
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1338

Abstract—Periodic broadcast is a cost-effective solution for

large-scale distribution of popular videos because this approach

guarantees constant worst service latency, regardless of the number

of video requests. An essential periodic broadcast method is the

client-centric approach (CCA), which allows clients to use smaller

receiving bandwidth to download broadcast data. An enhanced

version, namely CCA++, was proposed to yield a shorter waiting

time. This work further improves CCA++ in reducing client buffer

requirements. The new scheme decreases the buffer requirements by

as much as 52% when compared to CCA++. This study also provides

an analytical evaluation to demonstrate the performance advantage,

as compared with particular schemes.

Keywords—Periodic broadcast, client-centric approach, buffer

space, multimedia communications.

I. INTRODUCTION

ITH the fast boost of video-on-demand (VOD) services,

VOD systems easily run out of bandwidth because the

growth in bandwidth can never keep up with the increasing of

the number of clients. One approach to alleviate this problem

is to broadcast only popular videos. This approach is feasible

because relatively few popular videos form most client

requests [1], [2]. An efficient broadcasting method is periodic

broadcast, which divides a video into multiple segments that

are simultaneously and periodically transmitted to clients

across individual data channels. The method can improve

system throughput by allowing numerous clients to share the

channels. Because the clients usually wait for the occurrence

of the first segment before playing the video, the scheme

provides only near-VOD services.

Suppose that a server allocates a broadcasting bandwidth of

k playback video rates. The fast broadcasting (FB) scheme

[3] divides a video of length L into 12 −k
 segments and

yields a maximal waiting time)12/(−kL . Assume that

7=k and 3600=L s. The maximal waiting time for an FB

client equals 28 s. To achieve a near-minimal waiting time, the

recursive frequency-splitting (RFS) scheme [4] broadcasts a

segment at a frequency that can guarantee continuous video

playback.

With the fast growth of wireless networks, mobile video

services become more and more popular. The issue on how to

broadcast videos under rather restricted client resources, such

as client buffering space and receiving bandwidth, is

Hsiang-Fu Yu, Yu-Chan Hsu, Chun Fang, and Hao-Yun Yang are with the

Department of Computer Science, National Taipei University of Education,
Taiwan (e-mail: yu@tea.ntue.edu.tw).

increasingly important. The reverse fast broadcasting (RFB)

scheme [5] improves FB to reduce buffer requirements by as

much as 50%. The hybrid broadcasting scheme (HyB) [6]

combines RFS and FB to reduce client buffer space, as well as

service latency. Motivated by HyB, the study in [7] integrates

the fixed-delay pagoda broadcasting scheme [8] and RFB to

yield small client waiting time and buffer demand. A

generalized reverse sequence-based model [9] was proposed to

explain why broadcasting segments in reverse order could

improve buffer requirements. The skyscraper broadcasting

(SkB) scheme [10] allows a client to download video data

using only a bandwidth of two channels. The client-centric

approach (CCA) [11] also permits a client to download video

data via a small bandwidth, and CCA+ [12] improves CCA to

yield a shorter waiting time than that of SkB. CCA++ [12]

further refines CCA+ by leveraging client bandwidth for more

efficient video broadcast, and reduces the broadcast latency by

as much as 39% when compared to CCA+ and 78% when

compared to CCA.

Extending CCA++, this work proposes an enhanced

version, called Reverse CCA++ (RCCA++). Similar to

CCA++, the new scheme considers both broadcasting

bandwidth and receiving bandwidth. However, the proposed

scheme reduces client buffer requirements remarkably, when

compared to CCA++. This work finds that RCCA++ requires

52% smaller buffer requirements than CCA++. This study also

conducts an analytical evaluation to demonstrate the

performance advantage, as compared with particular schemes.

The remainder of this study is organized as follows. Section

II briefly reviews CCA++. Section III presents RCCA++. The

performance of RCCA++ is evaluated in Section IV. Section

V draws brief conclusions.

II. REVIEW OF CCA++

Table I defines terms frequently used in this paper. The

CCA++ scheme divides a video into N segments, where

∑
=

=
k

i
inN

1

 and















>=

≤≤

=

∑
−

−−=

−

−

otherwisen

uianduiifn

uiif

n

i

uij
j

i

i

i

,

,1mod,

,1,2

1

1

1

1

. (1)

Hsiang-Fu Yu, Yu-Chan Hsu, Chun Fang, Hao-Yun Yang

Extension of the Client-Centric Approach under

Small Buffer Space

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1339

TABLE I

LIST OF TERMS USED IN THIS PAPER AND THEIR RESPECTIVE DEFINITIONS

Term Definition

L Video length

k Number of server broadcasting channels for each video

iC i th broadcasting channel, ki ,...,1=

iS i th video segment, Ni ,...,1=

iG

i th segment group, ki ,...,1=

in Number of the segments of group iG

b
Video playback rate assumed to equal the data transmission rate
of each channel

u Client receiving bandwidth, expressed as u receiving channels

δ Client maximum waiting time

iT

Time a client starts playing the segments of group iG , and

∑
−

=

+=
1

1

1
i

j
ji nT

time unit
Basic unit on the time axis, whose length equals the length of

1S

The segments, denoted by 1S , 2S , . . . , and NS , are then

classified into k groups in sequence. A group iG includes

in segments. Without loss of generality, we set the length of

1S (that is, 1n) to be 1, and the video duration L is a value

relative to 1n . On the server side, the CCA++ scheme

broadcasts the segments of group iG on channel iC

periodically and simultaneously. At receiving ends, clients use

u loaders to receive video segments systematically by group.

Each loader downloads at most one segment from a channel in

every time unit. Initially, the loaders receive the segments of

groups 1G to uG from channels 1C to uC . When a loader

finishes receiving the segments of the x th
 group, the loader

determines to download the segments of which group by

checking the value of uxmod . If 0mod =ux , the loader

downloads the segments of the 1+x th
 group. Otherwise, the

loader accesses the segments of the 1++ ux th
 group. The

loaders repeat the process until all of the segments are

received.

III. PROPOSED EXTENSION OF CCA++

Because the number of segments buffered before played by

a client determines the client’s buffer size, the key to

minimizing the size is to ensure the number as small as

possible, under the client continuous playback. In CCA++, the

maximum buffer size comes from the buffering of the

segments of the last group.

The proposed RCCA++ scheme adopts the same strategy of

CCA++ to ensure that a client can continue to download the

next group after accessing the current group. Our research thus

focuses on how to make the number of the buffered-before-

played segments of the last group as small as possible. In

CCA++, a loader is required to continuously receive the

segments of group iG during time 11 +−iT to iT , and the

loader buffers 1−in segments at time iT [12].

A. Server Side

Motivated by the observation, this work devises the reverse

CCA++ scheme, which broadcasts video segments according

to the following steps.

1. Equally divide a video into N segments, where

∑
=

=
k

i
inN

1

 and in is based on (1). The segments are then

classified into k groups, where group iG includes in

segments.

2. Periodically broadcast the segments of group iG on

channel iC according to the following conditions.

For 2=u :

a. If 0mod =uk :

� Transmit the segments of group iG on channel iC

in sequence, where 31 −≤≤ ki .

� Reversely transmit the segments of group 2−kG on

channel 2−kC , the segments of group 1−kG on

channel 1−kC , and the segments of group kG on

channel kC , respectively.

b. If 1mod =uk :

� Transmit the segments of group iG on channel iC

in sequence, where 41 −≤≤ ki .

� Reversely transmit the segments of group iG on

channel, where kik ≤≤− 3 .

For 2>u :

a. If 1mod =uk or 2mod =uk :

� Transmit the segments of group iG on channel iC

in sequence, where 31 −≤≤ ki .

� Reversely transmit the segments of group 2−kG on

channel 2−kC , the segments of group 1−kG on

channel 1−kC , and the segments of group kG on

channel kC , respectively.

b. Otherwise:

� Transmit the segments of group iG on channel iC

in sequence, where 21 −≤≤ ki .

� Reversely transmit the segments of group 1−kG on

channel 1−kC and the segments of group kG on

channel kC , respectively.

B. Client Side

A client is assumed to have enough buffers to store

downloaded video segments. We also suppose that a client

uses u loaders to receive video segments, where each loader

accesses at most one segment from one channel in every time

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1340

unit. Initially, the loaders receive the segments of groups 1G

to uG from channels 1C to uC , respectively. When a loader

finishes receiving the segments of the x th
 group, the loader

determines to download the segments of which group by

checking the value of uxmod . If 0mod =ux , the loader

downloads the segments of the 1+x th
 group. Otherwise, the

loader accesses the segments of the 1++ ux th
 group. The

loaders repeat the process until all of the segments are

received.

Furthermore, each loader must check the segment-

broadcasting order on a channel before it starts segment

downloading. If the segments are transmitted in sequence, the

loader immediately and continuously downloads the segments

until all the segments of the same group are received. When

the loader finishes receiving the segments of group iG , the

loader determines to download the segments of which group

by checking the value of uimod . If 0mod =ui , the loader

receives the segments of group 1+iG . Otherwise, the loader

accesses the segments of group 1++uiG . The downloading

process is the same as that of CCA++.

G
1

Video

G
2

G
3

G
4

G
5

G
6

S
1

S
2
S

3

S
4
S

5

S
10
S

9
S
8

S
1

S
2
S
3
S
2

S
4
S
5

S
4
S
5

S
4
S

5

S
1
S
1
S
1
S
1
S
1
S

1
S

1
S

1
S

1
S

1
S
1
S
1
S
1
S
1
S
1
S

1
S

1
S

1
S

1
S

1
S
1
S
1
S
1
S
1
S

1
S

1
S

1

S
3

S
7
S
6

S
15
S

14
S

13
S

12
S
11

S
27
S

26
S

25
S

24
S
23
S
22
S
21
S
20
S

19
S

18
S

17
S

16

S
10
S
9
S

8
S

7
S

6

S
15
S
14
S
13
S

12
S

11

S
10
S

9
S
8
S
7
S
6

S
15
S

14
S

13
S
12
S
11

S
10
S
9
S

8
S

7
S

6

S
15
S
14
S
13
S

12
S

11

S
10
S

9
S
8
S
7
S
6

S
15
S

14
S

13
S
12
S
11

S
10
S

9
S

8
S

7

S
15
S
14
S

13
S

12

S
27
S
26
S
25
S
24
S
23
S
22
S

21
S

20
S

19
S

18
S

17
S
16
S
27
S
26
S
25
S

24
S

23

S
1
S
2
S
3
S
4
S
5
S
6
S

7
S

8
S

9
S

10
S

11
S

12
S
13
S
14
S
15
S
16
S
17
S

18
S

19
S

20
S

21
S

22
S
23
S
24
S
25
S
26
S

27

S
1
S

2
S
3
S
4
S
5
S
6
S
7
S

8
S

9
S

10
S

11
S

12
S

13
S
14
S
15
S
16
S
17
S
18
S

19
S

20
S

21
S

22
S

23
S
24
S
25
S
26
S
27

T
1

t

C
1

C
2

C
3

C
4

C
5

C
6

Client
playback

...

...

...

...

...

...

S
2
S

3
S

2
S

3
S

2
S

3
S
2
S
3
S
2
S
3
S
2
S

3
S

2
S

3
S

2
S

3
S
2
S
3
S
2
S
3
S

2
S

3
S

2

S
4
S

5
S

4
S

5
S
4
S
5
S
4
S
5
S
4
S

5
S

4
S

5
S

4
S

5
S
4
S
5
S
4
S
5
S

4
S

5
S

4

x=2 x+n
i
=7 y=8

S
y

S
z

z=13

1st loader

1st loader

1st loader

2nd loader

2nd loader

2nd loader

Fig. 1 Illustration of the segment downloading for the proposed extension, where 2=u

If the segment-broadcasting order on channel iC is reverse,

the loader performs a different downloading process as the

following.

For 1mod >ui : Suppose that the loader sees a segment

yS on channel iC at time x , and the segment will be played

at time y . If yx ≤ , the segment has not been played, and the

loader must decide whether to download it or not. Because

segment yS is broadcast once every in time units, the loader

next sees it at time inx + . If inxy +< , the next appearance

of segment yS is after its playback. Thus, the time unit x is

the last chance to download the segment before its playback.

Combining yx ≤ and inxy +< , we obtain

inxyx +<≤ (2)

If the inequality is true, the loader must download segment

yS at time unit x to ensure continuous playback. Otherwise,

the loader does not receive the segment. When all the

segments of group iG have been received, the loader stops

the downloading.

For 0mod =ui : The loader also performs the segment

downloading on channel iC according to (2). However, the

loader additionally receives segments from channel 1+iC .

Suppose that the loader sees a segment zS on channel 1+iC at

time x , and next sees it at time 1++ inx because it is

broadcast once every 1+in time units. The loader determines

whether to download the segment by checking

1++<≤ inxzx (3)

If the inequality is true, the loader downloads segment zS ;

otherwise, the loader waits for its next appearance. When all

the segments of group 1+iG have been received, the loader

stops the downloading.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1341

Fig. 1 demonstrates how to download segments, where

6=k and 2=u . Because 2=u , two loaders, saying the

first loader and the second loader, are used to receive the

segments of groups 1G and 2G at time 1T . The loaders

continuously download the segments since they are broadcast

in sequence. Once the segment downloading on channel 1C is

complete, the first loader next accesses the segments of group

4G on channel 4C because 0mod ≠ui , where 1=i and

2=u . The segment downloading on channel 4C is

according to (2) because 02mod4 = . For example, when the

loader first sees segment 8S with diagonal lines on channel

4C at the second time unit, the inequality of (2) does not hold

(i.e., 78 =+>= inxy), and thus the loader does not receive

this segment. When the loader next sees segment 8S colored

gray on channel 4C at the seventh time unit, (2) becomes true

because 1287 =+<=<= inxyx , where 7=x . The

loader thus downloads this segment. Because 0mod =ui ,

where 4=i and 2=u , the first loader also receives the

segments from channel 5C according to (3). For instance,

when the loader first sees segment 13S with diagonal lines on

channel 5C at the second time unit, the inequality of (3) does

not hold (i.e., 713 =+>= jnxz), and thus the loader does

not receive this segment. When the loader next sees segment

13S at the seventh time unit, the inequality of (3) does not

hold still, and the loader skips the segment again. The segment

13S is finally downloaded at the 12
th
 time unit because (3)

becomes true, 171312 =+<=≤= jnxzx . When all the

segments of group 5G have been received, the first loader

stops the downloading.

Furthermore, once the second loader finishes the segment

downloading on channel 2C at the second time unit, it

continuously receives the segments from channel 3C because

0mod2 =u and the segments are broadcast in sequence.

When the downloading on channel 3C is complete, the loader

next accesses the segments of group 6G because

02mod3 ≠ and 6123 =++ . The segment downloading on

channel 6C is according to (2). Once all the segments of

group 6G have been received, the second loader stops the

downloading.

IV. PERFORMANCE ANALYSIS AND COMPARISON

This section evaluates the performance of the proposed

scheme. We compare RCCA++ with CCA, CCA+, and

CCA++. When a client barely misses segment 1S of a

requested video, the maximal waiting time δ equals its access

time from the first channel. Thus, ∑
=

==
k

j

jnLNL
1

//δ . The

video length L is assumed to be 120 minutes, and the server
bandwidth is varied from 1 to 15 channels. The performance

results of CCA, CCA+, CCA++, and RCCA++ are plotted in

Fig. 2, where 2=u . The figure shows that as the server

bandwidth increases, the waiting time under all four schemes

reduces sharply. Because CCA++ and RCCA++ are based on

the same video partition scheme, they have the same waiting

time. Furthermore, CCA++ and RCCA++ yield the shortest

waiting time. For example, when the server bandwidth equals

15 channels, CCA++ and RCCA++ reduce the broadcast

latency to less than 5.2 seconds. By contrast, CCA and CCA+

incur more than 14.1 and 6.8 seconds, respectively.

Fig. 2 Maximum waiting time incurred on new clients at different

numbers of channels (120=L minutes)

Fig. 3 Maximum buffer requirements in percentage of video size at

different numbers of channels

This work used the Perl language to implement a simulator

to yield the buffer requirements for CCA, CCA+, CCA++, and

RCCA++ under various broadcasting bandwidths. The results

are plotted in Fig. 3, where 2=u . For 3>k , RCCA++

requires the smallest buffer space than other schemes. For

example, when the server bandwidth equals 11 channels,

RCCA++ requires a client to buffer 14% of video size. By

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ax
im
a
l
w
ai
ti
n
g
 t
im
e
(s
)

Number of channels, k

CCA

CCA+

CCA++

RCCA++

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
u
ff
er
 s
iz
e

Number of channels, k

CCA

CCA+

CCA++

RCCA++

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1342

contrast, CCA, CCA+, and CCA++ need 25%, 28%, and 29%,

respectively. RCCA++ thus reduces the buffer requirements

by 44% for CCA, 50% for CCA+, and 52% for CCA++.

V. CONCLUSIONS

This study presents an improved version of CCA++ for

reducing client buffer space. The proposed scheme, RCCA++,

requires far smaller buffer space than CCA++. Based on the

same amount of server bandwidth and client receiving

bandwidth, RCCA++ can yield 52% smaller buffer size than

CCA++ can. In evaluating the performance, this study

compares RCCA++ with CCA, CCA+, and CCA++. The

results clearly show the advantages of using RCCA++ under

various parameter settings.

ACKNOWLEDGMENT

This work was supported in part by the National Science

Council of Taiwan under Contract NSC 101-2221-E-152-004.

REFERENCES

[1] M. Vilas, X. G. Paneda, R. Garcia, D. Melendi, and V. G. Garcia, “User
behavior analysis of a video-on-demand service with a wide variety of
subjects and lengths,” in Proceedings of the 31st EUROMICRO

Conference on Software Engineering and Advanced Applications, pp.

330-337, August 2005.
[2] H. Yu, D. Zheng, B. Y. Zhao, and W Zheng, “Understanding user

behavior in large-scale video-on-demand systems,” in Proceedings of

EuroSys 2006, pp. 333-344, October 2006.
[3] L.-S. Juhn and L.-M. Tseng, “Fast data broadcasting and receiving

scheme for popular video services,” IEEE Transactions on

Broadcasting, vol. 44, no. 1, pp. 100–105, March 1998.
[4] Yu-Chee Tseng, Ming-Hour Yang, and Chi-He Chang, “A recursive

frequency-splitting scheme for broadcasting hot videos in VOD service,”

IEEE Transactions on Communications, vol. 50, no. 8, pp. 1348–1355,
August 2002.

[5] H.-F. Yu, H.-C. Yang, and L.-M. Tseng, “Reverse Fast Broadcasting

(RFB) for Video-on-Demand Applications,” IEEE Transactions on
Broadcasting, vol. 53, no. 1, pp. 103-111, March 2007.

[6] H.-F. Yu, “Hybrid Broadcasting with Small Buffer Demand and Waiting Time

for Video-on-Demand Applications,” IEEE Transactions on Broadcasting,
vol. 54, no. 2, pp. 304-311, June 2008.

[7] Y.-N. Chen and L.-M. Tseng, “An Efficient Periodic Broadcasting with

Small Latency and Buffer Demand for Near Video on Demand,”
International Journal of Digital Multimedia Broadcasting, vol. 2012,
Article ID 717538, 7 pages, 2012.

[8] J. F. Paris, “A fixed-delay broadcasting protocol for video-on-demand,”
in Proceedings of the 10th International Conference on Computer

Communications and Networks (ICCCN '01), pp. 418-423, October

2001.
[9] H.-F. Yu, P.-H. Ho and H.-C. Yang, “Generalized Sequence-based and

Reverse Sequence-based Models for Broadcasting Hot Videos,” IEEE

Transactions on Multimedia, vol. 11, no. 1, pp. 152-165, January 2009.
[10] K.A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting

scheme for metropolitan video-on-demand systems,” ACM SIGCOMM,

September 1997.
[11] Y. Cai, A. Hua and S. Sheu, “Leverage client bandwidth to improve

service latency of distributed multimedia applications,” Journal of

Applied Systems Studies, 2(3), 2001.
[12] A. Natarajan, Y. Cai, J. Wong, “An enhanced client-centric approach for

efficient video broadcast,” Multimedia Tools and Application, vol. 43,

no. 2, pp. 179-193, 2009.
[13] H.-F. Yu, “Improvement of the Client-Centric Approach for

Broadcasting Popular Videos,” Multimedia Tools and Applications, vol.
67, no. 3, pp. 629-639, December 2013.

