
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

973

Abstract—Face Recognition is a field of multidimensional

applications. A lot of work has been done, extensively on the most of
details related to face recognition. This idea of face recognition using
PCA is one of them. In this paper the PCA features for Feature
extraction are used and matching is done for the face under
consideration with the test image using Eigen face coefficients. The
crux of the work lies in optimizing Euclidean distance and paving the
way to test the same algorithm using Matlab which is an efficient tool
having powerful user interface along with simplicity in representing
complex images.

Keywords—Eigen Face, Multidimensional, Matching, PCA.

I. INTRODUCTION

HE Principal Component Analysis (PCA[1][6])[1][6] is
one of the most powerful techniques that have been used

in image recognition or in compression. PCA[1][6] is a
statistical method under the broad title of factor analysis. The
function of PCA[1][6] is to reduce the large size of the data
space (variables) to the smaller intrinsic dimensionality or size
of feature space (independent variables), that are needed to
describe the data cost efficiently. This is the case when there is
a strong correlation between observed variables. In [1] [6]
various functions of PCA are discussed.

Because PCA[1][6] is a classical technique which can
perform functions in the linear domain, thus the applications
having linear models are much suitable.

The field of Face recognition has so many areas of
application as in security, biometric systems, banks and many
more that are beyond the list. Moreover, face recognition can
be partitioned into Face identification, Face classification, sex
determination, people surveillance in crowded areas, Video
content indexing, Personal identification (e.g. Driver’s
License), Mug shots matching and Entrance security.

The main idea of using PCA[1][6] for face recognition is to
express the large 1-D vector of pixels constructed from 2-D
facial image into the compact principal components of the
feature space. This can be called projection of eigenspace.

Parvinder S. Sandhu is working as Professor with the Rayat & Bahra
Institute Of Engineering & Bio-Technology, Mohali-India. E-Mail:
parvinder.sandhu@gmail.com,

Amit Verma, Iqbaldeep Kaur and Inderpreet Kaur are Assistant Professor
with the Rayat & Bahra Institute Of Engineering & Bio-Technology, Mohali-
Sahauran14004.

Samriti Jindal is Lecturer with Swami Vivekananad Institute of
Engineering & Technology, Banur Punjab, India.

Shilpi Kumari is an M.E Student at PEC Chandigarh-India

Eigenspace is calculated by identifying the eigenvectors of the
covariance matrix derived from a set of facial images(vectors).
Once the eigenfaces have been computed, several types of
decision can be made depending on the application. Face
recognition is a broad term which is categorized as
identification where the labels of individuals must be obtained,
categorization where the face must be assigned to a certain
class. Recognition of a person, where it must be decided if the
individual has already been seen, PCA[1][6] computes the
basis of a space which is represented by its training vectors.
These basis vectors, actually eigenvectors, computed by
PCA[1][6] are in the direction of the largest variance of the
training vectors called eigenfaces. Each eigenface[5] can be
viewed a feature. When a particular face is projected onto the
face space, its vector into the face space describes the
importance of each of those features in the face. The face is
expressed in the face space [5] by its eigenface coefficients.
We can handle a large input vector, facial image, only by
taking its small weight vector in the face space. This means
that we can reconstruct the original face with some error, since
the dimensionality of the image space is much larger than that
of face space.

Each face in the training set is transformed into the face
space and its components are stored in memory. The face
space has to be populated with these known faces. An input
face is given to the system, and then it is projected onto the
face space. The system computes its distance from all the
stored faces.

II. PCA IMPLEMENTATION

Principal component analysis (PCA) has been called one of
the most valuable results from applied linear algebra. PCA is
used abundantly in all forms of analysis - from neuroscience to
computer graphics - because it is a simple, non-parametric
method of extracting relevant information from confusing data
sets. With minimal additional effort PCA provides a roadmap
for how to reduce a complex data set to a lower dimension to
reveal the sometimes hidden, simplified structure that often
underlie it.

III. PCA: EIGENVECTORS OF COVARIANCE

Researchers derive algebraic solution to PCA using linear
algebra. This solution is based on an important property of
eigenvector decomposition. The data set is X which is an m × n

Face Recognition Using Eigen face Coefficients
and Principal Component Analysis

Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

974

matrix, where m is the number of measurement types and n is
the number of samples. The goal is summarized as follows:
Find some orthonormal matrix P where Y = PX such that:

YYT×≡
1-n

1
 CY is diagonalized. The rows of P are the

principal components of X. We begin by rewriting CY in terms
of our variable of choice P.

YYT×=
1-n

1
 CY

(1)

TPXPX))((
1-n

1
 CY ×=

(2)

PXXTPT×=
1-n

1
 CY

(3)

PTXXTP)(
1-n

1
 CY ×=

(4)

PAPT×≡
1-n

1
 CY

(5)

Note that, we defined a new matrix A ≡ XXT, where A is

symmetric The roadmap is to recognize that a symmetric
matrix (A) is diagonalized by an orthogonal matrix of its
eigenvectors. For a symmetric matrix:

TEDEA = (6)

Where, D is a diagonal matrix and E is a matrix of
eigenvectors of A arranged as columns. The matrix A has r ≤ m
orthonormal eigenvectors where r is the rank of the matrix.
The rank of A is less than m when A is degenerate or all data
occupy a subspace of dimension r ≤ m. Maintaining the
constraint of orthogonality. We can remedy this situation by
selecting (m − r) additional orthonormal vectors to “fill up” the
matrix E. These additional vectors do not effect the final
solution because the variances associated with these directions
are zero. We select the matrix P to be a matrix where each row
pi is an eigenvector of XXT. By this selection, P ≡ ET.
Substituting into Equation, we find A = PTDP. With this
relation (P−1 = PT) we can finish evaluating CY.

TPAP×=
1-n

1
 CY

(7)

TT PDPPP)(
1-n

1
 CY ×=

(8)

)()(
1-n

1
 CY TT PPDPP×=

(9)

)()(
1-n

1
 CY 11 −−×= PPDPP

(10)

)1(
1-n

1
 CY D×=

(11)

It is evident that the choice of P diagonalizes CY. This was

the goal for PCA.

IV. EIGEN FACES

Eigen face method for human face recognition is remarkably
clean and simple. The basic concept behind the Eigen face

method is information reduction. When one evaluates even a
small image, there is an incredible amount of information
present. From all the possible things that could be represented
in a given image, pictures of things that look like faces clearly
represent a small portion of this image space. Because of this,
we seek a method to break down pictures that will be better
equipped to represent face images rather than images in
general. To do this, one should generate ‘base-faces’ and then
represent any image being analyzed by the system as a linear
combination[10-12] of these base faces. Once the base faces
have been chosen we have essentially reduced the complexity
of the problem from one of image analysis to a standard
classification problem. Each face that we wish to classify can
be projected into face-space and then analyzed as a vector. A
k-nearest-neighbor approach, a neural network or even a
simply Euclidian distance measure can be used for
classification. The technique discussed in [13-14] can be
broken down into the following components:

a. Generate the eigenfaces.
b. Project training data into face-space to be used with a

predetermined classification method.
c. Evaluate a projected test element by projecting it into face

space and comparing to training data.

V. GENERATION EIGEN FACES

Before any work can be done to generate the Eigen faces,
sample faces are needed. These images will be used as
examples of what an image in face-space looks like. These
images do not necessarily need to be images of the people the
system will later be used to identify (though it can help);
however the image should represent variations one would
expect to see in the data on which the system is expected to be
used, such as head tilt/angle, a variety of shading conditions,
etc. Ideally these images should contain pictures of faces at
close to the same scale, although this can be accomplished
through preprocessing if necessary. It is required that all of the
images being used in the system, both sample and test images,
be of the same size. The resulting Eigen faces will also be of
this same size once they have been calculated.

It is assumed that all images being dealt with are grayscale
images, with pixel intensity values ranging from 0 to 255.
Suppose, there are K images in our data set. Each sample
image will be referred to as Xi where n indicates that we are
dealing with ith sample image (1<= i <= K). Each Xi is a
column vector. Generally images are thought of as pixels, each
having (x, y) coordinates with (0, 0) being at the upper left
corner (or one could think of an image as a matrix with y rows
and x columns). Converting this to a column form is a matter
of convenience, it can be done in either column or row major
form, so long as it is done consistently for all sample images it
will not affect the outcome. The size of the resulting Xi column
vector will depend on the size of the sample images. If the
sample images are x pixels across and y pixels tall, the column
vector will be of size (x * y) x 1. These original image sizes
must be remembered if one wishes to view the resulting Eigen

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

975

faces, or projections of test images into face-space. This is to
allow a normal image to be constructed from a column vector
of image pixels. Let X¯ be the mean of all Xi (1 <= i <= K).
This is the step to calculate an average face of the database. If
one were to reinterpret the vector as a normal image, it would
appear as one might expect, as shown in Fig. 1.

Fig. 1 Addition of faces

The next step is to calculate difference faces Ui such that

Ui = Xi - X
- (where X- is mean) and form a matrix U, such that

U = [U1 U2….UK]. Our goal now is to generate the Eigen faces
which is done by calculating the eigenvectors of the
covariance matrix UUT .This cannot be done directly as the
size of UUT is (x * y)*(x * y) which is very large. Clearly,
doing these calculations on a resulting matrix of this size is
going to be taxing on all but the most specialized, advance
hardware. To avoid this problem, a trick from linear algebra is
applied[17-18]. The eigenvectors of the UUT matrix can
actually be found by considering linear combinations of the
eigenvectors of the UTU matrix. This is extremely usefully
when one realizes that the size of the UTU matrix is K x K. For
practically all real world situations K << (x*y). The
eigenvectors wj of this matrix can be readily found through the
following formula:

λ j

lj
K
l l

j
EU

w
∑ == 1

(12)

Where Elj is the l th value of the j th eigenvector of UTU and
λj is the corresponding Eigen value of wj and Ej . The linear
algebra part of this trick is given below: Let the eigenvectors
of UTU be Ej (1 <= j <= K) and the corresponding Eigen
values be λj . Hence, we can write:

EEU jjj
TU λ= (13)

Multiplying both the sides by U:

UEEU jjj
TUU λ=× (14)

Thus, wj = UEj is the jth eigenvector of UUT with
corresponding Eigen value λj. The fact that the Eigen values
for the UUT and UTU are the same (though if we were going to
calculate all of the Eigen values of the UUT matrix, we could
get more values, the eigenvectors of the UTU only represent
the most important subset of the Eigen values of the UUT
matrix).

VI. PROCEDURE AND WORKING

Function L = Create Database (TrainDatabasePath): It
Align a set of face images as the training set [3] from L1 to

LM) This function reshapes all 2D images of the training
database into 1D column vectors. Then, it (As from table I)
puts these 1D column vectors in a row to construct 2D matrix.

TABLE I

FUNCTIONS

Argument Train Database
Path

Path of the
training
database

Returns L A 2D matrix,
containing all
1D image
vectors.

Key Size column
vector

Suppose all Z
images in the
training
database
have the same
size of PxQ. So
the length of
1D
column vectors
is PQ and 'T'
will be a PQxZ
2D matrix.

We use Principle Component Analysis (PCA) [1][6] to

determine the most discriminating features between images of
faces. This function (function [m, A, Eigenfaces] =
EigenfaceCore(L) gets a 2D matrix, containing all training
image vectors and returns 3 outputs which are extracted from
training database. In the argument, L is a 2D matrix,
containing all 1D image vectors

Fig. 2. Train Data Base Selection

Suppose all P images in the training database have the same

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

976

size of MxN.

Fig. 3 Test Data Base Selection

So, the length of 1D column vectors is M * N and 'L' will be

a PQxZ 2D matrix where as m returns (P*Qx1) Mean of the
training database Eigen faces (P*Qx(Z-1)) Eigen vectors of
the covariance matrix of the training database A - (P*QxZ)
Matrix of centered image vectors[15-16]. After calculating
mean we calculate deviation of each image from the mean
value. The next step is to Sort and eliminate eigen values.

Fig. 4. Assigning fields

All Eigen values of matrix A are sorted and those that are

less than a specified threshold, are eliminated. So the number
of non-zero eigenvectors may be less than (Z-1).Then
Calculating the eigenvectors of covariance matrix 'C'
Eigenvectors of covariance matrix C (or so-called
"Eigenfaces") can be recovered from A's Eigenvectors.
Recognition is done by Projecting centered image [4] vectors
into face space All centered images are projected into

facespace by multiplying in Eigenface basis. Projected vector
of each face would be its corresponding feature vector.

VII. RESULTS AND CONCLUSION

After the above detailed steps, the eventual step is to extract
the PCA[1][6] features from test image. The crux of the work
lies in calculating Euclidean distances. Euclidean distances
between the projected test image and the projection of all
centered training images are calculated. Moreover the
objective of the whole procedure remains to have minimum
distance with its corresponding image in the training database.
The following figure illustrates the fore stated step.

Fig. 5. Output with assigned field

VIII. LIMITATION OF USING PCA

. Both the strength and weakness of PCA is that it is a non-
parametric analysis. One only needs to make the Non-Gaussian
distributed data causes PCA to fail. In exponentially
distributed data the axes with the largest variance do not
correspond to the underlying basis. There are no parameters to
tweak and no coefficients to adjust based on user experience -
the answer is unique and independent of the user. This same
strength can also be viewed as a weakness. If one knows a-
priori some features of the structure of a system, then it makes
sense to incorporate these assumptions into a parametric
algorithm - or an algorithm with selected parameters. Consider
the recorded positions of a person on a ferris wheel. The
probability distributions along the axes are approximately
Gaussian and thus PCA finds (p1, p2), however this answer
might not be optimal. The most concise form of dimensional
reduction is to recognize that the phase (or angle along the
ferris wheel) contains all dynamic information. Thus, the
appropriate parametric algorithm is to first convert the data to
the appropriately centered polar coordinates and then compute
PCA. This prior non-linear transformation is sometimes
termed a kernel transformation and the entire parametric
algorithm is termed kernel PCA. Other common kernel
transformations include Fourier and Gaussian transformations.
This procedure is parametric because the user must
incorporate prior knowledge of the structure in the selection of
the kernel but it is also more optimal in the sense that the
structure is more concisely described. Sometimes though the
assumptions themselves are too stringent. One might envision

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:4, 2009

977

situations where the principal components need not be
orthogonal. Furthermore, the distributions along each
dimension (xi) need not be Gaussian. The largest variances do
not correspond to the meaningful axes; thus PCA fails. This
less constrained set of problems is not trivial and only recently
has been solved adequately via Independent Component
Analysis (ICA). The formulation is equivalent. Find a matrix P
where Y = PX such that CY is diagonalized. However, it
abandons all assumptions except linearity, and attempts to find
axes that satisfy the most formal form of redundancy reduction
– statistical independence. Mathematically ICA finds a basis
such that the joint probability distribution can be factorized
P(yi, yi) = P(yi)P(yi) for all i and j, i ≠ j. The downside of ICA
is that it is a form of nonlinear optimization, making the
solution difficult to calculate in practice and potentially not
unique. However ICA has been shown a very practical and
powerful algorithm for solving a whole new class of problems.

REFERENCES

[1] Wendy S. Yambor Bruce A. Draper J. Ross Beveridge, “Analyzing PCA
based Face Recognition Algorithms: Eigenvector Selection and Distance
Measures”, July 1, 2000. Available at:
http://www.cs.colostate.edu/~vision/publications/eemcvcsu2000.pdf

[2] Peter Belhumeur, J. Hespanha, David Kriegman, “Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(7):771 –
720, 1997.

[3] L. Breiman. Bagging predictors. Technical Report Technical Report
Number 421, Dept. of Statistics, University of California, Berkeley,
1994.

[4] D. Swets and J. Weng, “Hierarchical discriminant analysis for image
retrieval”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(5):386–401, 1999.

[5] Wendy S. Yambor, “Analysis of PCA Based and Fisher Discriminant-
Based Image Recognition Algorithms”, M.S. Thesis, July 2000
(Technical Report CS-00-103, Computer Science).

[6] Kyungnam Kim, “Face Recognition using Principle Component
Analysis”,. International Conference on Computer Vision and Pattern
Recognition, pp. 586-591, 1996.

[7] http://scien.stanford.edu/class/ee368/projects2001/dropbox/project16/
[8] http://www.irc.atr.jp/%7Emlyons/pub_pdf/fg98-1.pdf
[9] http://www.kasrl.org/jaffe.html
[10] James R. Parker, J R Parker , “Algorithms for Image Processing and

Computer Vision”, John Wiley & Sons, 1996.
[11] Sankar K. Pal, Ashish Ghosh, Malay K. Kundu, “Soft Computing for

Image Processing”, Studies in Fuzziness and Soft Computing, Vol. 42,
2000.

[12] Rafael C. Gonzalez, Richard E. Woods, “Digital Image Processing”,
Pearson Publications, 2000.

[13] Image Processing Handbook by John C. Russ
[14] Handbook of Pattern Recognition and Image Processing by K.S. Fu and

T.Y. Young
[15] Li Ma , Tieniu Tan , Yunhong Wang , Dexin Zhang “ Personal

Identification Based on Iris Texture Analysis” , IEEE Transactions on
Pattern Analysis and Machine Intelligence , Vol. 25 No. 12, December
2003.

[16] John Carter, Mark Nixon, “An Integrated Biometric Database”,
available at: ieeexplore.ieee.org/iel3/1853/4826/00190224.pdf.

[17] Arun Rose, Anil Jain and Sharat Pankanti, “A Prototype Hand
Geometry Based Verification System”, 2nd International Conference on
Audio and Video Based Person Authentication, Washington D. C., pp.
166-171, 1999.

[18] Boreki, Guilherm, Zimmer, Alessandro, “Hand Geometry Feature
Extraction through Curvature Profile Analysis”, XVIII Brazilian
Symposium on Computer Graphics and Image Processing, SIBGRAPI,
Brazil, 2005.

