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Extending Global Full Orthogonalization method
for Solving the Matrix Equation

Fatemeh Panjeh Ali Beik

Abstract—In the present work, we propose a new method for
solving the matrix equation . The new method can
be considered as a generalized form of the well-known global full
orthogonalization method (Gl-FOM) for solving multiple linear
systems. Hence, the method will be called extended Gl-FOM (EGl-
FOM). For implementing EGl-FOM, generalized forms of block
Krylov subspace and global Arnoldi process are presented. Finally,
some numerical experiments are given to illustrate the efficiency of
our new method.

Keywords—Matrix equations, Iterative methods, Block Krylov
subspace methods.

I. INTRODUCTION

CONSIDER the multiple linear system

where is a large and sparse nonsingular matrix, C
and X are rectangular real matrices.

For nonsymmetric problems, recently, some block Krylov
subspace methods have been developed; see [1, 3, 5, 7-9, 12]
and the references therein. The global full orthogonalization
method (Gl-FOM) and its weighted version, for solving the
multiple linear system are projection methods on
the block Krylov subspace

where is given.
Now, consider the following matrix equation

(1)

where is a full column-rank matrix and
is a full row-rank matrix.

Recently, there has been an increased interest in solving ma-
trix equations; for more details see [2,4] and their references.
In [2], Ding et al. proposed an iterative method for solving
the matrix equation (1) by extending the well-known Jacobi
and Gauss-Seidel methods.

Lemma I.1. If A is a full column-rank matrix and B is a full
row-rank matrix , then in the sense of least-
squares, (1) has the unique solution

Proof. See[2].
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Theorem I.2. If the conditions of Lemma 1.1 hold, the
gradient based iterative algorithm of (1),

yields

proof. See[2].
It is obvious that finding a proper by the conditions

described in Theorem 1.2, is too expensive. On the other
hand, in application, the value of approximated by Theorem
1.2 may become too small, hence the algorithm may become
divergent.

It is known that the global full orthogonalization method
(Gl-FOM) is suitable for solving multiple linear systems with
large coefficient matrix. Hence, we are interested to present
a new iterative method, by extending Gl-FOM, for solving
the matrix equation (1). To this end, we need to generalize
the definition of the block Krylov subspace. On the other
hand, it is obvious that each system of the form (1) can be
reformed as Hence, without loss
of generality, we will consider the following matrix equation

(2)

where are nonsingular matrices and

For two matrices Y and Z in we define the inner
product where denotes
the trace of the matrix The associated norm is the
well-known Frobenius norm denoted by A system of
vectors (matrices) of is said to be F-orthonormal if it
is orthonormal with respect to

For a matrix we denote by the vector
of defined by

where is the j-th column of V.
For given matrices and the so-called

Kronecker product of the matrices A and B, denoted by
is defined by the following matrix, (
for more details see [6])

Definition I.3. (R. Bouyouli et al.[1] ). Let
and be matrices of

dimensions and respectively, where and
are matrices. Then the matrix is defined
by .



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:5, No:2, 2011

156

The outline of the paper is organized as follows. In Sec-
tion 2, a generalized form of the global Arnoldi process is
presented for implementing our new method. A new method
called the extended global full orthogonalization method (EGl-
FOM), for solving the matrix equation (2), is proposed in
Section 3. To illustrate the efficiency of our new method in
comparison with the method presented in [2], some numerical
experiments are presented in Section 4. Finally, the paper is
ended with a brief conclusion in Section 5.

II. GENERALIZED GLOBAL ARNOLDI PROCESS

We can easily see that the matrix equation (2) is equivalent
to the following linear system of equations

However, the size of the linear equations
is too large and the block Krylov subspace methods

consume more computer time and memory once the size of the
system is large. To overcome these complications and draw-
backs, by extending global full orthogonalization method (Gl-
FOM), we propose an extended global full orthogonalization
method (EGl-FOM) for solving the matrix equation (2). To
this end, we need to generalize the definition of the block
Krylov subspace in the following.

Definition II.1. Suppose that and
we define the generalized block Krylov subspace

as follows

(3)

In the following, a generalized form of the global Arnoldi
process is presented for constructing an -orthonormal basis
for the .

Algorithm II.2. (Generalized global Arnoldi process)
1. Choose an matrix V. Set
2. For Do:
3.
4.
5. For Do:
6.
7.
8. EndDo
9. If , then stop.

10.
11. EndDo.

Denote by the matrix with columns
the Hessenberg matrix whose

nonzero entries are defined
by Algorithm 2.2, and by the matrix obtained from
by deleting its last row.
It is obvious that, the generalized global Arnoldi process con-
structs an -orthonormal basis for the matrix
block Krylov i.e., the matrices
satisfy the following conditions

(4)

Theorem II.3. Let and be defined as before.
Then the following relations hold

(5)

(6)

where

Proof. From lines 3, 4 and 7 of Algorithm 2.2, we deduce that

The above relation is equivalent to (5). The relation (6) is a
reformulation of (5).

III. EXTENDED GLOBAL FULL ORTHOGONALIZATION

METHOD (EGL-FOM)

In this section, we present our new method, EGl-FOM for
solving the matrix equation (2).

Given an initial guess with the corresponding residual
the EGl-FOM constructs the new approxi-

mate solution to the solution of (2) such that

(7)

and,
(8)

Consider the F-orthonormal basis constructed with gener-
alized global Arnoldi process. From the relation (7), we deduce
that

(9)

where the vector is obtained by imposing the
orthogonality condition (8). By substituting (9) in , we
get

By imposing the orthogonality condition we conclude that

=

On the other hand and .
Therefore, the vector is the solution of the following
linear system

Now, we propose the EGl-FOM algorithm for solving the
matrix equation (2) as follows.

Algorithm III.1. (EGl-FOM)
1. Choose a tolerance compute and
set
2. For Do:
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3. Construct the F-orthonormal basis by Algo-
rithm 2.2.
4. Find as the solution of
5. Compute the approximate solution

and

6. If , then stop.
7. Set , , and go to 3.
8. EndDo.

The EGl-FOM algorithm requires the storage of . That
is, in order to save the vector we need an dimensional
vectors space whose entries are matrices. To cure the storage
problem, encountered also in Gl-FOM, the value of is
limited by storage constraint and by avoiding rounding errors;
for more details, see [11]. Hence, Algorithm 3.1 can be
restarted after iterations. The corresponding algorithm is
called the restarted EGl-FOM ( ).

Lemma III.2. Suppose that is
the approximate solution computed by the EGl-FOM algorithm
with the corresponding residual matrix Then

Therefore, where is the last
component of the vector

Proof. It is easy to see that,
By some easy computation, we get

therefore,
On the other hand,

it is clear that . Hence, the result follows
immediately.

Lemma III.3. Suppose that is
the approximate solution computed by the EGl-FOM algorithm
with the corresponding residual matrix Then

and

Proof. From the previous lemma, we have

. On the other hand is the solution of the
linear system . Hence, the results follow by
computing by the Cramer rule.

IV. NUMERICAL EXPERIMENTS

In this section, we give an example to illustrate the results
presented in this paper. Also, we will compare our new method
with the method given in [2]. For simplicity we called the
method, proposed in [2], as Ding’s Method. The experiments
were performed by Mathematica 6. The initial guess was
chosen such that and the tests were stopped as soon
as

Example IV.1. Let the matrix A be a matrix defined
as follows:
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The matrix B is defined by
The matrix F is chosen such that be the
solution of the matrix equation (2), where nonzero elements
of are .

The results of performing EGl-FOM(2) in terms of both
number of restarts and CPU consuming time in seconds are
prented in the following table.

iteration CPU- time(s)
200 30 292 17.16
400 50 459 403.794

Fig. 1: n = 200, s = 30

The numerical comparison results for Ding’s Method and
EGl-FOM are given in the form of Figures 1 and 2. The relation
between the number of restarts as the x-axis and the relative
residual’s logarithm (in base 10) as the y-axis. As it is seen the
Ding’s Method is not convergent for this example, although
we have chosen a proper which satisfies in the conditions
of Theorem 1.2.
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Fig. 2: n = 400, s = 50

V. CONCLUSION AND FURTHER WORKS

We introduced a generalized forms for the block Krylov
subspace and global Arnoldi process. Then, an extended global
full orthogonalization method (EGl-FOM) was presented for
solving the matrix equation . The weighted version
of the EGl-FOM can be presented in a similar way which have
proposed by the authors in [8]. Extending global generalized
minimum residual (Gl-GMRES) method [5] and its weighted
version [9] for solving the matrix equation with its
convergent properties is under investigation. In a similar way
discussed in [10], the EGl-FOM can be applied for solving
the shifted matrix equation
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