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Abstract—Face Recognition is a field of multidimensional 

applications. A lot of work has been done, extensively on the most of 
details related to face recognition. This idea of face recognition using 
PCA is one of them. In this paper the PCA features for Feature 
extraction are used and matching is done for the face under 
consideration with the test image using Eigen face coefficients. The 
crux of the work lies in optimizing Euclidean distance and paving the 
way to test the same algorithm using Matlab which is an efficient tool 
having powerful  user interface along with simplicity in representing 
complex images. 
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I. INTRODUCTION 

HE Principal Component Analysis (PCA[1][6])[1][6] is 
one of the most powerful techniques that have been used 

in image recognition or in compression. PCA[1][6] is a 
statistical method under the broad title of factor analysis. The 
function of PCA[1][6] is to reduce the large size of the data 
space (variables) to the smaller intrinsic dimensionality or size 
of feature space (independent variables), that are needed to 
describe the data cost efficiently. This is the case when there is 
a strong correlation between observed variables. In [1] [6] 
various functions of PCA are discussed. 

Because PCA[1][6] is a classical technique which can 
perform functions in the linear domain, thus the applications 
having linear models are  much suitable. 

The field of Face recognition has so many areas of 
application as in security, biometric systems, banks and many 
more that are beyond the list. Moreover, face recognition can 
be partitioned into Face identification, Face classification, sex 
determination, people surveillance in crowded areas, Video 
content indexing, Personal identification (e.g. Driver’s 
License), Mug shots matching and  Entrance security.  

The main idea of using PCA[1][6] for face recognition is to 
express the large 1-D vector of pixels constructed from 2-D 
facial image into the compact principal components of the 
feature space. This can be called projection of eigenspace. 
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Eigenspace is calculated by identifying the eigenvectors of the 
covariance matrix derived from a set of facial images(vectors). 
Once the eigenfaces have been computed, several types of 
decision can be made depending on the application. Face 
recognition is a broad term which is categorized as 
identification where the labels of individuals must be obtained, 
categorization where the face must be assigned to a certain 
class. Recognition of a person, where it must be decided if the 
individual has already been seen, PCA[1][6] computes the 
basis of a space which is represented by its training vectors. 
These basis vectors, actually eigenvectors, computed by 
PCA[1][6] are in the direction of the largest variance of the 
training vectors called eigenfaces. Each eigenface[5] can be 
viewed a feature. When a particular face is projected onto the 
face space, its vector into the face space describes the 
importance of each of those features in the face. The face is 
expressed in the face space [5] by its eigenface coefficients. 
We can handle a large input vector, facial image, only by 
taking its small weight vector in the face space. This means 
that we can reconstruct the original face with some error, since 
the dimensionality of the image space is much larger than that 
of face space. 

Each face in the training set is transformed into the face 
space and its components are stored in memory. The face 
space has to be populated with these known faces. An input 
face is given to the system, and then it is projected onto the 
face space. The system computes its distance from all the 
stored faces. 

II.  PCA IMPLEMENTATION  

Principal component analysis (PCA) has been called one of 
the most valuable results from applied linear algebra. PCA is 
used abundantly in all forms of analysis - from neuroscience to 
computer graphics - because it is a simple, non-parametric 
method of extracting relevant information from confusing data 
sets. With minimal additional effort PCA provides a roadmap 
for how to reduce a complex data set to a lower dimension to 
reveal the sometimes hidden, simplified structure that often 
underlie it.  

III.  PCA: EIGENVECTORS OF COVARIANCE  

Researchers derive algebraic solution to PCA using linear 
algebra. This solution is based on an important property of 
eigenvector decomposition. The data set is X which is an m × n 
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matrix, where m is the number of measurement types and n is 
the number of samples. The goal is summarized as follows: 
Find some orthonormal matrix P where Y = PX  such that: 

YYT×≡
1-n

1
 CY is diagonalized. The rows of P are the 

principal components of X. We begin by rewriting CY in terms 
of our variable of choice P. 

YYT×=
1-n

1
 CY  

(1) 

TPXPX ))((
1-n

1
 CY ×=  

(2) 

PXXTPT×=
1-n

1
 CY  

(3) 

PTXXTP )(
1-n

1
 CY ×=  

(4) 

PAPT×≡
1-n

1
 CY  

(5) 

 
Note that, we defined a new matrix A ≡ XXT, where A is 

symmetric The roadmap is to recognize that a symmetric 
matrix (A) is diagonalized by an orthogonal matrix of its 
eigenvectors. For a symmetric matrix:  

 
TEDEA =  (6) 

Where, D is a diagonal matrix and E is a matrix of 
eigenvectors of A arranged as columns. The matrix A has r ≤ m 
orthonormal eigenvectors where r is the rank of the matrix. 
The rank of A is less than m when A is degenerate or all data 
occupy a subspace of dimension r ≤ m. Maintaining the 
constraint of orthogonality. We can remedy this situation by 
selecting (m − r) additional orthonormal vectors to “fill up” the 
matrix E. These additional vectors do not effect the final 
solution because the variances associated with these directions 
are zero. We select the matrix P to be a matrix where each row 
pi is an eigenvector of XXT. By this selection, P ≡ ET. 
Substituting into Equation, we find A = PTDP. With this 
relation (P−1 = PT ) we can finish evaluating CY. 

 

TPAP×=
1-n

1
 CY  

(7) 

TT PDPPP )(
1-n

1
 CY ×=  

(8) 

)()(
1-n

1
 CY TT PPDPP×=  
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)()(
1-n

1
 CY 11 −−×= PPDPP  

(10) 

)1(
1-n

1
 CY D×=  

(11) 

 
It is evident that the choice of P diagonalizes CY. This was 

the goal for PCA.  

IV.  EIGEN FACES 

Eigen face method for human face recognition is remarkably 
clean and simple. The basic concept behind the Eigen face 

method is information reduction. When one evaluates even a 
small image, there is an incredible amount of information 
present. From all the possible things that could be represented 
in a given image, pictures of things that look like faces clearly 
represent a small portion of this image space. Because of this, 
we seek a method to break down pictures that will be better 
equipped to represent face images rather than images in 
general. To do this,  one should generate ‘base-faces’ and then 
represent any image being analyzed by the system as a linear 
combination[10-12] of these base faces. Once the base faces 
have been chosen we have essentially reduced the complexity 
of the problem from one of image analysis to a standard 
classification problem. Each face that we wish to classify can 
be projected into face-space and then analyzed as a vector. A 
k-nearest-neighbor approach, a neural network or  even a 
simply Euclidian distance measure can be used for 
classification. The technique discussed in [13-14] can be 
broken down into the following components: 

a. Generate the eigenfaces. 
b. Project training data into face-space to be used with a 

predetermined classification method. 
c. Evaluate a projected test element by projecting it into face 

space and comparing to training data. 

V. GENERATION EIGEN FACES 

Before any work can be done to generate the Eigen faces, 
sample faces are needed. These images will be used as 
examples of what an image in face-space looks like. These 
images do not necessarily need to be images of the people the 
system will later be used to identify (though it can help); 
however the image should represent variations one would 
expect to see in the data on which the system is expected to be 
used, such as head tilt/angle, a variety of shading conditions, 
etc. Ideally these images should contain pictures of faces at 
close to the same scale, although this can be accomplished 
through preprocessing if necessary. It is required that all of the 
images being used in the system, both sample and test images, 
be of the same size. The resulting Eigen faces will also be of 
this same size once they have been calculated. 

It is assumed that all images being dealt with are grayscale 
images, with pixel intensity values ranging from 0 to 255. 
Suppose, there are K images in our data set. Each sample 
image will be referred to as Xi where n indicates that we are 
dealing with ith sample image (1<= i <= K). Each Xi is a 
column vector. Generally images are thought of as pixels, each 
having (x, y) coordinates with (0, 0) being at the upper left 
corner (or one could think of an image as a matrix with y rows 
and x columns). Converting this to a column form is a matter 
of convenience, it can be done in either column or row major 
form, so long as it is done consistently for all sample images it 
will not affect the outcome. The size of the resulting Xi column 
vector will depend on the size of the sample images. If the 
sample images are x pixels across and y pixels tall, the column 
vector will be of size (x * y) x 1. These original image sizes 
must be remembered if one wishes to view the resulting Eigen 
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faces, or projections of test images into face-space. This is to 
allow a normal image to be constructed from a column vector 
of image pixels. Let X¯ be the mean of all Xi (1 <= i <= K). 
This is the step to calculate an average face of the database. If 
one were to reinterpret the vector as a normal image, it would 
appear as one might expect, as shown in Fig. 1. 

 

 
Fig. 1 Addition of faces 

 
The next step is to calculate difference faces Ui such that            

Ui = Xi - X
- (where X-  is mean) and form a matrix U, such that 

U = [U1 U2….UK]. Our goal now is to generate the Eigen faces 
which is done by calculating the eigenvectors of the 
covariance matrix UUT .This cannot be done directly as the 
size of UUT is (x * y)*(x * y) which is very large. Clearly, 
doing these calculations on a resulting matrix of this size is 
going to be taxing on all but the most specialized, advance 
hardware. To avoid this problem, a trick from linear algebra is 
applied[17-18]. The eigenvectors of the UUT matrix can 
actually be found by considering linear combinations of the 
eigenvectors of the UTU matrix. This is extremely usefully 
when one realizes that the size of the UTU matrix is K x K. For 
practically all real world situations K << (x*y). The 
eigenvectors wj of this matrix can be readily found through the 
following formula: 
 

λ j

lj
K
l l

j
EU

w
∑ == 1  

(12) 

Where Elj is the l th value of the j th  eigenvector of UTU and 
λj is the corresponding Eigen value of wj and Ej . The linear 
algebra part of this trick is given below: Let the eigenvectors 
of UTU be Ej (1 <= j <= K) and the corresponding Eigen 
values be λj . Hence, we can write: 

 

EEU jjj
TU λ=  (13) 

Multiplying both the sides by U: 

UEEU jjj
TUU λ=×  (14) 

Thus, wj = UEj is the jth eigenvector of UUT with 
corresponding Eigen value λj. The fact that the Eigen values 
for the UUT and UTU are the same (though if we were going to 
calculate all of the Eigen values of the UUT matrix, we could 
get more values, the eigenvectors of the UTU only represent 
the most important subset of the Eigen values of the UUT 
matrix). 

VI. PROCEDURE AND WORKING 

Function L = Create Database (TrainDatabasePath): It 
Align a set of face images  as the training set [3] from L1 to  

LM ) This function reshapes all 2D images of the training 
database into 1D column vectors. Then, it (As from table I) 
puts these 1D column vectors in a row to construct 2D matrix.  

 
TABLE I 

FUNCTIONS  

Argument Train Database 
Path 

Path of the 
training 
database 
 

Returns   L                       A 2D matrix, 
containing all 
1D image 
vectors. 
 

Key Size column 
vector 

Suppose all Z 
images in the 
training 
database                                   
have the same 
size of PxQ. So 
the length of 
1D                          
column vectors 
is PQ and 'T' 
will be a PQxZ  
2D matrix. 
 

 
We use Principle Component Analysis (PCA) [1][6] to 

determine the most  discriminating features between images of 
faces. This function (function [m, A, Eigenfaces] = 
EigenfaceCore(L) gets a 2D matrix, containing all training 
image vectors and returns 3 outputs which are extracted from 
training database. In the argument, L is a 2D matrix, 
containing all 1D image vectors 

 

 
Fig. 2. Train Data Base Selection 

 

Suppose all P images in the training database have the same 
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size of MxN.  
 

 
Fig. 3 Test Data Base Selection 

 
So, the length of 1D column vectors is M * N and 'L' will be 

a PQxZ  2D matrix where as  m returns (P*Qx1) Mean of the 
training database Eigen faces  (P*Qx(Z-1)) Eigen vectors of 
the covariance matrix of the training database  A  - (P*QxZ) 
Matrix of centered image vectors[15-16]. After calculating 
mean we calculate deviation of each image from the mean 
value. The next step is to Sort and eliminate eigen values. 

 

 
Fig. 4. Assigning fields 

 
All Eigen values of matrix A are sorted and those that are 

less than a specified threshold, are eliminated. So the number 
of non-zero eigenvectors may be less than (Z-1).Then 
Calculating the eigenvectors of covariance matrix 'C' 
Eigenvectors of covariance matrix C (or so-called 
"Eigenfaces") can be recovered from A's Eigenvectors. 
Recognition is done by Projecting centered image [4] vectors 
into face space All centered images are projected into 

facespace by multiplying in Eigenface basis. Projected vector 
of each face would be its corresponding feature vector. 

VII.  RESULTS AND CONCLUSION 

After the above detailed steps, the eventual step is to extract 
the PCA[1][6] features from test image. The crux of the work 
lies in calculating Euclidean distances. Euclidean distances 
between the projected test image and the projection of all 
centered training images are calculated. Moreover the 
objective of the whole procedure remains to have minimum 
distance with its corresponding image in the training database. 
The following figure illustrates the fore stated step.  

 
Fig. 5. Output with assigned field 

VIII.  LIMITATION OF USING PCA 

. Both the strength and weakness of PCA is that it is a non-
parametric analysis. One only needs to make the Non-Gaussian 
distributed data causes PCA to fail. In exponentially 
distributed data the axes with the largest variance do not 
correspond to the underlying basis. There are no parameters to 
tweak and no coefficients to adjust based on user experience - 
the answer is unique and independent of the user. This same 
strength can also be viewed as a weakness. If one knows a-
priori some features of the structure of a system, then it makes 
sense to incorporate these assumptions into a parametric 
algorithm - or an algorithm with selected parameters. Consider 
the recorded positions of a person on a ferris wheel. The 
probability distributions along the axes are approximately 
Gaussian and thus PCA finds (p1, p2), however this answer 
might not be optimal. The most concise form of dimensional 
reduction is to recognize that the phase (or angle along the 
ferris wheel) contains all dynamic information. Thus, the 
appropriate parametric algorithm is to first convert the data to 
the appropriately centered polar coordinates and then compute 
PCA. This prior non-linear transformation is sometimes 
termed a kernel transformation and the entire parametric 
algorithm is termed kernel PCA. Other common kernel 
transformations include Fourier and Gaussian transformations. 
This procedure is parametric because the user must 
incorporate prior knowledge of the structure in the selection of 
the kernel but it is also more optimal in the sense that the 
structure is more concisely described. Sometimes though the 
assumptions themselves are too stringent. One might envision 
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situations where the principal components need not be 
orthogonal. Furthermore, the distributions along each 
dimension (xi) need not be Gaussian.  The largest variances do 
not correspond to the meaningful axes; thus PCA fails. This 
less constrained set of problems is not trivial and only recently 
has been solved adequately via Independent Component 
Analysis (ICA). The formulation is equivalent. Find a matrix P 
where Y = PX such that CY is diagonalized. However, it 
abandons all assumptions except linearity, and attempts to find 
axes that satisfy the most formal form of redundancy reduction 
– statistical independence. Mathematically ICA finds a basis 
such that the joint probability distribution can be factorized 
P(yi, yi) = P(yi)P(yi) for all i and j, i ≠ j. The downside of ICA 
is that it is a form of nonlinear optimization, making the 
solution difficult to calculate in practice and potentially not 
unique. However ICA has been shown a very practical and 
powerful algorithm for solving a whole new class of problems. 
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