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Abstract—Linearization of graph embedding has been emerged
as an effective dimensiondity reduction technique in pattern
recognition. However, it may not be optimal for nonlinearly
distributed real world data, such as face, dueto its linear nature. So, a
kernelization of graph embedding is proposed as a dimensionality
reduction technique in face recognition. In order to further boost the
recognition capability of the proposed technique, the Fisher's
criterion is opted in the objective function for better data
discrimination. The proposed technique is able to characterize the
underlying intra-class structure as well as the inter-class separability.
Experimental results on FRGC database validate the effectiveness of
the proposed technique as a feature descriptor.
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|. INTRODUCTION

&CENT studies claimed that intrinsic data geometrica
structures may possess inherited discriminating power
since high dimensional datais treated as a set of geometrically
associated points lying on or nearly on a low dimensional
manifold [1-3]. Graph embedding techniques, which seek data
embedding via data neighbourhood preservation, are able to
disclose the intrinsic manifold of a data. Representative
instances that are widely implemented in face recognition
include Laplacianface (or Locality Preserving Projection,
LPP) optimally preserves the neighbourhood structure of a
data set based on heat kernel nearest neighbour graph [4] and
Neighbourhood Preserving Embedding (NPE) restricts
neighbouring pointsin the high dimensional image space to be
located within the same neighbourhood in the low dimension
feature spacein asimilar relative spatia situation [5].

The inherited discriminating capability of these algorithms
cannot be assured since real world data is too complicated to
measure. To further enhance the discriminating capability of
the graph embedding algorithms, a discriminant criterion is
explicitly integrated. For examples, Margina Fisher Analysis
(MFA) [6], Locality Sensitive Discriminant Anaysis (LSDA)
[7] and Neighbourhood Preserving Discriminant Embedding
(NPDE) [8] incorporate Fisher criterion (FC) to optimize the
algorithm objective functions.
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However, these discriminant techniques encode pattern
information based on second order dependencies. But, those
higher order dependencies in an image (e.g. the correlations
among three or more pixels of an edge) have been neglected
[9]. This information might capture pertinent data features.
Hence, a nonlinear mapping could be used to map the datato a
higher dimensional feature space to “unfold” the data
manifold. With this, those discriminative nonlinear data
structures can emerge under this new representation. Kernel
trick allows this unfolding implicitly [9].

In this paper, a kernelization of graph embedding technique
is proposed. To achieve superior discriminating capability, the
proposed technique incorporates three mechanisms. a kernel
trick, a Graph Embedding (GE) criterion and the Fisher's
criterion (FC). The technique is namey as Kerne
Discriminant Embedding (KDE). In KDE, the input data is
first mapped into a higher dimensional feature space via the
kernel trick for unfolding the data manifold to release the
underlying nonlinear features. Then, the released underlying
features are learned by GE and represented in GE coefficients.
By optimizing FC, an optimal projection is sought to
characterize the intra-class compactness while maximizing the
inter-class separability.

This proposed technique overcomes the limitation of the
traditional linear subspace techniques, i.e. Principal
Component Anaysis (PCA) [11] and Linear Discriminant
Analysis (LDA) [12], for the data distribution assumption.
Besides that, KDE aso overcomes the limited success of the
ordinary linearization of graph embedding due to its linear
nature by incorporating kernd trick.

II. KERNEL DISCRIMINANT EMBEDDING

KDE utilizes kernel trick to project the input data onto a
higher dimensional feature space, denoted as kernel space.
The main purpose is to revea the underlying intrinsic data
structures in this new representation. In addition, KDE
employs neighbourhood preserving criterion to learn local
features of the data. Furthermore, KDE utilizes Fisher
criterion to construct a discriminant projection by making the
projected intra-class samples as compact as possible, while the
projected samples from different classes are far apart.

A. Computation of Kernel Trick

Let {x,OR"|i=1,..., n} beaset of d-dimensional vectors of
face images. This input data is projected into a higher
dimensional feature space, denoted as F, via a nonlinear

mapping, ®: x, OR? - f; DF(: Rt).
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The inner product between the two mapped samles)
and CD(X]-) in F can be computed via a kernel function:

k(. %) =[P(%).P(; )] )
Since the dot product of the vectors can be condpate
D(x;).P(x;) = P(x ) d(x), alternatively, we can present

the kernel in matrix form,
K = d(X)Td(X)
whereX = {x,0R"|i=1,...,n}.

)

B.Formulation of Intra-class Coefficients Modelling
Let the mapped samples be a setdimensional vectors in
the feature spackE{ ®(x;) OR'| i=1,..., n. The intra-class

coefficientsq}” reflect the contribution of thejth neighbours

to the reconstruction of the" data. @' #0 if the pair of
samples is from the same class, known as locahheigs;
andaj’

W"can be calculated by minimizing the objective fimrt

2
r
£ (W)=Y (®(x) - b(x))) ®)
j=1
where x; and x; are from the same class.
Let YOR'™' be a transformation matrix and

{Yi =YTD(x) |y DR"} are projected face vectors of

{CD(xi) [P (x)O R‘} , wheret'<< t. In order to preserve the
data local geometry, the following cost functioréfined,

2
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i=1 =1
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where the matrixv OR"*",
M =4 '~ a"+ e win ¢ ={ Y o)
The matrix M is sparse matrix, where

M :(I -W "")TQ W W) with | is an identity matrix.

=0, otherwise. The intra-class coefficients matrix
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Referring to (4), we can have alternative expressw the
objective function of calculating the intra-claggefficients,

:dD(X)(I -w ) w )oK )T}

g(WY) =trace|

=trace (I —WW)CD(X)TGJ(X)ﬁ -W W)T] %)

(1-w*)k (i -w W)T}

C.Formulation of Inter-class Coefficients Modelling

=trace

Let aif denotes the inter-class coefficients whaflé;t 0 if
the jthsample is one of th& nearest neighbours of"
sample with different class label, i.¢!"sample is the inter-
class neighbour of " sample, known as between-class

neighbour; otherwise,cqﬁ’:o. The inter-class coefficients

matrix W® of the inter-class neighbourj{' sample) ofi"

sample can be sought by minimizing the followingective
function,

£(WP) =Z
i=1

2

(6)

¢<xi)—iﬁ¢(xj)

Without loss of generality, the weights sum up twe dor
each point. In order to keep the projected samplatfferent
classes far from each other, we maximize the fahgwcost
function,

&M= |y = dy
i=1 =1

=YDY'
b\" b ; - -
WhereD:(I -W ) (I -W ) wherel is an identity matrix.

2

@)

Hence, the cost function in (6) can be alternaivel
represented as,

E(Wb):trace[q)(X)(l -W b)T@ =YY b)cpz( )T}
:trace[(l ~WP) o) oK ) W b)T} (®)

=trace[(l “WP)K (i -w b)T}

D.Discriminant Projection
KDE optimizes its objective function via Fisherterion for
a better discriminant projection. KDE minimize$W") and

maximizesf(Wb) for calculating the optimized projection,
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where W° = K (1 -W )i -w ®)" K and

)y
Y

(oo

(9)

W=k (=W W ) K K = o) @),

In face recognition, it is desired to construct rajgction
that maximizes the inter-class samples separabilitlyile
minimizing the intra-class samples compactnesbsétter data
discrimination. An example of a two-class classifion
problem is discussed in this section. Figure lsitates the
data distribution, as well as the optimal projetsicof PCA,
LDA and KDE, represented as solid lines. The litrest are
orthogonal to each projection direction are theinoat
classification lines of each method, representedbéed lines.
From the figure, we observe that KDE is able toivderl
discriminative projection for the data. The intéass data are
not overlapping on the KDE projection. In additiothe
decision boundary of KDE can better separate the data
clusters compared with other techniques.
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Fig. 1 Optimal projections and decision boundaoieBCA, LDA and
KDE

IV. EXPERIMENTAL RESULTS ANDDISCUSSIONS

The performance of the proposed technique is asddss
using Face Recognition Grand Challenge Databas&@ R
[12]. Sample images of FRGC Database were colleatdéde
University of Notre Dame. The FRGC data corpus @ioist
high resolution still images taken under controlleghting
conditions and with unstructured illumination, 3Bass, and
contemporaneously collected still images. The oblenl
images were taken under a studio setting, theyudrérontal
facial images taken under two lighting conditiotveq( or three
studio lights) and with two facial expressions (&mgi and
neutral). On the other hand, the uncontrolled irsagere
taken under varying illumination conditions; e.pallways,
atria, or outdoors. Fig. 2 illustrates face imagdsFRGC

database.

Fig. 2 Face image samples of FRGC database

The recognition performance of the proposed KDE is
compared with other existing techniques, such a&,ROA,
LPP, supervised LPP (SLPP), NPE and supervised NPE
(SNPE). Note that the difference between LPP apeérsised
LPP is the neighbourhood assignment. In LRPnearest
samples of a specific sample is assigned as itghheurs;
these neighbours may be from the same class datiffieeent
classes. On the other hand, in SLPP, the samegdagsles of
a specific sample are treated as its neighbourmile3i
neighbourhood assignment is performed on NPE arfPESN

FRGC database is partitioned into two sets: trgiramd
testing sets. The training set is used to estatfisiprojection
space for PCA, LDA, LPP, SLPP, NPE, SNPE and KDig; t
testing set is used to evaluate the performancethef
respective dimensionality reduction technique.

Two test strategies are carried out in this study:

- subject-dependent test. There is no overlapping in
subject between the training and testing sets.

- subject-independent test. Both training and testing
sets contain same subjects; but, there is no
overlapping in sample between the training and
testing sets.

In subject-dependent test, we are using a subseRGfC
database consisting 100 subjects with six traisiagples and
six testing samples of each subject. In subjectpendent
test, 480 images (from 80 subjects with six sampfesach)
are employed as training set; whereas, anotherid@@es
(from another 80 subjects with six samples of eaat®
adopted as testing set. The average error rateRgAEhat is
the average value of false accept rate (FAR) afs fieeject
rate (FRR)) measured in this experiment serve as a
performance measurement metric for the quality loé t
dimensionality reduction techniques.
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We evaluate the effectiveness of KDE with polyndnaiad

Gaussian kernels, as shown in Table I. Fig. 3 asticiv the
optimal results corresponding to the optimal patemef each

kernel. Gaussian kernel with parameter sigmes10
demonstrates the best results among the kernelboth
subject-dependent and subject-independent tests

TABLE |
PARAMETER RANGES USED IN THE EXPERIMENT
Kernel Parameter Ranges
Polynomial Degree (d) Gamma (G)
k(xy) = (x"y)* 1~2 N/A
Gaussian N/A 1,10, 20
Gy = exp (-
! 202

error rate (%)
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Fig. 3 Recognition error rates of KDE with diffetdmrnels in
subject-dependent test

error rate (%)

Y, S -
s B = T P T OO
20 i "

10 30 50 70 90 110 130 150 170 190

feature dimension

seedes inear
——sigma=1

—f— (=2
=i = 5izma=10

—rp— =3
==0==sigma=20

Fig. 4 Recognition error rates of KDE with diffetdmrnels in
subject-independent test

Fig. 5 and 6 demonstrates the recognition perfoomasf

KDE with Gaussian kernelg =10 and other existing

dimensionality reduction techniques (PCA, LDA, LFS2PP,
NPE and SNPE) along with different feature dimensio

Table 11 shows the optimal
corresponding to its feature dimension of the tegpes. For
LDA, all the samples are projected onto a subspaesmned

by thec-1 largest eigenvectors, whezés the number of class,

i.e. LDA lengths are 99 in the subject-dependesttaed 79 in
the subject-independent test, respectively.
experimental results, it is observed that supedvisethods

including KDE, LDA, SLPP and SNPE achieve better

recognition performance than non-supervised methsdeh
as PCA, LPP and NPE, in both tests.

SNPE and SLPP are supervised methods in such ahafgy

they seek a projection that preserves the locamgéy,
formed by neighbours with a similar class labelsdzh on
respective objective function. Since SNPE and Ste&#sider
only the within-class information, their performascare not
comparable to that of KDE. Results show that KDEais

the highest recognition accuracy in both testss Thibecause

KDE is able to signify nonlinear features of facatal and
explicitly extract discriminating features via kefrtrick, GE
and Fisher criteria.

. Al R S VS B R R Rl

error rate (%)
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Fig. 5 Recognition error rates of KDE with Gaussiamel,
sigma=10 and other dimensionality reduction techesjn subject-

dependent test
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Fig. 6 Recognition error rates of KDE with Gausdiamel,
sigma=10 and other dimensionality reduction techesqn subject-
independent test

recognition performance
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TABLE Il TABLE Il
RECOGNITIONERROR RATE OFKDE AND OTHER DIMENSIONALITY COMPUTATIONAL TIME (IN ELAPSEDCPUSECONDY OF KDE AND OTHER
REDUCTION TECHNIQUES TECHNIQUES
Subjec-dependent Te Methods Training Time  Testing Time
Methods Error Rate (%)  Feature (seconds) (seconds)
Dimension Non-supervised techniques
Non-supervised techniques PCA 5.361986 0.006534
PCA 51.¢ 20C LPP 4.118671 0.006179
LPP 40.0 180 NPE 3.01267: 0.00452.
NPE 42.8 100
Supervised techniques
Supervised techniques LDA 3.221592 0.004220
LDA 29.8 99 SLPP 4.223864 0.001321
SLPF 18.C 20 SNPE 3.23656° 0.00282'
SNPE 341 70 KDE 22.378431 0.004833
KDE 7.3 110
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