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Faults Forecasting System

Hanaa E.Sayed, Hossam A. Gabbar, and Shigeji Miyazaki

Abstract—This paper presents Faults Forecasting System (FFS)
that utilizes statistical forecasting techniques in analyzing process
variables data in order to forecast faults occurrences. FFS is
proposing new idea in detecting faults. Current techniques used in
faults detection are based on analyzing the current status of the
system variables in order to check if the current status is fault or not.
FFS is using forecasting techniques to predict future timing for faults
before it happens. Proposed model is applying subset modeling
strategy and Bayesian approach in order to decrease dimensionality
of the process variables and improve faults forecasting accuracy. A
practical experiment, designed and implemented in Okayama
University, Japan, is implemented, and the comparison shows that
our proposed model is showing high forecasting accuracy and
BEFORE-TIME.

Keywords—Bayesian Techniques, Faults Detection, Forecasting
techniques, Multivariate Analysis.

I. INTRODUCTION
HEMICAL processes and their control systems have
become very complex due to product quality demands,
safety levels, operational constraints, environmental
regulations, and plant economics. As a result, many researches
are upward development of more techniques and systems to
facilitate and safely do process monitoring and control.

Faults Detection is considered one of the main concerns in
process monitoring. Due it is costing the industry a lot, when
undetected fault happens. There are a lot of faults detection
systems in historical research papers, some of them were
depending on statistical methods such as in [16], [9], others
were depending on neural networks and fuzzy systems [24],
[14]. But all are testing the
current status weather it is fault or not, but not looking for
future. So forecasting faults is a new idea we propose in this
research work. It proposes that we analyze the history status
for the process variables with the relation to faults occurrences
and human inputs as expert opinion and predict when and
where faults are going to happen. We assume that product
cycles are repeated over time. So that makes it applicable to
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apply forecasting techniques on it. That supports operators and
engineers to take pre-actions to avoid faults occurrence.

Forecasting must predict the future; hence this difficult
task needs that methodology uses as much information as
possible before issuing predictions. Past and current data
related to what is needed to be forecasted, in this case faults
variables, are certainly helpful and needed. Expert judgment
can also be a valuable source of information [22]. Data,
judgment, and uncertainty are relevant to most forecasting
tasks, and should be incorporated into forecasting techniques.

In faults forecasting problems, there are large numbers of
variables, process variables, and relationships among them
that may be viewed as potentially important, leading to
complex knowledge structures. Most traditional forecasting
techniques apply sophisticated mathematics to relatively
simple knowledge structures and may impose restrictions on
the types of inputs that can be used. In contrast, modern
computing makes it possible to unlock the intricacies of
complex knowledge structures using only simple mathematics.
Moreover, the simplicity of individual relationships within
these complex networks allows the model to capture the
multiple types of data that populate many domains.

Due to the complexity of the real data explained above, so
we need to use methods which are able to deal with huge
number of parameters. Building up big structural models
incrementally equation by equation has been criticized on
theoretical as well as on empirical grounds [10]. As far as the
forecasting performance of these models is concerned, simple
univariate. ARIMA models seem to be superior or at least
equivalent [22]. An alternative proposed by Sims in [3] is to
build vector autoregressive models with no a priori exclusion
restrictions. This methodology however quickly exhausts the
available degrees of freedom, since each variable has to appear
in each equation with the same lag specification. The scarcity
of observations relative to the number of parameters to be
estimated brings up the problem of over parameterization, and
the test statistics as well as the forecasts of these models tend
to deteriorate rapidly [8].

The proposed system combines two ways to overcome this
difficulty. The first one is to start out with the unrestricted
vector autoregressive model and to use the concept of Wiener-
Granger causality see [4] to reduce the dimensionality of the
model. This procedure is similar in spirit to the ‘general-to-
specific’ approach of [18] in that it tests which variables
contribute significantly to the precision of forecasting and
excludes all other variables. Since the pre-test estimator has
been shown to be statistically inferior to Stein rules [1]], it is
tempting to contrast this approach in its forecasting
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performance with Bayesian point of view [2]. This is done by
taking the unrestricted vector autoregression system and
combining the sample information with prior information on
the parameters and their standard errors.

This article is organized as follows: Section Il provides the
data and their transformations. The next two sections present
the construction of the restricted and the Bayesian vector
autoregressive model. Then the proposed model is proposed in
Section V. Section VI explains the experiment with results.
The last section summarizes conclusion and outline future
work.

Il. DATA

This research work proposes to analyze and forecast faults
factors parameters which are process variables of the
monitoring control process. As known for chemical control
systems we have many types of process control data such as
level, temperature, pressure,... Usually these systems are very
complex and contain hundreds of control variables, which
make it so difficult to forecast or predict faults occurrences
with high accuracy. Usually there are Distribution Control
systems which are connected to the system and monitor these
process variables.

I11. RESTRICTED VECTOR AUTOREGRESSIVE MODEL (RVAR)

Unrestricted VAR model was initially proposed by Sims in
[3]. It is likely to lead many separately insignificant
parameters, so that the search for restrictions which reduce the
dimensionality of the model seems to be a rewarding task.
This is especially motivated by a possible disturbing influence
of insignificant parameters on forecasting.

There is no unique way for setting up such restrictions. In
many cases, they are based on information extracted from
theory concerning the structure and interaction of the time
series. An alternative is the specification of restrictions on
empirical grounds, which is based on the following procedure:
1) An unrestricted time series model is estimated. F- and t-
statistics are noted. Those test the influence of one variable
and a specific lag on another variable, respectively.
2) Insignificant variables and insignificant lags of variables
are eliminated. The significance level was set to loosely to
15% to reduce the possibility of neglecting significant
regressors which might be increased due to multicollinearity.
3) The resulting model, that is, an autoregressive model with
zero restrictions, is estimated and used for forecasting.

Applying the procedure outlined above reduces the number
of by more than 60% of the original number. The set of
regressors in the restricted model (RVAR) depends on the
search strategy [20]. A comparison of all possible subset
models, as suggested by [21] would be rather tedious and time
consuming. Anyway, the RVAR should not be ‘far away’
from the optimal model.

A variable is said to cause another one if and only if its lags
reduce the forecasting variance additionally to the proper lags
of the variable to be forecasted. Accurate significance levels,
however, are not valid due to the iterative elimination process.
Influences which are quicker than one quarter of a year are not
captured by the lags model. However, according to [17], they
are reflected in the residual correlations. The direction cannot

be determined from the data. This phenomenon is known as
‘instantaneous causality’. Within the framework of a
forecasting model, instantaneous causality could be interpreted
as an indicator for flaws in the model, that is, information
which could be used for improving forecasts but is not. On the
other hand, if the model is viewed as correct, it is impossible
to improve point forecasts by using these correlations which
however do affect stochastic forecasting.

V. BAYESIAN VECTOR AUTOREGRESSION (BVAR)

The Bayesian approach starts with the presumption that the
given data set does not contain information in every dimension
[12]. This means that by fitting an over parameterized system
some coefficients turn out to be non-zero just by pure chance.
Since the influence of the corresponding variables is just
accidental and does not correspond to a stable relationship
inherent in the data, the out-of-sample forecasting
performance of such models deteriorates quickly. The role of
the Bayesian prior can therefore be described as prohibiting
coefficients to be nonzero ‘too easily’ [15]. Only if the data
really provide information will the barrier raised by the prior
be broken through [13].

The next step consists in the specification of a prior
distribution for the coefficients. In this paper the so called
‘Minnesota prior’ is used see [5]. It specifies a random walk
process with drift for each of the variables involved and does
not allow for influences of own lags beyond the first one and
of other variables. This specification does not represent a
genuine Bayesian prior, since it does not characterize the
beliefs of an investigator, who usually postulates some
relationships among those variables. The Minnesota prior
could however be regarded as the intersection of the a priori
beliefs of many economists. In this sense it represents an
improvement over the so called “diffuse prior’, which is often
used to represent the notion of ‘knowing little’.

Since the prior distribution is specified as a multivariate
normal, it is necessary to set, besides the mean, the standard
deviations of the coefficient of variable j with lag | in the
below equation. And the covariances are set equal to zero.
Instead of specifying each standard deviation separately, they
are set as a function of 3 ‘meta-parameters 'z, w, and d:

s(i,j, D) = tf (i, Dg(Ds;/s;, where
fGpHp=101if i=j
=w ifi#j0<w<l1,

g =ad"t0<d<1,

And where the scaling factors s; and s; adjust for the
relative size of the variables. The parameter t stands for the
overall tightness of the prior; a smaller value indicating that
more weight is given to the prior. The function g(l) sets the
form of the lag pattern, which in this case has corresponding
standard deviation. The symmetric function f (i, j) controls the
interaction among the different variables; a higher w allows
for more interaction by setting a higher a priori standard
deviation for cross effects. In this investigation two
specifications of the parameters t, w, and d are considered:
‘loose prior’ (BVAR-loose): T = 0.2,w = 1.0,and d = 1.0
‘tight prior’ (BVAR-tight): T = 0.1,w = 0.5,and d = 0.5
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In the first case the lag pattern does not decay and own lags
and lags of other variables are treated alike. In the second case
the overall tightness is high, the lag pattern decays rapidly,
and cross influences are given less weight. The specification
also includes four seasonal dummies for each equation. Since
no constant term then enters the equations, the coefficients of
these variables will determine the drift in the time series.
These coefficients are not restricted a priori and are fully
determined by the data.

V. FFS DESIGN

In our proposal module, we use the above RVAR and
BVAR models in estimating the best faults forecast. The
statistics used to evaluate the different forecasts are root mean
square error (RMSE), U-statistic of Theil, and mean absolute
percentage error (MAPE) [19]. Figure 1 shows flowchart for
FFS diagram. First step is to collect the history process
variables from the DCS (Distributed Control System).
Gathering as much as correct and accurate data is very
important as a pre-step before data processing operation. Next
step is to arrange the variables and allocate history faults into
the history, then divide the history in Time Buckets (TB). It is
very important to choose the buckets period not so long, not so
short and based on the control system design, complexity of
the process, and setup pre-considerations. It could be decided
by collaboration with the responsible control engineer. After
that, we calculate trend signature for each variable per TB.
Trend signature (TS) is considered as stamp for each variable.
We use this value per variable per TB in the forecasting
operation.

Trend signature is calculated as follows:

1-  Apply polynomial regression to each trend

2- Calculate polynomial equation parameters

corresponding to each polynomial regression

3- Calculate z-score per each polynomial regression

equation which is

Observed value minus the mean value

Standard deviation of the values

So forecasting operation is applied on trend signatures
values rather than process variables’ original values.

At this stage we became ready to apply forecasting models
to the data, and choose the best model using forecasting
accuracy measure we mentioned above. Forecast is the future
timing of faults, so we can estimate in which TB there will be
faults occurrence. We compared the results with actual faults
occurrences and proofed that our model is calculating future
expectations for faults occurrences accurately and better than
usual faults detection techniques, because it is predicting them
BEFORE-TIME.

Equip N Control Ra;vrfct;:zrol Divide History
Engineer Variables Data into TBs &
Allocate Faults

DCS Data

A 4

Calculate Trend
Signature per
variable per TB

Process

Variables
orecasts TSs

Forecast
Accuracy
Test

Fig. 1 FFS Model Diagram

FFS advantages over tradition Fault diagnosis systems are:

1) It works offline, so it doesn’t take from the run time.
That makes it flexibility on time of running, and on
the same time it gives faults estimates.

2) It makes forecasting BEFORE-TIME, not ON-TIME,
which is supporting the controller and engineer more
than current faults detection systems which just gives
faults detection ON-TIME.

VI. EXPERIMENTS & RESULTS

Our experiment is done through chemical plant, which is
designed and implemented in Okayama University
Laboratory, Japan. The process is established in order to check
and test different methodologies for detecting and diagnosing
faults. The plant is consisting of tanks, pumps, sensors,
alarms, control valves, and manipulated valves. The material
used is water and the objecting is to circulate cold and hot
water in two different circles and exchange temperatures
between them.

Alarms are used to check the process variables limits such
as level of water in the tanks. Sensors are used to measure
different process variables such as temperature, pressure, and
vibration level in different locations in the plant. We used
DCS to measure the process variables and keep the history,
also as controller for the pumps, and valves. Used process
variables are Temperature: TK2, TK3, TC1, and TC2;
Pressure: PS1; Level: LS1, LS2, and LS3.

We apply two different forecasting scenarios and several
criteria for the goodness of fit over the forecasting intervals.
Furthermore, the two approaches are contrasted to an
‘unrestricted” VAR model with 6 lags for each variable in
each equation (UVAR-6) to demonstrate how over
parameterization affects forecasts performance.
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Fig. 2 Experimental Chemical Process Diagram

The first scenario consists of an ‘ex-ante’ forecast for
history of control process monitoring system over 16 history
TBs from TB50 to TB65. For this exercise each model is
estimated over history before that period by around 30 TB
periods from TB20 to TB49, and used to generate forecasts of
each variable for the 16 TBs. Then the information of the
TB50 is incorporated into the model by updating the
parameters through Kalman filtering and a new set of forecasts
is generated, now going from TB51 to TB65. This procedure

loses ground relative to BVAR-tight which predicts four of the
series better at step 8, but only one at step 1. RVAR and
BVAR-loose are the only specifications with all U-statistics
for one period ahead smaller than one, however, BVAR-loose
quickly deteriorates as the forecast horizon becomes longer.
Steps 4 and 8, which reflect the treatment of seasonality, put
up severe problems for all models, but BVAR-tight seems to
be most robust in this direction.

is repeated until TB65 is reached when all the available
information is used. In this way 16 one period, 15 two period,
14 three period,..., and 1 sixteen period forecast are generated,
which can be checked against the actual realizations. The
statistics used to evaluate the different forecasts are RMSE, U-
statistic of [6], MAPE. The first two criteria are based on
quadratic loss functions. Unfortunately, true forecaster’s loss
function is unknown. It even may be skew, with different costs
for optimistic and pessimistic mistakes see [1]. However, as
the modeling procedures rely on quadratic criteria, quadratic
loss is a useful technical assumption.

Whereas ex-ante forecasting is methodologically closer to
the actual situation of the forecaster who iteratively adapts his
model to the data, ex-post forecasting is compatible with
asymptotic theory which postulates a true model that is
completely identifiable in the long run. The second exercise
therefore computes ex-post forecasts over TB50-TB65, where
the whole sample period is used for estimation. The statistics
in this case are the mean forecast error (the bias), the standard
deviation, and the value of the T-statistic against the null
hypothesis that the mean forecast error is zero.

The general conclusion to be drawn from the models’ ex-
ante performance is documented in Tables 1-3 which show a
marked superiority of RVAR and BVAR-tight over UVAR-6
and BVAR-loose which is not shown here to save space.
Tables’ rows are showing the RMSE, Theil’s U statistic, and
MAPE respectively. For short forecast horizons up to 3 TBs
ahead, RVAR almost dominates. For longer horizons, RVAR

TABLE |
EX-ANTE FORECASTS FROM THE UVAR-6 MODEL FOR THE PERIOD TB50-
TB65
|1~'0retasl Step

Variahle 1 2 3 4 5 6 7 8
TK2 0012 0015 0016 0188 0026 0032 0039 0.040
0133 0142 0167 0967 0283 0300 0375 1100
0.183 0217 0250 0308 0433 0542 0650 0.667
TK3 0003 0005 0007 0009 0012 0015 0018 0.020
0150 0192 0358 0925 0542 03517 0750 1117
0025 0050 0083 0108 0142 0167 0217 0242
TCl 0017 0025 0028 0030 0031 0033 0033 0027
0650 0617 03508 0433 0358 0317 0267 0192
0283 0425 0467 0467 0525 0617 0617 0523
TC2 0010 0014 0014 0018 0019 0020 0017 0018
0375 0408 0325 0333 0275 0258 0200 0.183
2383 3642 3817 4333 4738 5100 4217 4392
Ps1 0236 0436 0666 0808 1026 1251 1451 1397
0625 0608 0642 0642 0675 0717 0742 0742
2292 3950 63608 7908 9.850 11992 14758 17.400
Ls1 0026 0033 0040 0043 0049 0053 0059 0059
0575 0758 0775 1467 1.038 1267 1100 1617
31675 43.117 51108 59.392 72475 79.600 90.750 98417
Ls2 0010 0009 0011 0013 0020 0019 0026 0.029
0117 0250 0125 0242 0183 0242 0208 0273
0217 0183 0258 0292 0433 0442 0600 0.642
L83 0032 0038 0050 0058 0065 0074 0079 0.095
0525 0717 0708 1.025 0800 0838 0800 1.008
0633 0683 0933 1142 1433 1683 16833 2100
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The performance of UVAR-6 can be improved by setting all
lags of order 5 and 6 to zero. This agrees with the supposed
deteriorating influence of insignificant parameters. It is worth
to contrast these results with the one obtained by [7] who
arrive at exactly the opposite conclusion, that is, an
improvement in forecasting with an increasing number of free
parameters.

TABLE Il
EX-ANTE FORECASTS FROM THE RVAR MODEL FOR THE PERIOD TB50-TB65
|Fore|:nst Step
Variahle 1 2 3 4 5 ] 7 8

TK2 0012 0015 0016 0188 0026 0032 0039 0040
0133 0142 0167 097 0283 0300 0375 1100

0183 0217 0250 0308 0433 0542 0630 0667

TK3 0.003 0005 0007 0009 0012 0015 0018 0020
0.150 0192 0358 0525 0342 0517 0750 LI

0.025 0050 0083 0108 0142 0167 0217 0242

IC1 0017 0025 0028 0030 0031 0033 0033 0027
0650 0617 0508 0433 0338 0317 0267 0192

0283 0425 0467 0467 0515 0617 0617 0515

IC2 0.010 0014 0014 0018 0019 0020 0017 0018
0375 0408 0325 0333 0275 0158 0200 0.183

1383 3642 3817 4333 47588 5100 4217 4392

Psl 0256 0456 0666 0808 1026 1251 1451 13597
0625 0608 0642 0642 0675 0717 0742 0742

2290 3950 63608 7908 9830 11992 14.758 17400

Ls1 0026 0033 0040 0043 0049 0053 0059 0039
0575 0758 0775 1467 1058 1267 L1100 1617

31675 43117 51108 59.592 72475 79.600 90.750 98417

Ls? 0.010 0009 0011 0013 0020 0019 0026 0029
0117 0250 0125 0242 018 0242 0208 02175

0217 0183 0258 0292 0433 0442 0600 0642

Ls3 0032 0038 0050 0058 0065 0074 0079 0095
0525 0717 0708 1023 0800 0858 0800  1.008

0633 0683 093 1142 1433 1683 1833 1100

It is possible to improve upon these forecasts by scanning
over different values of the ‘metaparameters’, T,w,and d .
Using the log-determinant of the matrix composed by cross
products of 8 TBs-ahead ex-ante forecast errors during the
period TB50-TB65 as a criterion function. Applying this
method to the data at hand, values of d close to one and w

close to zero - leaving 7 unchanged at 0.1 - have been obtained.

This means the optimal data based prior’ would be a
univariate autoregressive model for each of the variables with
no cross effects between variables.

This unsatisfactory result is the consequence of a symmetric
f(i, j) matrix which treats each of the eight variables in the

TABLE Il
EX-ANTE FORECASTS FROM THE BVAR-TIGHT MODEL FOR THE PERIOD
TB50-TB65
‘Furecasl Step
Variable 1 2 3 4 5 6 7 8

TK2 0013 0020 0021 0019 0027 0034 0033 0027
0.149 0193 0228 0998 0289 0315 0315 0783

0201 0315 0324 0315 0411 03569 0499 0461

TK3 0.005 0007 0011 0013 0018 0021 0026 0028
0289 0254 03525 1365 079% 074 1068 1584

0053 0079 0123 0149 0210 0263 0315 0350

IC1 0023 0033 0034 0026 0035 004 0045 003
0901 0831 0621 0376 0411 0420 0368 0236

0394 0543 058 0411 0604 0735 0814 0513

TC2 0017 0021 0022 0024 0031 003 0033 0032
0630 0621 0308 0455 0455 0455 0376 0331

4418 5478 5250 6598 7499 8173 7639 8160

Ps1 0312 03585 0811 0983 1204 1397 1333 1690
0761 0779 0788 0779 079 0796 0.79%  0.788

1704 53329 7245 9100 11333 13.82%F 16266 18916

151 0.036 0038 0041 0028 0039 0040 0048 0040
0.796 0875 0796 0945 0849 0963 0501 1076

50943 47863 30238 44730 64146 63934 3151 69974

182 0023 0031 0026 0017 0029 0041 0036 0023
0263 0858 0271 0324 0171 0516 0289 0228

0499 0744 0543 0394 0665 089 0779 0464

153 0.037 0033 0040 0039 0049 0053 0047  0.060
0595 0621 0757 0691 0604 0621 0473 0641

0726 0648 0718 0770 095 1173 1015 1313

system alike and could be remedied by putting a weak
economic structure on the prior standard deviations.This is
done by dividing the variables into core variables of the
system which are thought to be important in explaining all the
variables of the system and into the rest which are thought to
be of lesser importance. This method results in a considerable
improvement in the forecasting performance.

Table 111 gives the results from ex-post forecasting and
shows severe biases, especially with the ‘good’ models
BVAR-tight and RVAR. It might be concluded that UVAR
forecasts provide no information relative to no-change but do
not show any systematic tendency towards over- or
underestimation. As mentioned before, ex-post forecasting
methodologically favors non-Bayesian VAR, so the RVAR
biases for all but one of the series are even more surprising.
This can, however, be explained by regarding the RVAR
estimates as pre-test estimates, whose bias is a well-known
fact.
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TABLE IV
PROCESS VARIABLES WITH FAULTS DATA SAMPLE

TK3 TC1 TIC2

Ps1 LSl 181

L83

Faults

TB20

2300

3.500

2800

140

1792

1434

1.147

0913

YES

work suggests a new methodology for detecting faults in
future, as future work we need to link it with faults intelligent
knowledge base to be able to suggest to the operator what

actions should be taken to avoid the occurrence of future faults.

TB21) 2300 3400 2720 2176 1741 139 1114 0891 NO
TB22) 2670 3440 2732 2200 1761 1409 1127 0502 NO
Trining Perod TB23) 2320 3430 2744 2185 1756 1405 1124 0899 NO
TB24| 2770 3330 2664 2131 1705 1364 1091 0873 | YES
TB25) 2870 3350 2680 2144 1715 1372 1.098 0878 NO

TB40) 2500 3500 2800 2240 1792 1434 1147 0818 NO

2

TB30) 1725 2625 2100 1.680 134 1075 0.860 0.688| NO
TB31) 1875 1550 2040 1632 1306 1.044 0836 0668 NO
TB32) 2003 2580 2.064 1651 1321 1057 (0845 0676 | YES
TB33) L7140 1573 2038 1646 1317 1054 0843 0674 NO
TB34) 2078 2498 1998 1598 1279 1.023 0818 0655 NO

Test Period

TB63) 2.175 2100 1680 1344 1075 0860 0688 NO

2
TB66) 2.175 262
TB67) 12%4 1969 1575
TB68) 1406 1913 1530

1

2100 1

1

1

TB69) 1502 1935 1548 1
1

1

1

1

680 L34 1075 0860 0.688) NO
260 1008 0806 0.645 0316) YES
24 0979 0.783 0627 0501( NO
380991 0793 063 0507] NO
35 0988 0790 0632 0506 NO
9% 0859 0767 0614 0491] NO
08 128 1029 0823 065%) NO

60 1008 0806 0.645 0516) YES

Forecasting Period w0l 105 1o 154

TB71) 1558 1873 14%
TB72) 2153 1513 2010
TB73) 1631 1969 1575

After doing that deep analysis and comparisons, the model is
ready to adapt and choose the best model for every input. And
then the outcome is giving the faults timing for the coming
TBs. As shown in Table IV.

VII. CONCLUSION & FUTURE WORK

Faults are considered a costly problem for control systems,
especially chemical processes. Due to its complexity, and
criticality. This issued the need to research and investigates
how to detect faults as accurate and early as possible. Previous
research is worked on how to detect faults ON-TIME, but our
proposal is how to use forecasting techniques with take
advantage of analyzing history process variables to estimate
when faults is going to happen in future. We used two
methods subset modeling and Bayesian techniques. Our
experiment is done on chemical process, designed and
implemented specially to investigate control and faults
diagnosis issues. The results have demonstrated that the
RVAR and BVAR-tight are superior in most aspects to the
other model specifications. This evidence suggests that the
problems associated with an over parameterized model can be
avoided by either reducing the number of parameters through
exclusion restrictions or by placing prior restrictions on the
parameters in a Bayesian way. Using either of these
techniques the forecasting performance can be considerably
improved. RVAR dominates BVAR-tight for shorter
forecasting horizons but not over longer ones. This research
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