
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

448

Fast and Efficient Algorithms for Evaluating
Uniform and Nonuniform Lagrange and Newton

Curves
Taweechai Nuntawisuttiwong, Natasha Dejdumrong

Abstract—Newton-Lagrange Interpolations are widely used in
numerical analysis. However, it requires a quadratic computational
time for their constructions. In computer aided geometric design
(CAGD), there are some polynomial curves: Wang-Ball, DP and
Dejdumrong curves, which have linear time complexity algorithms.
Thus, the computational time for Newton-Lagrange Interpolations
can be reduced by applying the algorithms of Wang-Ball, DP and
Dejdumrong curves. In order to use Wang-Ball, DP and Dejdumrong
algorithms, first, it is necessary to convert Newton-Lagrange
polynomials into Wang-Ball, DP or Dejdumrong polynomials. In
this work, the algorithms for converting from both uniform and
non-uniform Newton-Lagrange polynomials into Wang-Ball, DP and
Dejdumrong polynomials are investigated. Thus, the computational
time for representing Newton-Lagrange polynomials can be reduced
into linear complexity. In addition, the other utilizations of using
CAGD curves to modify the Newton-Lagrange curves can be taken.

Keywords—Newton interpolation, Lagrange interpolation, linear
complexity.

I. INTRODUCTION

THERE are many interpolation methods used in numerical

analysis. The popular one is Newton’s divided-difference

interpolating polynomial. The Newton’s method was given by

Isaac Newton written in Lemma 5 of Book III of his Principia

Mathematica of 1687 [1] but it was known to him before

from the letter he wrote to Oldenburg [2]. The simple forms

of Newton interpolating polynomials, Lagrange interpolations,

were published by Joseph-Louis Lagrange under his name.

However, the same formula had been produced by Waring

sixteen years earlier.

Newton-Lagrange interpolations can be beneficial to

estimate intermediate data between precise data points or

to predict the future data. In addition, Newton-Lagrange

interpolations can be used to vectorize a raster-image into a

vector image. However, a quadratic computational time, O(n2),

must be taken to construct a Newton-Lagrange interpolation.

In computer aided geometric design (CAGD), there are

many polynomial curves, e.g. Bézier [3], Said-Ball [4],

Wang-Ball [5], DP [6], NB1 [7], [8] and Dejdumrong [9]

curves. The difference between Newton-Lagrange and CAGD

curves is the utilization of CAGD curves that is for CAD/CAM

modeling. In CAGD curves, Bézier curves are widely used

in CAD software because they are better in shape preserving

and possess simple forms. Unfortunately, Bézier curve has a

T. Nuntawisuttiwong and N. Dejdumrong are with the Department
of Computer Engineering, King Mongkut’s University of Technology
Thonburi, Bangkok, Thailand (e-mail: taweechai.wee@gmail.com,
natasha@cpe.kmutt.ac.th).

quadratic computation time, which is slower than the others.

However, there are some curves in CAGD, Wang-Ball, DP

and Dejdumrong curves with linear complexity. In order to

reduce their computational time, Bézier curve is converted

into any of Wang-Ball, DP and Dejdumrong curves. Hence,

the computational time for Newton-Lagrange interpolations

can be reduced by converting them into Wang-Ball, DP and

Dejdumrong algorithms. Thus, it is necessary to investigate

the conversion from Newton-Lagrange interpolation into

the curves with linear complexity, Wang-Ball, DP and

Dejdumrong curves. An application of this work is to modify

sketched image in CAD application with the computational

time reduction for plotting Newton-Lagrange curves.

II. NEWTON & LAGRANGE POLYNOMIALS

Although Newton and Lagrange polynomials are different

representations, their simple forms are the same polynomials.

Newton applies Divided Difference method to represent its

polynomial while Lagrange uses simpler formula. At the

beginning, it is important to introduce both methods. Newton

and Lagrange polynomials can be shown as follows:

A. Newton Polynomial

Let N (t) be the Newton polynomial of control points,

{bi}ni=0, and the weight, {ti}ni=0, then

N (t) =
n∑

i=0

f [ti, ti−1, .., t0]
i∏

j=0

(t− tj), tε[t0, tn] (1)

where

f [ti, ti−1, .., tk] =
f [ti, ti−1, .., tk+1]− f [ti−1, ti−2, .., tk]

ti − tk
,

(2)

and

f [ti] = bi. (3)

B. Lagrange Polynomial

Let L(t) be the Lagrange polynomial of control points,

{vi}ni=0, and the weight, {ti}ni=0, then

L(t) =
n∑

i=0

vi

n∏
j=0,j �=i

t− tj
ti − tj

, tε[t0, tn]. (4)

In CAGD curves, there exists the power basis form

for representing curves. In this work, the power basis

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

449

representations for Newton and Lagrange polynomial are

investigated. Thus, Newton and Lagrange polynomial can be

computed by the following definition.

Definition 1. Newton-Lagrange Power Basis: Let N (t) and
L(t) be Newton and Lagrange polynomial with their control
points, {bi}ni=0. Newton and Lagrange polynomial can be
represented by using power basis as follows:

N (t) = L(t) =
n∑

i=0

n∑
j=0

bi · fi,j · ti, (5)

where fi,j is Newton-Lagrange power basis defined by

fi,j =
Fn

i,n−j(0)∏n
i=0,i �=j tj − ti

(6)

and

Fn
i,n−j(u) =

⎧⎨
⎩

1 , for j = 0,

∑n−j+1
k=u,k �=i Fn

i,j−1(k + 1)tk , for j > 0.
(7)

Definition 2. Newton-Lagrange Monomial Matrices: Newton
and Lagrange polynomials can be represented by using
monomial matrix forms as follows:

N (t) = L(t) = [
b0 b1 · · · bn

] ·M ·

⎡
⎢⎢⎢⎣

1
t
...
tn

⎤
⎥⎥⎥⎦ (8)

where M is Newton-Lagrange monomial matrix defined as
follows:

M =

⎡
⎢⎢⎢⎣

f0,0 f0,1 . . . f0,n
f1,0 f1,1 . . . f1,n

...
...

. . .
...

fn,0 fn,1 . . . fn,n

⎤
⎥⎥⎥⎦ . (9)

The matrix inverse of Newton-Lagrange monomial matrix

can be expressed as follows:

M−1 =

⎡
⎢⎢⎢⎣

f0,0 f0,1 . . . f0,n
f1,0 f1,1 . . . f1,n

...
...

. . .
...

fn,0 fn,1 . . . fn,n

⎤
⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎣

g0,0 g0,1 . . . g0,n

g1,0 g1,1 . . . g1,n

...
...

. . .
...

gn,0 gn,1 . . . gn,n

⎤
⎥⎥⎥⎦ ,

(10)

where

gi,j =

⎧⎨
⎩

1 , for i = 0,

tij , for i > 0.
(11)

Newton and Lagrange polynomial are very useful for

polynomial interpolation. However, they take a lot of

computational time, O(n2). In CAGD curves, Wang-Ball, DP

and Dejdumrong curves consume linear computational time,

O(n). Thus, the computational time can also be reduced by

using the conversion from Newton-Lagrange polynomials into

Wang-Ball, DP or Dejdumrong curves.

III. CONVERSION FROM UNIFORM NEWTON-LAGRANGE

POLYNOMIALS INTO CAGD CURVE

A. Conversion from Uniform Newton-Lagrange Curve into
Wang-Ball Curve

Wang-Ball control points, {pi}ni=0, can be obtained from

Newton control points, {bi}ni=0, and Lagrange control points,

{vi}ni=0, as follows:

[
p0 p1 · · · pn

]
=

[
b0 b1 · · · bn

] ·A−1

(12)

and

[
p0 p1 · · · pn

]
=

[
v0 v1 · · · vn

]·A−1 (13)

where

A =

⎡
⎢⎢⎢⎣

a0,0 a0,1 . . . a0,n
a1,0 a1,1 . . . a1,n

...
...

. . .
...

an,0 an,1 . . . an,n

⎤
⎥⎥⎥⎦ (14)

and

ani,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2tj)
i(1− tj)

i+2 , for 0 ≤ i ≤ ⌊
n
2

⌋− 1

(2tj)
i(1− tj)

n−i , for i =
⌊
n
2

⌋

(2(1− tj))
n−i(tj)

i , for i =
⌈
n
2

⌉

ann−i,j(1− tj) , for
⌈
n
2

⌉
+ 1 ≤ i ≤ n

(15)

B. Conversion from Uniform Newton-Lagrange Curve into
DP Curve

DP control points, {qi}ni=0, can be obtained from Newton

control points, {bi}ni=0, and Lagrange control points, {vi}ni=0,

as follows:

[
q0 q1 · · · qn

]
=

[
b0 b1 · · · bn

]·C−1 (16)

and

[
q0 q1 · · · qn

]
=

[
v0 v1 · · · vn

]·C−1 (17)

where

C =

⎡
⎢⎢⎢⎣

c0,0 c0,1 . . . c0,n
c1,0 c1,1 . . . c1,n

...
...

. . .
...

cn,0 cn,1 . . . cn,n

⎤
⎥⎥⎥⎦ (18)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

450

and

cni,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−i(1− tj)
n , for i = 0

(−1)n−i(1− tj)
n−itj , for 0 < i ≤⌊

n
2

⌋− 1

(−1)n−i(n− 2i)(1− tj)
i+1tj+

(12)
�n

2 �−�n
2 �(1− t

�n
2 �+1

j + , for i =
⌊
n
2

⌋

(−1)�n
2 �(1− tj)

�n
2 �+1)

(n− 2i)(
tj−b
b−a)(

tj−a
b−a)n−i+1+

(12)
�n

2 �−�n
2 �(1− (

tj−a
b−a)�n

2 �+1+ , for i =
⌈
n
2

⌉

(−1)�n
2 �(1− tj)

�n
2 �+1)

(−1)(1− tj)t
i
j , for

⌈
n
2

⌉
+ 1

≤ i < n

(−1)n−itij , for i = n
(19)

C. Conversion from Uniform Newton-Lagrange Curve into
Dejdumrong Curve

Dejdumrong control points, {di}ni=0, can be obtained from

Newton control points, {bi}ni=0, and Lagrange control points,

{vi}ni=0, as follows:

[
d0 d1 · · · dn

]
=

[
b0 b1 · · · bn

] ·D−1

(20)

and

[
d0 d1 · · · dn

]
=

[
v0 v1 · · · vn

]·D−1 (21)

where

D =

⎡
⎢⎢⎢⎣

d0,0 d0,1 . . . d0,n

d1,0 d1,1 . . . d1,n

...
...

. . .
...

dn,0 dn,1 . . . dn,n

⎤
⎥⎥⎥⎦ (22)

and

dn
i,j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i+13i(1− tj)
i+3 , for i = 0

(−1)i+13i(1− tj)
i+3tij , for 0 < i <⌈

n
2

⌉− 1

(−1)n−i3i(1− tj)
n−itij , for i =

⌈
n
2

⌉− 1

(−1)n−i2× 3i−1(1− tj)
itij , for i = n

2 and
n is even

(−3)n−i(1− tj)
n−itij , for i =

⌊
n
2

⌋
+ 1

(−3)n−i(1− tj)
n−itn−i+3

j , for
⌊
n
2

⌋
+ 1 <

i < n

(−3)n−itn−i+3
j , for i = n

(23)

IV. CONVERSION FROM NONUNIFORM

NEWTON-LAGRANGE INTO CAGD CURVES

A. Conversion from Nonuniform Newton-Lagrange curve
into Nonuniform Wang-Ball curve

Wang-Ball control points, {pi}ni=0, can be transformed from

Newton control points, {bi}ni=0, and Lagrange control points,

{vi}ni=0, as follows:

[
p0 p1 · · · pn

]
=

[
b0 b1 · · · bn

]·A−1 (24)

and

[
p0 p1 · · · pn

]
=

[
v0 v1 · · · vn

]·A−1 (25)

where

A =

⎡
⎢⎢⎢⎣

a0,0 a0,1 . . . a0,n
a1,0 a1,1 . . . a1,n

...
...

. . .
...

an,0 an,1 . . . an,n

⎤
⎥⎥⎥⎦ (26)

and

ani,j(t, a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−2)iβi+2 for i = 0

(−2)iβi+2αi for 0 < i ≤ ⌊
n
2

⌋

(−1)n−i2iβn−iαi for i =
⌊
n
2

⌋

(−2)n−iβn−iαi for i =
⌈
n
2

⌉

(−2)n−iβn−iαn−i+2 for
⌈
n
2

⌉
+ 1 ≤ i < n

(−2)n−iαn−i+2 for i = n
(27)

where

α =
tj − a

b− a
(28)

and

β =
tj − b

b− a
(29)

B. Conversion from Nonuniform Newton-Lagrange curve
into Nonuniform DP curve

DP control points, {qi}ni=0, can be derived from Newton

control points, {bi}ni=0, and Lagrange control points, {vi}ni=0,

as follows:

[
q0 q1 · · · qn

]
=

[
b0 b1 · · · bn

]·C−1 (30)

and

[
q0 q1 · · · qn

]
=

[
v0 v1 · · · vn

] ·C−1 (31)

where

C =

⎡
⎢⎢⎢⎣

c0,0 c0,1 . . . c0,n
c1,0 c1,1 . . . c1,n

...
...

. . .
...

cn,0 cn,1 . . . cn,n

⎤
⎥⎥⎥⎦ (32)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

451

and

cni,j(t, a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−iβn , for i = 0

(−1)n−iβn−iα , for 0 < i ≤⌊
n
2

⌋− 1

(−1)n−i(n− 2i)βi+1α+

(12)
�n

2 �−�n
2 �(1− α�n

2 �+1 , for i =
⌊
n
2

⌋
+(−1)�n

2 �β�n
2 �+1)

(n− 2i)βαn−i+1+

(12)
�n

2 �−�n
2 �(1− α�n

2 �+1+ , for i =
⌈
n
2

⌉
(−1)�n

2 �β�n
2 �+1)

(−1)βαi , for
⌈
n
2

⌉
+ 1

≤ i < n

(−1)n−iαi , for i = n
(33)

C. Conversion from Nonuniform Newton-Lagrange Curve
into Nonuniform Dejdumrong Curve

Dejdumrong control points, {di}ni=0, can be expressed by

Newton control points, {bi}ni=0, and Lagrange control points,

{vi}ni=0, as follows:

[
d0 d1 · · · dn

]
=

[
b0 b1 · · · bn

] ·D−1

(34)

and

[
d0 d1 · · · dn

]
=

[
v0 v1 · · · vn

]·D−1 (35)

where

D =

⎡
⎢⎢⎢⎣

d0,0 d0,1 . . . d0,n
d1,0 d1,1 . . . d1,n

...
...

. . .
...

dn,0 dn,1 . . . dn,n

⎤
⎥⎥⎥⎦ (36)

and

dni,j(t, a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)i+13iβi+3 , for i = 0

(−1)i+13iβi+3αi , for 0 < i <⌈
n
2

⌉− 1

(−1)n−i3iβn−iαi , for i =
⌈
n
2

⌉− 1

(−1)n−i2 · 3i−1βiαi , for i = n
2 and

n is even

(−3)n−iβn−iαi , for i =
⌊
n
2

⌋
+ 1

(−3)n−iβn−iαn−i+3 , for
⌊
n
2

⌋
+ 1 < i

< n

(−3)n−iαn−i+3 , for i = n
(37)

V. FAST & EFFICIENT ALGORITHMS

An efficient algorithm used to plot uniform and nonuniform

Newton-Lagrange with linear complexity can be defined by

Algorithm as follows:

Algorithm 1: Algorithm of Uniform Newton-Lagrange

curves

1 Convert from the control points of uniform

Newton-Lagrange into Wang-Ball, DP or Dejdumrong

control points;

2 Use Wang-Ball, DP or Dejdumrong algorithm to

represent uniform Newton-Lagrange polynomials;

Algorithm 2: Algorithm of Nonuniform

Newton-Lagrange curves

1 Convert from the control points of nonuniform

Newton-Lagrange into Wang-Ball, DP or Dejdumrong

control points;

2 Use Wang-Ball, DP or Dejdumrong algorithm to

represent nonuniform Newton-Lagrange polynomials;

VI. CONCLUSION

In this work, the conversion formulae from both uniform

and non-uniform Newton-Lagrange curve into Wang-Ball,

DP and Dejdumrong curves are well-proposed in the formal

ways with an example of proof in appendix. Hence, the

computational time for the calculation of Newton-Lagrange

curve can be reduced from quadratic into linear computational

complexity. Even though the conversion algorithm is cubic

computation, but it will be computed only once. An example

of using our new proposed techniques is when we want

to convert a sketched image that can be recognized by

using Newton-Lagrange either uniform and non-uniform

polynomials.

APPENDIX A

PROOF FOR THE CONVERSION FROM UNIFORM

NEWTON-LAGRANGE INTO WANG-BALL POLYNOMIALS

In order to understand obtaining of the formula for the

conversion from uniform Newton-Lagrange into Wang-Ball

polynomials, the proof is defined as follows:

Given N (t) be Newton polynomial and L(t) be Lagrange

polynomial. They can be represented using monomial matrix

form as follows:

N (t) = L(t) = [
b0 b1 · · · bn

] ·M ·

⎡
⎢⎢⎢⎣

1
t
...

tn

⎤
⎥⎥⎥⎦ . (38)

Moreover, Wang-Ball curve, A(t), with its control points,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

452

{pi}ni=0, can be represented using monomial matrix form as

follows:

A(t) =
[
p0 p1 · · · pn

] · A ·

⎡
⎢⎢⎢⎣

1
t
...

tn

⎤
⎥⎥⎥⎦ , (39)

where A is Wang-Ball monomial matrix.

Proof
The proof is started by equating N (t), L(t) and A(t), then

[
b0 b1 · · · bn

] ·M ·

⎡
⎢⎢⎢⎣

1
t
...

tn

⎤
⎥⎥⎥⎦ =

[
p0 p1 · · · pn

] · A ·

⎡
⎢⎢⎢⎣

1
t
...

tn

⎤
⎥⎥⎥⎦ .

(40)

Simplifying equation 40, we get
[
b0 b1 · · · bn

] ·M =
[
p0 p1 · · · pn

] · A.
(41)

Finally we obtain,
[
b0 b1 · · · bn

]
=

[
p0 p1 · · · pn

] · A ·M−1.
(42)

Thus, it needs to investigate the formula for A ·M−1.

From Wang-Ball curve,

A(t) =

n∑
i=0

·pi ·An
i (t) =

[
p0 p1 · · · pn

] ·A·

⎡
⎢⎢⎢⎣

1
t
...

tn

⎤
⎥⎥⎥⎦ .

(43)

Consider that

An
i (t) = A ·

⎡
⎢⎢⎢⎣

1
t
...

tn

⎤
⎥⎥⎥⎦ , (44)

and An
i (t) is already defined as follows:

An
i (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(2t)i(1− t)i+2 , for 0 ≤ i ≤ ⌊
n
2

⌋− 1,

(2t)i(1− t)n−i , if i =
⌊
n
2

⌋
,

(2(1− t))n−iti , if i =
⌈
n
2

⌉
,

An
n−i(1− t) , for

⌈
n
2

⌉
+ 1 ≤ i ≤ n.

(45)

Since

A ·M−1 = A ·

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
t0 t1 . . . tn
t20 t21 . . . t2n
...

...
. . .

...

tn0 tn1 . . . tnn

⎤
⎥⎥⎥⎥⎥⎦
, (46)

it is obvious that

ani,j(t) = A ·M−1

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2tj)
i(1− tj)

i+2 , for 0 ≤ i ≤ ⌊
n
2

⌋− 1

(2tj)
i(1− tj)

n−i , for i =
⌊
n
2

⌋

(2(1− tj))
n−i(tj)

i , for i =
⌈
n
2

⌉

ann−i,j(1− tj) , for
⌈
n
2

⌉
+ 1 ≤ i ≤ n

(47)

REFERENCES

[1] I. Newton, Philosophiae Naturalis Principia Mathematica. London,
1687.

[2] I. Newton, Letter to Oldenburg (24 october 1676). in The
Correspondence of Isaac Newton, vol. 2, pp.110-161, 1960.

[3] G. Farin, Curves and Surfaces for Computer Aided Geometric Design,
5th ed. Academic Press, Morgan Kaufman Publishers, San Francisco,
2002.

[4] H. B. Said, Generalized Ball Curve and Its Recursive Algorithm. ACM
Transactions on Graphics, vol. 8, pp. 360-371, 1989.

[5] G. J. Wang, Ball Curve of High Degree and Its Geometric Properties.
Appl. Math.: A Journal of Chinese Universities, vol. 2, pp. 126-140, 1987.

[6] J. Delgado and J. M. Peña, A Shape Preserving Representation with an
Evaluation Algorithm of Linear Complexity. Computer Aided Geometric
Design, vol. 20(1), pp. 1-20, 2008.

[7] W. Hongyi, Unifying Representation of Bézier Curve And Genaralized
Ball Curves. Appl. Math. J. Chinese Univ. Ser. B, vol. 5(1), pp. 109-121,
2000.

[8] Y. Dan and C. Xinmeng, Another Type Of Generalized Ball Curves And
Surfaces. Acta Mathematica Scientia, vol. 27B(4), pp. 897-907, 2007.

[9] N. Dejdumrong, Efficient Algorithms for Non-rational and Rational
Bézier Curves. Fifth International Conference on Computer Graphics,
Imaging and Visualisation, 2008.

