 = 0.09 μF 

ma5 =     9.4 × 10
-2

 H   Ca5 = 0.19 μF 

ra7 = 311 Ω      ma6 = 132.3 × 10
-5

 H   Ca6 = 0.153 F 

       ma7 = 983.8 × 10
-5

 H   Ca7 = 0.218 F 

       ma8 = 153.5 × 10
-5

 H   Ca8 = 0.215 F 

 

Fig. 8 shows the analysis results for the transfer impedance 

with respect to the frequency obtained using the LPM model [8], 

[9]. The highest frequency peak at about 12,800 Hz is due to the 

resonance of the main cavity. The two Helmholtz resonators 

resonate, and the two narrow pathways control the 

characteristics within the middle frequency region. 

 

 

Fig. 8 Impedance of LPM simulation model (IEC60318-4 standard) 
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C. Verification and Comparison of Proposed Method 

We analyzed the frequency responses using the proposed 

FEM, and then compared the results of the numerical 

calculation with the IEC60318-4 standard values of the LPM 

simulation model property. Fig. 9 shows the analysis results for 

the pressure with respect to the frequency response obtained 

using the proposed FEM, along with the IEC60318-4 standard 

values, and standard upper and lower tolerances. 

 

 

Fig. 9 Pressure with respect to the frequency response for the tube 

model 

 

As shown in Fig. 9, the results of the proposed FEM are 

almost within the range of tolerance throughout the frequency 

domain. The results are particularly accurate for the frequency 

band defined in the standard. However, the tolerance range of 

the standard is defined only for frequency ranges of 100 to 

10,000 Hz. Thus, the proposed FEM accurately represents the 

effect of the suppression of two Helmholtz resonance peaks 

(1,800 and 5,000 Hz) from the air viscosity. 

IV. CONCLUSION 

In this paper, we proposed a new acoustic FEM that 

considers the effects of air viscosity at in narrow acoustic 

pathways. We conducted a 3D finite-element analysis of an 

occluded-ear simulator for acoustic equipment with narrow 

sound pathways. Comparing the results obtained with those of 

an analysis using the LPM model defined by IEC60318-4 and 

the standard value shows that the proposed acoustic FEM 

exhibits good analytical accuracy. Frequency property that 

includes the effects of attenuation and Helmholtz resonance in 

the middle range can consider to accurately simulating 

throughout frequency range. 

For future development, we plan to use this model for an 

accurate acoustic simulation of our high-quality earphones and 

headphones. Using this analysis technique in the design process 

of such devices, the frequency property of the product can be 

rapidly predicted. 

This will help in reducing the number of trial prototypes and 

the development period. In addition, we aim to improve the 

speed of development and the technical skills of the engineers 

based on a greater understanding of the mechanism inherent to 

particular phenomena through detailed acoustic simulations. 
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