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Abstract—Periodic broadcast is a cost-effective solution for 

large-scale distribution of popular videos because this approach 

guarantees constant worst service latency, regardless of the number 

of video requests. An essential periodic broadcast method is the 

client-centric approach (CCA), which allows clients to use smaller 

receiving bandwidth to download broadcast data. An enhanced 

version, namely CCA++, was proposed to yield a shorter waiting 

time. This work further improves CCA++ in reducing client buffer 

requirements. The new scheme decreases the buffer requirements by 

as much as 52% when compared to CCA++. This study also provides 

an analytical evaluation to demonstrate the performance advantage, 

as compared with particular schemes. 

 

Keywords—Periodic broadcast, client-centric approach, buffer 

space, multimedia communications. 

I. INTRODUCTION 

ITH the fast boost of video-on-demand (VOD) services, 

VOD systems easily run out of bandwidth because the 

growth in bandwidth can never keep up with the increasing of 

the number of clients. One approach to alleviate this problem 

is to broadcast only popular videos. This approach is feasible 

because relatively few popular videos form most client 

requests [1], [2]. An efficient broadcasting method is periodic 

broadcast, which divides a video into multiple segments that 

are simultaneously and periodically transmitted to clients 

across individual data channels. The method can improve 

system throughput by allowing numerous clients to share the 

channels. Because the clients usually wait for the occurrence 

of the first segment before playing the video, the scheme 

provides only near-VOD services.  

Suppose that a server allocates a broadcasting bandwidth of 

k  playback video rates. The fast broadcasting (FB) scheme 

[3] divides a video of length L  into 12 −k
 segments and 

yields a maximal waiting time )12/( −kL . Assume that 

7=k  and 3600=L s. The maximal waiting time for an FB 

client equals 28 s. To achieve a near-minimal waiting time, the 

recursive frequency-splitting (RFS) scheme [4] broadcasts a 

segment at a frequency that can guarantee continuous video 

playback. 

With the fast growth of wireless networks, mobile video 

services become more and more popular. The issue on how to 

broadcast videos under rather restricted client resources, such 

as client buffering space and receiving bandwidth, is 
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increasingly important. The reverse fast broadcasting (RFB) 

scheme [5] improves FB to reduce buffer requirements by as 

much as 50%. The hybrid broadcasting scheme (HyB) [6] 

combines RFS and FB to reduce client buffer space, as well as 

service latency. Motivated by HyB, the study in [7] integrates 

the fixed-delay pagoda broadcasting scheme [8] and RFB to 

yield small client waiting time and buffer demand. A 

generalized reverse sequence-based model [9] was proposed to 

explain why broadcasting segments in reverse order could 

improve buffer requirements. The skyscraper broadcasting 

(SkB) scheme [10] allows a client to download video data 

using only a bandwidth of two channels. The client-centric 

approach (CCA) [11] also permits a client to download video 

data via a small bandwidth, and CCA+ [12] improves CCA to 

yield a shorter waiting time than that of SkB. CCA++ [12] 

further refines CCA+ by leveraging client bandwidth for more 

efficient video broadcast, and reduces the broadcast latency by 

as much as 39% when compared to CCA+ and 78% when 

compared to CCA. 

Extending CCA++, this work proposes an enhanced 

version, called Reverse CCA++ (RCCA++). Similar to 

CCA++, the new scheme considers both broadcasting 

bandwidth and receiving bandwidth. However, the proposed 

scheme reduces client buffer requirements remarkably, when 

compared to CCA++. This work finds that RCCA++ requires 

52% smaller buffer requirements than CCA++. This study also 

conducts an analytical evaluation to demonstrate the 

performance advantage, as compared with particular schemes. 

The remainder of this study is organized as follows. Section 

II briefly reviews CCA++. Section III presents RCCA++. The 

performance of RCCA++ is evaluated in Section IV. Section 

V draws brief conclusions. 

II. REVIEW OF CCA++ 

Table I defines terms frequently used in this paper. The 

CCA++ scheme divides a video into N  segments, where 
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TABLE I 

LIST OF TERMS USED IN THIS PAPER AND THEIR RESPECTIVE DEFINITIONS 

Term Definition 

L  Video length 

k  Number of server broadcasting channels for each video 

iC  i th broadcasting channel, ki ,...,1=  

iS  i th video segment, Ni ,...,1=  

iG
 

i th segment group, ki ,...,1=  

in  Number of the segments of group iG  

b  
Video playback rate assumed to equal the data transmission rate 
of each channel 

u  Client receiving bandwidth, expressed as u  receiving channels 

δ  Client maximum waiting time 

iT  

Time a client starts playing the segments of group iG , and 

∑
−

=

+=
1

1

1
i

j
ji nT  

time unit 
Basic unit on the time axis, whose length equals the length of 

1S  

 

The segments, denoted by 1S , 2S , . . . , and NS , are then 

classified into k  groups in sequence. A group iG  includes 

in  segments. Without loss of generality, we set the length of 

1S  (that is, 1n ) to be 1, and the video duration L  is a value 

relative to 1n . On the server side, the CCA++ scheme 

broadcasts the segments of group iG  on channel iC  

periodically and simultaneously. At receiving ends, clients use 

u  loaders to receive video segments systematically by group. 

Each loader downloads at most one segment from a channel in 

every time unit. Initially, the loaders receive the segments of 

groups 1G  to uG  from channels 1C  to uC . When a loader 

finishes receiving the segments of the x th
 group, the loader 

determines to download the segments of which group by 

checking the value of uxmod . If 0mod =ux , the loader 

downloads the segments of the 1+x th
 group. Otherwise, the 

loader accesses the segments of the 1++ ux th
 group. The 

loaders repeat the process until all of the segments are 

received. 

III. PROPOSED EXTENSION OF CCA++ 

Because the number of segments buffered before played by 

a client determines the client’s buffer size, the key to 

minimizing the size is to ensure the number as small as 

possible, under the client continuous playback. In CCA++, the 

maximum buffer size comes from the buffering of the 

segments of the last group. 

The proposed RCCA++ scheme adopts the same strategy of 

CCA++ to ensure that a client can continue to download the 

next group after accessing the current group. Our research thus 

focuses on how to make the number of the buffered-before-

played segments of the last group as small as possible. In 

CCA++, a loader is required to continuously receive the 

segments of group iG  during time 11 +−iT  to iT , and the 

loader buffers 1−in  segments at time iT  [12]. 

A. Server Side 

Motivated by the observation, this work devises the reverse 

CCA++ scheme, which broadcasts video segments according 

to the following steps. 

1. Equally divide a video into N  segments, where 

∑
=

=
k

i
inN

1

 and in  is based on (1). The segments are then 

classified into k  groups, where group iG  includes in  

segments. 

2. Periodically broadcast the segments of group iG  on 

channel iC  according to the following conditions. 

For 2=u : 

a. If 0mod =uk : 

� Transmit the segments of group iG  on channel iC  

in sequence, where 31 −≤≤ ki . 

� Reversely transmit the segments of group 2−kG  on 

channel 2−kC , the segments of group 1−kG  on 

channel 1−kC , and the segments of group kG  on 

channel kC , respectively. 

b. If 1mod =uk : 

� Transmit the segments of group iG  on channel iC  

in sequence, where 41 −≤≤ ki . 

� Reversely transmit the segments of group iG  on 

channel, where kik ≤≤− 3 . 

For 2>u : 

a. If 1mod =uk  or 2mod =uk : 

� Transmit the segments of group iG  on channel iC  

in sequence, where 31 −≤≤ ki . 

� Reversely transmit the segments of group 2−kG  on 

channel 2−kC , the segments of group 1−kG  on 

channel 1−kC , and the segments of group kG  on 

channel kC , respectively. 

b. Otherwise: 

� Transmit the segments of group iG  on channel iC  

in sequence, where 21 −≤≤ ki . 

� Reversely transmit the segments of group 1−kG  on 

channel 1−kC  and the segments of group kG  on 

channel kC , respectively. 

B. Client Side 

A client is assumed to have enough buffers to store 

downloaded video segments. We also suppose that a client 

uses u  loaders to receive video segments, where each loader 

accesses at most one segment from one channel in every time 
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unit. Initially, the loaders receive the segments of groups 1G  

to uG  from channels 1C  to uC , respectively. When a loader 

finishes receiving the segments of the x th
 group, the loader 

determines to download the segments of which group by 

checking the value of uxmod . If 0mod =ux , the loader 

downloads the segments of the 1+x th
 group. Otherwise, the 

loader accesses the segments of the 1++ ux th
 group. The 

loaders repeat the process until all of the segments are 

received. 

Furthermore, each loader must check the segment-

broadcasting order on a channel before it starts segment 

downloading. If the segments are transmitted in sequence, the 

loader immediately and continuously downloads the segments 

until all the segments of the same group are received. When 

the loader finishes receiving the segments of group iG , the 

loader determines to download the segments of which group 

by checking the value of uimod . If 0mod =ui , the loader 

receives the segments of group 1+iG . Otherwise, the loader 

accesses the segments of group 1++uiG . The downloading 

process is the same as that of CCA++. 
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Fig. 1 Illustration of the segment downloading for the proposed extension, where 2=u  

 

If the segment-broadcasting order on channel iC  is reverse, 

the loader performs a different downloading process as the 

following. 

For 1mod >ui : Suppose that the loader sees a segment 

yS  on channel iC  at time x , and the segment will be played 

at time y . If yx ≤ , the segment has not been played, and the 

loader must decide whether to download it or not. Because 

segment yS  is broadcast once every in  time units, the loader 

next sees it at time inx + . If inxy +< , the next appearance 

of segment yS  is after its playback. Thus, the time unit x  is 

the last chance to download the segment before its playback. 

Combining yx ≤  and inxy +< , we obtain 

 

inxyx +<≤                                (2) 

 

If the inequality is true, the loader must download segment 

yS  at time unit x  to ensure continuous playback. Otherwise, 

the loader does not receive the segment. When all the 

segments of group iG  have been received, the loader stops 

the downloading. 

For 0mod =ui : The loader also performs the segment 

downloading on channel iC  according to (2). However, the 

loader additionally receives segments from channel 1+iC . 

Suppose that the loader sees a segment zS  on channel 1+iC  at 

time x , and next sees it at time 1++ inx  because it is 

broadcast once every 1+in  time units. The loader determines 

whether to download the segment by checking 

 

1++<≤ inxzx                              (3) 

 

If the inequality is true, the loader downloads segment zS ; 

otherwise, the loader waits for its next appearance. When all 

the segments of group 1+iG  have been received, the loader 

stops the downloading. 
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Fig. 1 demonstrates how to download segments, where 

6=k  and 2=u . Because 2=u , two loaders, saying the 

first loader and the second loader, are used to receive the 

segments of groups 1G  and 2G  at time 1T . The loaders 

continuously download the segments since they are broadcast 

in sequence. Once the segment downloading on channel 1C  is 

complete, the first loader next accesses the segments of group 

4G  on channel 4C  because 0mod ≠ui , where 1=i  and 

2=u . The segment downloading on channel 4C  is 

according to (2) because 02mod4 = . For example, when the 

loader first sees segment 8S  with diagonal lines on channel 

4C  at the second time unit, the inequality of (2) does not hold 

(i.e., 78 =+>= inxy ), and thus the loader does not receive 

this segment. When the loader next sees segment 8S  colored 

gray on channel 4C  at the seventh time unit, (2) becomes true 

because 1287 =+<=<= inxyx , where 7=x . The 

loader thus downloads this segment. Because 0mod =ui , 

where 4=i  and 2=u , the first loader also receives the 

segments from channel 5C  according to (3). For instance, 

when the loader first sees segment 13S  with diagonal lines on 

channel 5C  at the second time unit, the inequality of (3) does 

not hold (i.e., 713 =+>= jnxz ), and thus the loader does 

not receive this segment. When the loader next sees segment 

13S  at the seventh time unit, the inequality of (3) does not 

hold still, and the loader skips the segment again. The segment 

13S  is finally downloaded at the 12
th
 time unit because (3) 

becomes true, 171312 =+<=≤= jnxzx . When all the 

segments of group 5G  have been received, the first loader 

stops the downloading. 

Furthermore, once the second loader finishes the segment 

downloading on channel 2C  at the second time unit, it 

continuously receives the segments from channel 3C  because 

0mod2 =u  and the segments are broadcast in sequence. 

When the downloading on channel 3C  is complete, the loader 

next accesses the segments of group 6G  because 

02mod3 ≠  and 6123 =++ . The segment downloading on 

channel 6C  is according to (2). Once all the segments of 

group 6G  have been received, the second loader stops the 

downloading. 

IV. PERFORMANCE ANALYSIS AND COMPARISON 

This section evaluates the performance of the proposed 

scheme. We compare RCCA++ with CCA, CCA+, and 

CCA++. When a client barely misses segment 1S  of a 

requested video, the maximal waiting time δ  equals its access 

time from the first channel. Thus, ∑
=

==
k

j

jnLNL
1

//δ . The 

video length L  is assumed to be 120 minutes, and the server 
bandwidth is varied from 1 to 15 channels. The performance 

results of CCA, CCA+, CCA++, and RCCA++ are plotted in 

Fig. 2, where 2=u . The figure shows that as the server 

bandwidth increases, the waiting time under all four schemes 

reduces sharply. Because CCA++ and RCCA++ are based on 

the same video partition scheme, they have the same waiting 

time. Furthermore, CCA++ and RCCA++ yield the shortest 

waiting time. For example, when the server bandwidth equals 

15 channels, CCA++ and RCCA++ reduce the broadcast 

latency to less than 5.2 seconds. By contrast, CCA and CCA+ 

incur more than 14.1 and 6.8 seconds, respectively. 

 

 

Fig. 2 Maximum waiting time incurred on new clients at different 

numbers of channels ( 120=L  minutes) 

 

 

Fig. 3 Maximum buffer requirements in percentage of video size at 

different numbers of channels 

 

This work used the Perl language to implement a simulator 

to yield the buffer requirements for CCA, CCA+, CCA++, and 

RCCA++ under various broadcasting bandwidths. The results 

are plotted in Fig. 3, where 2=u . For 3>k , RCCA++ 

requires the smallest buffer space than other schemes. For 

example, when the server bandwidth equals 11 channels, 

RCCA++ requires a client to buffer 14% of video size. By 
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contrast, CCA, CCA+, and CCA++ need 25%, 28%, and 29%, 

respectively. RCCA++ thus reduces the buffer requirements 

by 44% for CCA, 50% for CCA+, and 52% for CCA++. 

V. CONCLUSIONS 

This study presents an improved version of CCA++ for 

reducing client buffer space. The proposed scheme, RCCA++, 

requires far smaller buffer space than CCA++. Based on the 

same amount of server bandwidth and client receiving 

bandwidth, RCCA++ can yield 52% smaller buffer size than 

CCA++ can. In evaluating the performance, this study 

compares RCCA++ with CCA, CCA+, and CCA++. The 

results clearly show the advantages of using RCCA++ under 

various parameter settings. 
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