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Abstract—In this paper a novel method for finding the fault zone 

on a Thyristor Controlled Series Capacitor (TCSC) incorporated 
transmission line is presented. The method makes use of the Support 
Vector Machine (SVM), used in the classification mode to 
distinguish between the zones, before or after the TCSC. The use of 
Discrete Wavelet Transform is made to prepare the features which 
would be given as the input to the SVM. This method was tested on a 
400 kV, 50 Hz, 300 Km transmission line and the results were highly 
accurate. 

 
Keywords—Flexible ac transmission system (FACTS), thyristor 

controlled series-capacitor (TCSC), discrete wavelet transforms 
(DWT), support vector machine (SVM). 

I.  INTRODUCTION 
HE use of Flexible AC Transmission System (FACTS) 
devices has become quite popular in transmission 

systems. The Thyristor Controlled Series-Capacitor (TCSC) is 
one such device that has found usage in the transmission lines 
as it has enabled optimum use of the transmission line by 
allowing features like power control, dynamic compensation 
etc. The TCSC consists of a series capacitor in parallel with a 
series combination of a reactor and an anti-parallel connection 
of thyristors along with a protection feature in the form of a 
Metal Oxide Varistor (MOV). The MOV provides over-
voltage protection to the series capacitor. However, the 
introduction of the TCSC has caused the protection schemes 
of transmission lines using traditional methods, to be difficult 
because they introduce sudden changes in the apparent 
impedance of the transmission line [1],inversion of voltage 
and current signals etc. [2,3]. Since, protection schemes, 
existing now, determine the state of the system through the 
voltage and current waveforms, the fault analysis has now 
essentially become a pattern recognition problem. 
 Different kinds of approaches have been proposed to find 
out the faulty zone. [4] uses the travelling wave approach for 
the protection of the series compensated line, [5] and [6] make 
use of the SVM and a combination of the SVM and DWT 
respectively and [7] make use of a scheme called the Decision 
Tree (DT) to find out the faulty zone. 
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 The above mentioned works, however, do not produce 
satisfactory results for section identification with a maximum 
overall accuracy of 93.917% has been reported in [6]. 
 The method proposed here also uses both the SVM and the 
DWT, but a thorough analysis was done to find out the best 
features that can aid the process. The pre-requisite for the 
proposed method is that the type of fault viz. a-g, b-g, c-g, a-
b-g, a-c-g, b-c-g, a-b-c-g, a-b, a-c and b-c must be found. A 
data window of 2 cycles corresponding to 200 samples was 
taken for the analysis. . The idea of using 2 cycles’ 
information is to ensure that all the possible test cases can be 
incorporated. The data obtained after processing was given to 
the SVM for classification. The SVM algorithm classifies the 
data into two classes i.e. SVMs solve for two class problems. 
The section identification is for a particular type of fault, 
hence, a total of 10 SVMs are needed to determine the faulty 
section. 
 In this paper, the second section gives a brief insight into 
the wavelet transforms. The third section gives an account of 
the classification using SVM. The fourth section describes the 
system studied and the simulation process. The fifth section 
presents the feature extraction process. The sixth section 
describes the results and the last section concludes the work 

II.  DISCRETE WAVELET TRANSFORM 
Before discussing about DWT, a brief introduction of 

continuous wavelet transform or simply the wavelet 
transforms should be made. The wavelet transforms are 
realised by two sets of functions called the scaling function 
and the wavelet function. The expressions for these are, 

  2
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where φ represents the scaling function and ψ represents the 
wavelet function. φ00 represents the basis function for the 
scaling function and similarly, ψ00 represents the basis 
function for the wavelet function. It is also called the mother 
wavelet. The parameter j represents the resolution level and 
the parameter k is called the shifting parameter. The parameter 
k ranges from 0 to 2j-1 while the parameter j starts at 0 and 
ideally goes to infinity but, in practice it is limited by the 
sampling rate. Hence, the scaling and the wavelet functions 
are the scaled and shifted versions of their corresponding basis 
functions. However, the two scale relation in the wavelet 
theory helps in defining the wavelet and the scaling function 
at a particular resolution level purely in terms of the scaling 
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function of the next higher resolution level. The expressions 
for the scaling function and the wavelet function now turn out 
to be like this, 
 

   0( ) ( ) 2 (2 )
k

t h k t kϕ ϕ= −∑   (3) 

   0( ) ( ) 2 (2 )
k

t h k t kψ ψ= −∑    (4) 

 
The coefficients h0 and h1 are considered as filter coefficients, 

 corresponds to a low pass filter and  corresponds to a 
high pass filter, thus, rendering the wavelet transforms to be 
considered as a filter operation. 
 Just like the discrete Fourier transform, the DWT can also 
be thought of as an operation that maps continuous time 
signals into a set of numbers. These coefficients are denoted 
by making use of the two scale relation as 
  

  0 1( ) ( 2 ) ( )j jm
c k h m k c m+= −∑  (5) 

  1 1( ) ( 2 ) ( )j jm
d k h m k c m+= −∑  (6) 

 
The coefficient c is termed as the approximation coefficient; 
the term d is termed as the detail coefficient and m is the 
sample instant. We can clearly see from the expressions that 
the detail coefficients correspond to the high frequency 
coefficients and the approximation coefficients correspond to 
the low frequency coefficients. The inverse synthesis to obtain 
the original signal is given by, 
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 The DWT brings with it an important concept of Multi 
Resolution Analysis (MRA). It develops representation of 
signal in terms of wavelet and scaling functions in different 
frequency resolution levels. This can be ascertained from (5) 
and (6) i.e. the detail and approximation coefficients of a 
particular resolution level can be obtained from the 
approximation coefficients of the previous level. Hence, the 
MRA can be considered as a sequential combination of pairs 
of high pass and low pass filters to obtain the detail and 
approximation coefficients at each frequency resolution level. 
Fig. 1 shows the concept of the MRA where in the end we 
obtain the detail coefficients of all the resolution levels and 
the approximation coefficients of the last resolution level. This 
sort of analysis is ideal for fault analysis because it requires 
the higher frequency components to be examined and the 
detail coefficients correspond to the same only. 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. CLASSIFICATION USING SVM 
 
 SVMs are a set of related supervised learning methods 
used for classification and regression. Since their advent they 
have become the most widely used tools for the classification 
of data. The SVM, like other classifiers, separates the data 
into two classes represented by labels. They classify a set of 
non-linear data by first exporting them to a higher 
dimensional feature space and then creating a hyperplane to 
separate them in the same feature space. Even though the 
given data might not be linearly separable, but the hyperplane 
generated in the higher dimension space is a linear one. 
 SVMs have been widely used in the image processing 
techniques because it can handle very large dimensional data 
quite easily as compared to other learning algorithms like the 
neural networks. The same attribute of the SVMs can be 
applied in the classification of faults on a transmission line as 
well, taking into considerations the number of inputs/features 
that would have to be provided. One more advantage that the 
SVMs have over the other learning algorithms is that it works 
on the principle of Structural Risk Minimization (SRM), 
which is rooted in the statistical theory. This technique 
involves the minimization of the upper bound (it is a sum of 
the training error rate and a term that depends on the Vapnik-
Chervonekis (VC) dimensions [8]) of the generalization error 
[9, 10]. The other learning algorithms use another technique 
called the Empirical Risk Minimization (ERM) i.e. they tend 
to reduce the error on the training dataset. Neural networks are 
a prime example of ERM technique. On comparison, the SRM 
technique was found to give better generalization abilities i.e. 
to classify unseen data correctly. 
 Therefore, the main objective of an SVM is to create a 
hyperplane to classify a set of data into two classes so that the 
margin between the sets is a maximum. Consider a vector of 
data points denoted by  (i=1... m) which belong to either 
class-I or class-II, denoted by y (the class can be given a label, 
usually y=1 or y=-1). Now the equation of the separating 
hyperplane in any dimension will be given by 
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Fig. 1. Multi-Resolution Analysis using DWT 
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Separating 
hyperplane 

Support Vectors 

Fig. 3. Creation of separating hyperplane using 
support vectors 

  ( ) 0Tf x w x b= + =  (8) 
where w correspond to a weight vector having the same 
dimensions as the input vector . The parameter b is a scalar. 
If a data point from the vector  makes f(x)>0 for a particular 
w and b, then that point belongs to (say) class-I and the data 
point that corresponds to f(x)<0, belongs to class-II. The 
parameters w and b determine the position of the hyperplane. 
The above discussed scenario was for a linearly separable 
data. However, in practice we seldom encounter such 
problems. 
 The maximization of margin between the two classes 
involves the maximization of a parameter known as the 
geometric margin. It is the distance of the separating 
hyperplane from a point and can be used as a parameter to 
formulate the problem statement for the SVM. The geometric 
margin is showed in Fig. 2. The geometric margin is equal to 
1⁄║w║ and using this, the problem statement can be stated as 
  
   ( ) 1T

i i iy w x b ζ+ ≥ −     

   0iζ ≥ ,          for i=1....m (9) 
 

The parameters ζi and C are employed as means to decide 
upon the rogue points i.e. the points that are misclassified. 
Usually if a point is misclassified during training, the value of 
the parameter ζi becomes greater than one and in order to 
discourage the classifier to do this, a penalty is introduced on 
that rogue point in the training example as represented by the 
second term in the objective function. The parameter C 
represents the trade-off between the optimal margin and the 
misclassification. The solution for the above expressions can 
be found out using the Lagrange multiplier method, the 
duality concept and the Karush Kuhn Tucker conditions and 
the final expression is obtained as, 
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The number of elements in the vector x represents the 

number of inputs. However, the training happens only for 
those  
 
 
 
 
 
 
 
 
 
 
 
 
 

elements in the input vector for which the corresponding αis 
are not zeroes. Those points for which the corresponding  αis 
are not equal to zero are called the support vectors (SVs) and 
hence, the name Support Vector Machine. The advantage of 
this phenomenon is that since, the SVs are always less in 
number than the total amount of input vectors, the training is 
always fast. The optimum value of the parameter b is given by 
 
 *

, 1 , 1(max min ) 2T T
i yi i i yi ib w x w x∀ =− ∀ == +  (11) 

 
This expression can be thought off intuitively as being half 

of the distance between the nearest SVs of the either class. 
 On the application of the KKT conditions on the 
lagrangian equation of (9), the optimal value of the parameter 
w is obtained as  
 
  * i i i

i
w y xα= ∑  (12) 

 
 On substituting the optimum values of the parameters b 

and                                                                                   w in 
(8), the final expression of the decision hyperplane comes as, 

 
  *( ) T

i i iSV
f x y x x bα= +∑  (13) 

 
The summation should be done for the whole range of i but, 

since the value of the αi will be non zero only for the SVs, 
hence only the SVs are considered. Any test point will be 
classified by this decision hyperplane into either class-I or 
class-II. With this, we can seen that the SVMs reduce the 
training effort by concentrating only on the SVs. Fig. 3 shows 
a decision hyperplane in a two dimension plane formed with 
the help of the SVs. 
 
 We can see from (10) that the only dependence of the 
algorithm on the input x is through the inner product xi

Txj. 
Suppose, if we introduce a function φ such that it maps the 
input vector x into a higher dimensional feature space, so that 
the data which was linearly inseparable in the current feature 
space is linearly separable in the higher dimensional feature 
space. That is, 
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Fig. 2. Geometric margin of a point from the separating 
hyperplane 
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Fig. 4. The TCSC incorporated transmission line 
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Therefore the inner product xi
Txj in the previous lower 

dimensional feature space can be now represented as 
φ(xi)Tφ(xj) in the higher dimensional feature space. However, 
this approach can make the computation very difficult as it 
would not be feasible to represent a higher dimensional 
feature vector like φ(x), leave alone the inner product 
φ(xi)Tφ(xj). This problem is overcome by the application of the 
kernel functions as they reduce the computational effort. 
 The inner product in the higher dimensional feature space 
i.e. φ(xi)Tφ(xj) is replaced by a kernel function as 
 
   ( , ) ( ) ( )T

i j i jK x x x xφ φ=   (15)  

 
To find out how a kernel function can reduce the 
computational effort, the following example can be of some 
help. Suppose that we have two input vectors x & z, such that 
x,z Є Rmax  and we have a kernel function K(x,z) such that, 
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From the above expressions it can be observed that the 

computational time to calculate the expression φ(x) is in the 
order of  n2, where n is the dimension of x and z, whereas, the 
time required to compute the kernel function K(x,z) is in the 
order of n only. That’s how a kernel function makes the 
computation of the inner product efficient 
 A query can be put forward as to whether there exist a 
function K(xi,xj) which can act as kernel or can any function 
can act as a kernel. The validity of a kernel function is given 
by the Mercer’s Theorem [11] which states that only positive 
definite functions can act as kernels. The kernel function in 
the SVM employed for this paper is radial basis function 
(RBF) given as, 
  2 2( , ) exp( 2 )i iK x x x x σ= − −  (18)  
 
where σ (sometimes mentioned as g) is the width of the RBF 
function. 

 
IV. SYSTEM AND SIMULATION STUDIES 

 The system used for the simulation studies is a 400 kV, 50 
Hz, 300 km transmission line having a TCSC module in the 
middle and two sources connected to its both ends, one acting 
as the actual power source and the other as an assumed 
infinite source. The relaying is done at the sending end i.e. 
before the TCSC module. All the components are realized 

using the PSCAD/EMTDC subroutines [12]. Fig. 4 shows the 
schematic diagram of the system considered. 
 In order to cover the maximum possible cases, certain 
parameters viz. the firing angle (FA) of the thyristors, the fault 
resistance (Rf), the fault inception angle (FIA) and the fault 
location were varied. To provide capacitive compensation to 
the transmission line, the TCSC is designed so as to provide a 
maximum compensation level at a FA of 1500 and a minimum 
compensation level at an FA of 1800. Usually, the TSCSs are 
designed to provide a compensation level of nearly 30-40% 
only.  
 Similarly, the fault resistance is varied within a range of 0 
to 50 ohms; the FIA is varied within a range of 00 -1800 , the 
fault location is selected at 5% -95% at an interval of 5% of 
the transmission line. Apart from the variation in the fault 
location, the number of variations in the FA, fault resistance 
and the FIA is 10, 4 and 5 respectively for each fault type. As 
the number of fault types is 10 (stated in section 1), the total 
amount of the variations or to say the total amount of 
variations come out to be 38000. 
  

V. FEATURE EXTRACTION 
 The three voltage waveforms were taken for extracting the 
features as they were the ones with appreciable characteristics 
for the purpose of section identification as compared to the 
current waveforms. The analysis was done on a-g fault first 
and the corresponding features resulting from its analysis were 
also taken for the other faults.  
 As mentioned earlier that DWT can be considered as a 
filter operation. Daubechies’ wavelets with different orders 
have been utilized here for the analysis for e.g. db5 implies a 
Daubechies filter with an order 5. Upon the analysis of the 
phase A voltage, the filters that produced the optimum 
features were db5, db6, db7, db8  and their corresponding 
resolution levels were  6, 7, 6 and 6 respectively. 

 
  

 
Similarly, for the phase B voltage it was db4 with 

resolution levels 5, 7 and 8 and db7 with resolution level 5. 
For phase C it were db4 and db5 with resolution levels 7and 6 
respectively. The same filters and their corresponding levels 
were also used for other faults and the results obtained were 
outstanding even thought the original analysis was for the a-g 
fault. 

 
VI. RESULTS 

 
 The SVM used is a two class SVM [13] for the 
identification of the faulty section. The output for the cases  
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TABLE I 
PREDICTION RATES FOR INDIVIDUAL FAULT TYPES 

 
Fault Kernel Cases 

tested by 
SVM 

Value 
of C, g 

Accuracy  

a-g  RBF 1900 10,1 100% 
b-g RBF 1900 10,1 100% 

c-g RBF 1900 10,1 100% 

a-b-g RBF 1900 10,5 99.74% 

a-c-g RBF 1900 10,1 100% 

b-c-g RBF 1900 10,1 100% 
a-b-c-g RBF 1900 10,5 98.1% 

a-b RBF 1900 10,5 99.84% 

a-c RBF 1900 10,1 100% 

b-c RBF 1900 10,1 100% 

 
that are before the TCSC is set to ‘1’ and ‘-1’ for the cases 
after the TCSC module. The inputs to the SVM are the 
maximum values of the outputs obtained after the feature 
extraction process for the three phase voltages. 50% of the 
data generated was used for training and the rest for testing. 
Table I shows the results after testing the SVM on unknown 
data as well as the values of the parameters C and g of the 
RBF kernel which was used to train the SVM. A total of 
19000 cases were tested and a high accuracy was obtained. 
Before testing, a three-fold cross validation was also done for 
all the faults and the results were more or less the same as 
shown in the Table I. Only for the a-b-g fault was the 
accuracy a little low. 
 

VII. CONCLUSION 
 From the Table I, it can be seen that the accuracy of the 
classifier in determining the faulty section is very high and is 
better than ones presented in [4] and [5]. Hence, the proposed 
method can be surely used for fault zone detection 
successfully.  
 

APPENDIX 
 

Generator Details: 
 Base kVA: 100000;   Base kV: 400  
 Base frequency: 50 Hz. 
 
Transmission line details: 
 Positive sequence impedance, Z(1) = 9.78+j110.23 Ω. 
 Zero sequence impedance, Z(0) = 96.45+j335.26 Ω. 
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