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Abstract—In genetics, the impact of neighboring amino acids on
a target site is referred as the nearest-neighbor effect or simply
neighbor effect. In this paper, a new method called wavelet particle
decomposition representing the one-dimensional neighbor effect
using wavelet packet decomposition is proposed. The main idea lies
in known dependence of wavelet packet sub-bands on location and
order of neighboring samples. The method decomposes the value of
a signal sample into small values called particles that represent a part
of the neighbor effect information. The results have shown that the
information obtained from the particle decomposition can be used to
create better model variables or features. As an example, the approach
has been applied to improve the correlation of test and reference
sequence distance with titer in the hemagglutination inhibition assay.

Keywords—Antigenic variants, neighbor effect, wavelet packet,
wavelet particle decomposition.

I. INTRODUCTION

OUR motivation stems from the well-known genetic

prediction problem for emerging antigenic variants of the

influenza virus based on the hemagglutinin protein sequence.

According to the comprehensive overview given in [1],

contemporary modelling techniques can be partitioned to two

main clusters. While the former cluster comprises phylogenetic

methods, the latter one consists of population-genetics-based

techniques, including multivariate statistical learning methods.

In this paper, we propose a novel statistical modelling method

that belongs to the second cluster and is based on wavelet
packet decomposition.

In order to infer relationships between the genotype and

antigenicity, it is necessary to estimate the impact of specific

sites (locations in protein sequence) on the antigenicity of the

studied virus [2], [3]. According to the major conventional

approach (see, e.g. [2]), only target amino acids located at the

examined site are compared.

On the other hand, as widely believed in genetics, protein

structure significantly depends on the mutual interaction

between adjacent amino acids. The impact of neighboring

amino acids on a target amino acid is referred as the

nearest-neighbor effect or simply neighbor effect. The type

of neighbor amino acids can be explained by their propensity

to form different structures, especially secondary structure

[4]. The neighbor effect has been investigated both for

DNA and common proteins in application to prediction of
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protein structures and functions, and feasibility of amino acids

substitution [4]-[8].

Although the results presented in the cited works appear

to be very promising, there remains the necessity of a

comprehensive method quantifying and representing the

neighbor effect by means of property changes of amino acids

located in an adjustable neighborhood of the site in question.

To address this drawback, we introduce a novel inter-protein

distance taking into account physicochemical changes

observed in neighboring amino acids before and after

mutation. Considering such an effect while measuring the

distance between two amino acids of the same site in protein

sequences, improves the result of similarity/dissimilarity. The

proposed distance is based on novel data processing technique,

which we call Wavelet Particle Decomposition.

The proposed method is a frequency-based method that

uses wavelet packet transform. The wavelet and wavelet

packet (WP) transforms are powerful tools for time-frequency

analysis [9]. In genetics, wavelet-based methods has been

used in various studies [10] such as detection of genetic

polymorphism [11], spectral properties of short genes [12],

analysis of genomic sequences [13], regular patterns in DNA

sequence [14] and DNA sequences classification [15]. In order

to apply the transform to protein sequence, the alphabetical

sequence must be converted to numerical. The choice of

numerical mapping affects the reflection of protein biological

properties that can be in the numerical domain [16], [17].

In our research, we choose the specific alpha-numeric

conversion in accordance with the well-known AAindex

database1. Further, for capturing the numerical representation

of the neighbor effect we employ convolution procedures with

experimentally chosen wavelet-packet filters. To reveal the

significant information from protein structure, we propose the

Wavelet Particle Decomposition (WPD) that successfully takes

into account the ordering of sample representation in a wavelet

packet sub-bands (from lowest to highest frequency values).

Our method maps a property value of amino acid (located

in a target position) into some small values, called particles.

Each particle carries information related to a certain property

of adjacent amino acids. We show that particles can improve

the measuring of similarity/dissimilarity between sequences.

To demonstrate the performance of our method, we apply

it to the well-known Hemagglutination Inhibition (HI) assay

database. The HI assay is the widely known procedure aimed

to measure the antigenic similarity of influenza virus strains

performed by genetic experts in laboratories. It is based on the

1http://www.genome.jp/aaindex/
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ability of antibodies produced with respect to some reference

strain of the considered virus to inhibit (speed-down) the

hemagglutination reaction for the test virus strain [18].

The HI assay plays the key role in vaccine virus selection.

In the literature, there are known attempts to introduce

mathematical models to quantify the phenotypic impact of

specific amino acid substitutions on the antigenicity [3],

[2], [19]. The models describe the relationship between the

antigenicity and the evolution of virus populations. Although

these results seem to be promising, feature extraction still

remains challenging. In this paper, we show that application of

the proposed features based on wavelet packet decomposition

increases the overall significance of the model.

Remaining part of this paper is organized as follows:

Section II gives the clear definition of the considered problem.

Section III represents the necessary theoretical background of

the proposed WPD method. In section IV, we illustrate the

performance of the proposed method combined with known

search heuristics in several numerical experiments. Finally, in

Section V, we summarize the results obtained and enlist some

open questions postponed to the future work.

II. PROBLEM STATEMENT

The HI assay data are commonly involved in the antigenicity

assessment of various strains of the influenza virus. The

identification and quantification of the impact of amino

acid substitutions on the antigenicity of HA should help to

understand the evolution of the virus and is crucial for vaccine

virus selection [20], [3], [2], [19]. The most current methods

consider the correlation between alphabetical changes of

amino acids at fixed sites and HI titers (results of biochemical

tests performed in special laboratories). The amino acid

substitution leads to observable changes of some their

physicochemical properties. Since the amino acid interacts

with its neighbors in the protein sequence, the substitution

also affects them. Therefore, it turns to be useful, in antigenic

studies, to take into account the influence (neighbor effect)

of amino acids located in the protein sequence nearby to the

target site.

Fig. 1 Sample from the HI assay database [22]

Any record of the HI assay database refers to a couple of

protein sequences of two virus strains (we call them reference
and test one) combined with associated titer (see Fig. 1).

Actually, an ith record is a triple (Ti, Ri, yi), where Ti and

Ri, i = 1, . . . , L are protein sequences of test and reference

viruses, respectively, yi is the observed value of titer, and

L is a length of the database. Sequences Ti and Ri are

supposed to be of equal length. Therefore, we can compare

their entries Ti(x) and Ri(x) at any individual site x. Let

f :R2 → R be some function. Following to [2], to any site

x, we assign vectors T = [T1, . . . , TL], R = [R1, . . . , RL],
y = [y1, . . . , yL], and an absolute value AP (f, x |T,R, y) of

the Pearson’s correlation coefficient between f(T (x), R(x))
and log2(y) as follows:

AP (f, x |T,R, y) =∣∣∣∣∣
Cov(f(T (x), R(x)), log2(y))√

V ar(f(T (x), R(x)))
√

V ar(log2(y))

∣∣∣∣∣ .

The problem is, for a given site x and given family F of

functions, to find f∗ ∈ F , such that

AP (f∗, x |T,R, y) = max{AP (f, x |T,R, y): f ∈ F}. (1)

In our paper, the family F is defined by Euclidean distances

between particles taken from different levels of WPD and

maximization is carried out subject to WPD tree.

III. WAVELET PARTICLE DECOMPOSITION

Suppose, we are given by a set of protein sequences of

equal length N . In order to compare two protein sequences, we

define a distance between amino acids located at same position

in considered sequences, taking into account influence of

neighboring amino acids. We refer protein sequence as discrete

signal f(x), where x = 1, . . . , N . Imagine that the signal

f(x) is decomposed through WP transform into M = 2j

sub-bands (where j ∈ Z
+ is decomposition level). To facilitate

notation, for each sub-band of the last level we denote the

reconstructed signal by fi,x for i = 1, . . . ,M and 1, . . . , N . It

is convenient to represent the reconstructed signals in matrix

form as follows.⎡
⎢⎢⎢⎣

f1,1 f1,2 . . . f1,N
f2,1 f2,2 f2,N

...
. . .

...

fM,1 fM,2 . . . fM,N

⎤
⎥⎥⎥⎦ (2)

Each row of matrix (2) corresponds to the reconstructed

signal for a specific sub-band. We call matrix (2) a

reconstruction matrix or simply R-matrix.

Each column of R-matrix is equal to the result of the

decomposition of a specific entry of the input signal with

respect to different sub-bands. According to WP theory [21],

for any entry of the signal (e.g. point x), its amplitude can be

approximated by the column sum for the associated column

of the R-matrix. Indeed, the decomposition and reconstruction

provide a representation of each entry of the signal f(x)
with M = 2j points in different sub-bands. We denote this

representation by Ω

Ω(f(x)) = [f1,x, f2,x, . . . , fM,x].

In Fig. 2 we illustrate the action of the operator Ω.

As known, the value f(x) of the initial signal permits the

approximate expansion as follows
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Fig. 2 Correspondence between preimage and image of the operator Ω

f(x) ≈
∑

([f1,x, f2,x, . . . , fM,x])

=
∑

(Ω(f(x)) =
M∑
p=1

fp,x, (1 ≤ x ≤ N),

where the row vector [f1,x, f2,x, . . . , fM,x] is the transpose

of the xth column vector of R-matrix (2).
As mentioned ago, the order of representation in Ω (from

lowest frequency to highest frequency sub-bands or vice versa)

keeps significant information that should be considered and

extracted. Actually, we consider an image Ω(f(x)) as a new

signal, to which WP can be applied recursively. Applying

wavelet packet decomposition and reconstruction up to the

same fixed decomposition level j to Ω(f(x)) we obtain a new

R-matrix.

⎡
⎢⎢⎢⎣

f1,1,x f1,2,x . . . f1,M,x

f2,1,x f2,2,x f2,M,x

...
. . .

...

fM,1,x fM,2,x . . . fM,M,x.

⎤
⎥⎥⎥⎦ (3)

Similarly to previous constructions we obtain

fp1,x =
∑

(Ω(fp1,x)) =
M∑

p1=1

fp2,p1,x,

where

Ω(fp1,x) = [f1,p1,x, f2,p1,x, . . . , fM,p1,x]

for 1 ≤ x ≤ N and 1 ≤ p1 ≤ M .
Hereinafter, we call operator Ω as Wavelet Particle

Decomposition (WPD). Its output (image) for a certain entry

we refer as particles of that value (see Fig. 3).
Using previously described procedure, the new row vector

(obtained from Ω) can be decomposed to a new R-matrix, and

each entry of row vector has its particles in R-matrix. The

idea of point decomposition through PD is supported by the

following simple statement.
Statement 1 Suppose f is a discrete function from L2(R).

For any level q of particle decomposition and any x, 1 ≤ x ≤
N , the following equation is valid

f(x) ≈
M∑

p1=1

M∑
p2=1

. . .
M∑

pq=1

fpq,...,p1,x.

For the sake of brevity we skip the proof of Statement 1 that

can be easily obtained by induction on q.

IV. EXPERIMENTS

In order to illustrate the performance of our WPD-based

technique, we carry out three numerical experiments. In the

first one, we show that, even for the case of a point mutation,

where two protein sequences differ between each other in a

single amino acid, WPD provides a whole set of new features

providing more options to find a more relevant feature for

distinguishing them (in terms of equation (1)).

In the second experiment, we perform a comparison of

a number of well-known search heuristics in combination

with WPD to find the feature providing the most correlation

improvement between protein sequence and HI titer on the

database [22] (near to the optimal solution of maximization

problem (1)).

To proof the significance of the relationship between the

order of adjacent amino acids and obtained correlation, we

perform the third experiment. In this experiment, for any

database record presenting information about the certain

protein, we change at random the order of amino acids

neighboring to a target site. After that, we repeat the second

experiment for the permuted data. The results obtained show

that the violation of neighbors order leads to correlation

vanishing. Thus, in the third experiment, we show that the

correlation between the obtained features strongly depends on

the order of adjacent amino acids.

A. Experiment 1: Neighbor Effect in a Point Mutation

We consider two close to each other strains

A/NORWAY/1684/2007 and A/NORWAY /1651/2007 of

the influenza virus H1N1 taken from the well-known EpiFlu

database 2. It is known that, for these strains, the first parts of

their hemagglutinin (HA) protein sequences, HA1, differs at

the unique site, which is a result of a single point mutation.

We transform these alphabetical sequences to numeric ones

using the known index from AAindex1 database. We set

wavelet basis to Daubechies Db3 and WPD level to 3.

Computing first two levels of WPD for these sequences, we

obtain 8 plus 64 particles for each signal entry respectively.

To demonstrate the difference between the sequences in

question, we subtract the second sequence from the first one.

The difference is presented in Fig. 3 (a), notice the single peak

that is a result of the aforementioned point mutation. Further,

we put together differences of partial signals reconstructed

from particles taken from the first and second level of WPD,

the mutation effects are demonstrated in Figs. 3 (b) and (c),

respectively.

For each level, at any point, the sum of these partial

signals is approximately equal to the signal value in Fig.

3. Therefore, particle decomposition produces extra features

describing additional information about the influence of the

considered point mutation to adjacent amino acids.

2https://www.gisaid.org
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Fig. 3 Wavelet particle decomposition tree of a single point

(a)

(b)

(c)

Fig. 4 Wavelet particle decomposition of a point mutation: (a) Difference
between initial signals; (b) The difference between the partial signals of 1st
level particles; (c) The difference between the partial signals of 2nd level

particles

B. Experiment 2: Optimal Combination of Search
Heuristics and WPD Technique

As shown in [3], [2], there exists a linear relationship

between antigenic site substitutions and the logarithm of

HI titer. Since the HA1 sequence is converted previously

to numerical one, the similarity between test and reference

strains in a specific site can be represented quantitatively as

a difference between corresponding numerical values. This

difference is also may be correlated with the logarithm of HI

titer. To increase this correlation and overall significance of the

feature extraction process, we use particles obtained in WPD.

Actually, we replace scalar differences between values taken

in a single specific site by vector ones in a particle domain

(for a certain level). Let S1 and S2 be two signals (sequences)

of the same length k and 1 ≤ x ≤ k be some position (site)

in this signals. We call the following quantity

D(S1(x), S2(x)) = ‖Ω(S1(x))− Ω(S2(x))‖

a vector distance between samples S1(x) and S2(x).

Generally speaking, to find the better feature, we should

search through the entire tree (up to the given depth) provided

by the WPD technique. Although this naive algorithm gives the

best solution, it is time-consuming (since the WPD tree grows

very quickly) and cannot be employed in practice. On the other

hand, there are known numerous heuristic algorithms capable

to provide solutions close to global optimal very efficiently. In

this experiment, we consider the following heuristic algorithms

to compare them with respect to the correlation improvement:

(i) Random Path (RP) from the root to a leaf (at any level, the

next child node is chosen at random without dependence

on the objective function)

(ii) Simple Hill Climbing (SHC) [23] (pick up the next

node randomly, move to it, if it improves the objective

function)

(iii) Steepest Ascent Hill Climbing (SAHC) [23] (at any level,

for branching choose the child node that gives the highest

positive improvement of the objective function).

(iv) Random Steepest Ascent Hill Climbing (RSAHC) (at any

level, select child node for branching randomly among

nodes that improve the value of the objective function)

(v) 2-top Steepest Ascent Hill Climbing (2SAHC) (at any

level, try to branch at two child nodes that mostly improve

the objective function)
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TABLE I
THE COMPARISON OF SEARCH ALGORITHMS

Search method
RP SHC SAHC RSAHC 2SAHC BFS ES

ACI (%) 23.19 65.39 80.03 61.62 92.38 88.28 100
Search Time (sec) 68.93 51.40 50.72 50.67 95.73 104.41 266.19

ACI per sec 0.34 1.27 1.58 1.22 0.97 0.85 0.38

(vi) Best-first search (BFS) [24] with respect to the considered

objective function

(vii) Exhaustive Search (ES) on WPD tree

Except for the RP, BFS and ES algorithm, we stop the search,

if, at the current level, there is no child node that improves

the objective function. The mentioned algorithms have been

applied to 100 correlated sites (it is possible repeated site

but with different numerical representation). To control the

overall time consumption, we set the maximum depth of

the WPD search tree to 5. Average Correlation Improvement

(ACI) among the sites considered in percentage with respect

to the result of ES algorithm together with the search time and

relative ACI percentage per second are reported as follows:

The results indicate that highest ACI percentage was

provided by 2SAHC heuristic, whereas the most efficient

method appears to be SAHC heuristic since it gives the highest

correlation with smaller time.

In order to prevent overfitting and select more relevant

features for model construction, one of feature selection

techniques can be applied. Earlier, the linear mixed effect

model (LMEL) has been applied in mathematical modeling of

virus antigenicity [2], [19]. To improve the overall modelling

accuracy in terms of prediction of the antigenicity from protein

sequences, we employ WPD, SHC and LMEL together, as a

one combined technique.

C. Experiment 3: Significance of Neighbors Order

This experiment was organized as follows:

(i) for any site x and any alpha-numeric transformation I
from AAindex database, we find well correlated feature

f [I](T (x), R(x)) (suboptimal solution of problem (1))

using WPD (with wavelet basis Symlet sym8 and wavelet

decomposition depth set to 3) in combination with SAHC

searching algorithm presenting the best ACI per sec result

in Experiment 2 (Tabl. I)

(ii) for a given threshold th = 0.5, we construct a set

XI = {(x, I):AP (f [I], x |T,R, y) ≥ th}
(iii) produce a sample-set XI ′ of length 1000 by sampling

randomly from XI without replacement

(iv) for any (x, I) ∈ XI ′, we perform random permutation of

neighobrs amino acids and compute AP (f [I], x |T,R, y)
again.

The Fig. 5 demonstrates the obtained results where the blue

and the orange graphs present result of correlation before and

after permutation with the mean 0.57 and 0.054, respectively.

The results indicate that the correlation vanishes when there

is no significant order in the neighborhood.

Fig. 5 Correlation vanishing after the random neighbor permutation

V. CONCLUSION

In this paper, we present the wavelet particle decomposition

method, a technique for feature extraction from genetic

sequences. The WPD provides the information about adjacent

sites order at decomposition levels through convolution

by wavelet packet filters. Despite conventional method for

the study of the neighbor effect, WPD supplies adjustable

neighborhood.

The results of numerical experiments reveal that WPD

performance is sensitive to neighbors order. The performance

of the method can be improved applying the heuristic search

algorithm to decomposition tree in order to find an optimal

feature. To evaluate the impact of search algorithm on WPD

feature extraction, we apply them to HI assay database.

According to the evaluation results the steepest ascent hill

climbing algorithm is able to find an optimal feature with the

highest correlation in less time. It should be better to point

out that several factors can affect the obtained particles such

as wavelet basis and depth of wavelet packet decomposition. It

would be of interest to investigate their impact. In the future,

we plan to conduct a more comprehensive comparison of

heuristic search algorithms on WPD tree.
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