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    Abstract—This paper presents Faults Forecasting System (FFS) 
that utilizes statistical forecasting techniques in analyzing process 
variables data in order to forecast faults occurrences. FFS is 
proposing new idea in detecting faults. Current techniques used in 
faults detection are based on analyzing the current status of the 
system variables in order to check if the current status is fault or not. 
FFS is using forecasting techniques to predict future timing for faults 
before it happens. Proposed model is applying subset modeling 
strategy and Bayesian approach in order to decrease dimensionality 
of the process variables and improve faults forecasting accuracy. A 
practical experiment, designed and implemented in Okayama 
University, Japan, is implemented, and the comparison shows that 
our proposed model is showing high forecasting accuracy and 
BEFORE-TIME. 

Keywords—Bayesian Techniques, Faults Detection, Forecasting 
techniques, Multivariate Analysis.   

I.  INTRODUCTION 
HEMICAL processes and their control systems have 
become very complex due to product quality demands, 

safety levels, operational constraints, environmental 
regulations, and plant economics. As a result, many researches 
are upward development of more techniques and systems to 
facilitate and safely do process monitoring and control.  
     Faults Detection is considered one of the main concerns in 
process monitoring. Due it is costing the industry a lot, when 
undetected fault happens. There are a lot of faults detection 
systems in historical research papers, some of them were 
depending on statistical methods such as in [16], [9], others 
were depending on neural networks and fuzzy systems [24],  
[14]. But all are testing the  
current status weather it is fault or not, but not looking for 
future. So forecasting faults is a new idea we propose in this 
research work. It proposes that we analyze the history status 
for the process variables with the relation to faults occurrences 
and human inputs as expert opinion and predict when and 
where faults are going to happen. We assume that product 
cycles are repeated over time. So that makes it applicable to  
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apply forecasting techniques on it. That supports operators and 
engineers to take pre-actions to avoid faults occurrence.  

Forecasting must predict the future; hence this difficult 
task needs that methodology uses as much information as 
possible before issuing predictions. Past and current data 
related to what is needed to be forecasted, in this case faults 
variables, are certainly helpful and needed. Expert judgment 
can also be a valuable source of information [22]. Data, 
judgment, and uncertainty are relevant to most forecasting 
tasks, and should be incorporated into forecasting techniques. 
      In faults forecasting problems, there are large numbers of 
variables, process variables, and relationships among them 
that may be viewed as potentially important, leading to 
complex knowledge structures. Most traditional forecasting 
techniques apply sophisticated mathematics to relatively 
simple knowledge structures and may impose restrictions on 
the types of inputs that can be used. In contrast, modern 
computing makes it possible to unlock the intricacies of 
complex knowledge structures using only simple mathematics. 
Moreover, the simplicity of individual relationships within 
these complex networks allows the model to capture the 
multiple types of data that populate many domains. 
     Due to the complexity of the real data explained above, so 
we need to use methods which are able to deal with huge 
number of parameters. Building up big structural models 
incrementally equation by equation has been criticized on 
theoretical as well as on empirical grounds [10]. As far as the 
forecasting performance of these models is concerned, simple 
univariate ARIMA models seem to be superior or at least 
equivalent [22]. An alternative proposed by Sims in [3] is to 
build vector autoregressive models with no a priori exclusion 
restrictions. This methodology however quickly exhausts the 
available degrees of freedom, since each variable has to appear 
in each equation with the same lag specification. The scarcity 
of observations relative to the number of parameters to be 
estimated brings up the problem of over parameterization, and 
the test statistics as well as the forecasts of these models tend 
to deteriorate rapidly [8].     
     The proposed system combines two ways to overcome this 
difficulty. The first one is to start out with the unrestricted 
vector autoregressive model and to use the concept of Wiener-
Granger causality see [4] to reduce the dimensionality of the 
model. This procedure is similar in spirit to the ‘general-to-
specific’ approach of [18] in that it tests which variables 
contribute significantly to the precision of forecasting and 
excludes all other variables. Since the pre-test estimator has 
been shown to be statistically inferior to Stein rules [1]], it is 
tempting to contrast this approach in its forecasting 
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performance with Bayesian point of view [2]. This is done by 
taking the unrestricted vector autoregression system and 
combining the sample information with prior information on 
the parameters and their standard errors.  
     This article is organized as follows: Section II provides the 
data and their transformations. The next two sections present 
the construction of the restricted and the Bayesian vector 
autoregressive model. Then the proposed model is proposed in 
Section V. Section VI explains the experiment with results. 
The last section summarizes conclusion and outline future 
work. 

II.  DATA 

     This research work proposes to analyze and forecast faults 
factors parameters which are process variables of the 
monitoring control process. As known for chemical control 
systems we have many types of process control data such as 
level, temperature, pressure,... Usually these systems are very 
complex and contain hundreds of control variables, which 
make it so difficult to forecast or predict faults occurrences 
with high accuracy. Usually there are Distribution Control 
systems which are connected to the system and monitor these 
process variables.  

 
III.  RESTRICTED VECTOR AUTOREGRESSIVE MODEL (RVAR) 

Unrestricted VAR model was initially proposed by Sims in 
[3]. It is likely to lead many separately insignificant 
parameters, so that the search for restrictions which reduce the 
dimensionality of the model seems to be a rewarding task. 
This is especially motivated by a possible disturbing influence 
of insignificant parameters on forecasting. 

There is no unique way for setting up such restrictions. In 
many cases, they are based on information extracted from 
theory concerning the structure and interaction of the time 
series. An alternative is the specification of restrictions on 
empirical grounds, which is based on the following procedure: 
1) An unrestricted time series model is estimated. F- and t-
statistics are noted. Those test the influence of one variable 
and a specific lag on another variable, respectively. 
2) Insignificant variables and insignificant lags of variables 
are eliminated. The significance level was set to loosely to 
15% to reduce the possibility of neglecting significant 
regressors which might be increased due to multicollinearity.  
3) The resulting model, that is, an autoregressive model with 
zero restrictions, is estimated and used for forecasting.  

Applying the procedure outlined above reduces the number 
of by more than 60% of the original number. The set of 
regressors in the restricted model (RVAR) depends on the 
search strategy [20]. A comparison of all possible subset 
models, as suggested by [21] would be rather tedious and time 
consuming. Anyway, the RVAR should not be ‘far away’ 
from the optimal model. 

A variable is said to cause another one if and only if its lags 
reduce the forecasting variance additionally to the proper lags 
of the variable to be forecasted. Accurate significance levels, 
however, are not valid due to the iterative elimination process. 
Influences which are quicker than one quarter of a year are not 
captured by the lags model. However, according to [17], they 
are reflected in the residual correlations. The direction cannot 

be determined from the data. This phenomenon is known as 
‘instantaneous causality’. Within the framework of a 
forecasting model, instantaneous causality could be interpreted 
as an indicator for flaws in the model, that is, information 
which could be used for improving forecasts but is not. On the 
other hand, if the model is viewed as correct, it is impossible 
to improve point forecasts by using these correlations which 
however do affect stochastic forecasting. 

IV.  BAYESIAN VECTOR AUTOREGRESSION (BVAR) 

     The Bayesian approach starts with the presumption that the 
given data set does not contain information in every dimension 
[12]. This means that by fitting an over parameterized system 
some coefficients turn out to be non-zero just by pure chance. 
Since the influence of the corresponding variables is just 
accidental and does not correspond to a stable relationship 
inherent in the data, the out-of-sample forecasting 
performance of such models deteriorates quickly. The role of 
the Bayesian prior can therefore be described as prohibiting 
coefficients to be nonzero ‘too easily’ [15]. Only if the data 
really provide information will the barrier raised by the prior 
be broken through [13].  
    The next step consists in the specification of a prior 
distribution for the coefficients. In this paper the so called 
‘Minnesota prior’ is used see [5]. It specifies a random walk 
process with drift for each of the variables involved and does 
not allow for influences of own lags beyond the first one and 
of other variables. This specification does not represent a 
genuine Bayesian prior, since it does not characterize the 
beliefs of an investigator, who usually postulates some 
relationships among those variables. The Minnesota prior 
could however be regarded as the intersection of the a priori 
beliefs of many economists. In this sense it represents an 
improvement over the so called ‘diffuse prior’, which is often 
used to represent the notion of ‘knowing little’.  
     Since the prior distribution is specified as a multivariate 
normal, it is necessary to set, besides the mean, the standard 
deviations of the coefficient of variable j with lag l in the 
below equation. And the covariances are set equal to zero. 
Instead of specifying each standard deviation separately, they 
are set as a function of 3 ‘meta-parameters ’߬, ,ݓ and ݀: 
,ሺ݅ݏ ݆, ݈ሻ ൌ ݂߬ሺ݅, ݆ሻ݃ሺ݈ሻݏ௜/ݏ௝, where 
݂ሺ݅, ݆ሻ ൌ 1.0  if   ݅ ൌ ݆      
           ൌ ݅  if    ݓ ് ݆, 0 ൑ ݓ ൑ 1, 
   ݃ሺ݈ሻ ൌ ݀௟ିଵ, 0 ൑ ݀ ൑ 1, 
    And where the scaling factors ݏ௜  and ݏ௝  adjust for the 
relative size of the variables. The parameter ߬ stands for the 
overall tightness of the prior; a smaller value indicating that 
more weight is given to the prior. The function ݃ሺ݈ሻ sets the 
form of the lag pattern, which in this case has corresponding 
standard deviation. The symmetric function ݂ሺ݅, ݆ሻ controls the 
interaction among the different variables; a higher w allows 
for more interaction by setting a higher a priori standard 
deviation for cross effects. In this investigation two 
specifications of the parameters ߬, ,ݓ and ݀ are considered: 
‘loose prior’ (BVAR-loose): ߬ ൌ 0.2, ݓ ൌ 1.0, and ݀ ൌ 1.0 
‘tight prior’ (BVAR-tight): ߬ ൌ 0.1, ݓ ൌ 0.5, and ݀ ൌ 0.5 
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In the first case the lag pattern does not decay and own lags 
and lags of other variables are treated alike. In the second case 
the overall tightness is high, the lag pattern decays rapidly, 
and cross influences are given less weight. The specification 
also includes four seasonal dummies for each equation. Since 
no constant term then enters the equations, the coefficients of 
these variables will determine the drift in the time series. 
These coefficients are not restricted a priori and are fully 
determined by the data.  

V.  FFS DESIGN 

In our proposal module, we use the above RVAR and 
BVAR models in estimating the best faults forecast. The 
statistics used to evaluate the different forecasts are root mean 
square error (RMSE), U-statistic of Theil, and mean absolute 
percentage error (MAPE) [19]. Figure 1 shows flowchart for 
FFS diagram. First step is to collect the history process 
variables from the DCS (Distributed Control System). 
Gathering as much as correct and accurate data is very 
important as a pre-step before data processing operation. Next 
step is to arrange the variables and allocate history faults into 
the history, then divide the history in Time Buckets (TB). It is 
very important to choose the buckets period not so long, not so 
short and based on the control system design, complexity of 
the process, and setup pre-considerations. It could be decided 
by collaboration with the responsible control engineer. After 
that, we calculate trend signature for each variable per TB. 
Trend signature (TS) is considered as stamp for each variable. 
We use this value per variable per TB in the forecasting 
operation.  

Trend signature is calculated as follows: 
1- Apply polynomial regression to each trend 
2- Calculate polynomial equation parameters 

corresponding to each polynomial regression 
3- Calculate z-score per each polynomial regression 

equation which is 
 

Observed value minus the mean value
Standard deviation of the values  

 
So forecasting operation is applied on trend signatures 

values rather than process variables’ original values. 
At this stage we became ready to apply forecasting models 

to the data, and choose the best model using forecasting 
accuracy measure we mentioned above. Forecast is the future 
timing of faults, so we can estimate in which TB there will be 
faults occurrence. We compared the results with actual faults 
occurrences and proofed that our model is calculating future 
expectations for faults occurrences accurately and better than 
usual faults detection techniques, because it is predicting them 
BEFORE-TIME. 

 
 

Fig. 1 FFS Model Diagram 

FFS advantages over tradition Fault diagnosis systems are: 
1) It works offline, so it doesn’t take from the run time. 

That makes it flexibility on time of running, and on 
the same time it gives faults estimates. 

2) It makes forecasting BEFORE-TIME, not ON-TIME, 
which is supporting the controller and engineer more 
than current faults detection systems which just gives 
faults detection ON-TIME. 
 

VI.  EXPERIMENTS & RESULTS 

Our experiment is done through chemical plant, which is 
designed and implemented in Okayama University 
Laboratory, Japan. The process is established in order to check 
and test different methodologies for detecting and diagnosing 
faults. The plant is consisting of tanks, pumps, sensors, 
alarms, control valves, and manipulated valves. The material 
used is water and the objecting is to circulate cold and hot 
water in two different circles and exchange temperatures 
between them.  

Alarms are used to check the process variables limits such 
as level of water in the tanks.  Sensors are used to measure 
different process variables such as temperature, pressure, and 
vibration level in different locations in the plant. We used 
DCS to measure the process variables and keep the history, 
also as controller for the pumps, and valves. Used process 
variables are Temperature: TK2, TK3, TC1, and TC2; 
Pressure: PS1; Level: LS1, LS2, and LS3.     

We apply two different forecasting scenarios and several 
criteria for the goodness of fit over the forecasting intervals. 
Furthermore, the two approaches are contrasted to an 
‘unrestricted’ VAR model with 6 lags for each variable in 
each equation (UVAR-6) to demonstrate how over 
parameterization affects forecasts performance. 
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The performance of UVAR-6 can be improved by setting all 
lags of order 5 and 6 to zero. This agrees with the supposed 
deteriorating influence of insignificant parameters. It is worth 
to contrast these results with the one obtained by [7] who 
arrive at exactly the opposite conclusion, that is, an 
improvement in forecasting with an increasing number of free 
parameters. 

 
TABLE II 

EX-ANTE FORECASTS FROM THE RVAR MODEL FOR THE PERIOD TB50-TB65 

   
It is possible to improve upon these forecasts by scanning 

over different values of the ‘metaparameters’,  ߬, ,ݓ and ݀ . 
Using the log-determinant of the matrix composed by cross 
products of 8 TBs-ahead ex-ante forecast errors during the 
period TB50-TB65 as a criterion function. Applying this 
method to the data at hand, values of d close to one and w 
close to zero - leaving ߬ unchanged at 0.1 - have been obtained. 
This means the optimal data based prior’ would be a 
univariate autoregressive model for each of the variables with 
no cross effects between variables. 

This unsatisfactory result is the consequence of a symmetric 
f(i, j) matrix which treats each of the eight variables in the  

 

 

 

TABLE III 
EX-ANTE FORECASTS FROM THE BVAR-TIGHT MODEL FOR THE PERIOD 

TB50-TB65 

 

system alike and could be remedied by putting a weak 
economic structure on the prior standard deviations.This is 
done by dividing the variables into core variables of the 
system which are thought to be important in explaining all the 
variables of the system and into the rest which are thought to 
be of lesser importance. This method results in a considerable 
improvement in the forecasting performance. 
     Table III gives the results from ex-post forecasting and 
shows severe biases, especially with the ‘good’ models 
BVAR-tight and RVAR. It might be concluded that UVAR 
forecasts provide no information relative to no-change but do 
not show any systematic tendency towards over- or 
underestimation. As mentioned before, ex-post forecasting 
methodologically favors non-Bayesian VAR, so the RVAR 
biases for all but one of the series are even more surprising. 
This can, however, be explained by regarding the RVAR 
estimates as pre-test estimates, whose bias is a well-known 
fact. 
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TABLE IV 
PROCESS VARIABLES WITH FAULTS DATA SAMPLE 

     

After doing that deep analysis and comparisons, the model is 
ready to adapt and choose the best model for every input. And 
then the outcome is giving the faults timing for the coming 
TBs. As shown in Table IV.  

VII.  CONCLUSION & FUTURE WORK 

Faults are considered a costly problem for control systems, 
especially chemical processes. Due to its complexity, and 
criticality. This issued the need to research and investigates 
how to detect faults as accurate and early as possible. Previous 
research is worked on how to detect faults ON-TIME, but our 
proposal is how to use forecasting techniques with take 
advantage of analyzing history process variables to estimate 
when faults is going to happen in future. We used two 
methods subset modeling and Bayesian techniques. Our 
experiment is done on chemical process, designed and 
implemented specially to investigate control and faults 
diagnosis issues. The results have demonstrated that the 
RVAR and BVAR-tight are superior in most aspects to the 
other model specifications. This evidence suggests that the 
problems associated with an over parameterized model can be 
avoided by either reducing the number of parameters through 
exclusion restrictions or by placing prior restrictions on the 
parameters in a Bayesian way. Using either of these 
techniques the forecasting performance can be considerably 
improved. RVAR dominates BVAR-tight for shorter 
forecasting horizons but not over longer ones. This research 

work suggests a new methodology for detecting faults in 
future, as future work we need to link it with faults intelligent 
knowledge base to be able to suggest to the operator what 
actions should be taken to avoid the occurrence of future faults. 
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