International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

Extending E-learning systems based on
Clause-Rule model

Keisuke Nakamura, Kiyoshi Akama, and Hiroshi Mabuchi

Abstract—E-Learning systems are used by many learners and
teachers. The developer is developing the e-Learning system. How-
ever, the developer cannot do system construction to satisfy all of
users’ demands. We discuss a method of constructing e-Learning
systems where learners and teachers can design, try to use, and share
extending system functions that they want to use; which may be nally
added to the system by system managers.

Keywords—Clause-Rule-Model,
Web-Application.

database-access, e-Learning,

I. INTRODUCTION

In recent years, E-learning systems (LMS) are being used
extensively by universities to provide online courses and also
by companies to provide training to employees. In general, the
functions of the LMS is constructed by a system developer,
the teacher publishes the learning materials, the student learns
by using the provided functions along with the materials,
and the teacher grades the work submitted by the student.
However, when an LMS is developed via this mechanism, its
ability to provide specialized functions that a particular student
and teacher may desire is very limited. The functions desired
by users of a LMS are numerous and varied. Therefore it
is impossible for a developer to implement all the functions
a particular user may desire. Some studies with respect to
LMS propose new frameworks which gives the users the
capability to construct new functions. For example, in Moodle
[1], a user is able to construct new functions called modules.
However, the average user of the LMS still find it very difficult
to construct the functions he or she desires. An e-Learning
system is a Web application, and as such it is composed using
WWW technology, network technology, and database technol-
ogy. Therefore,in order to properly create new functions the
average user would need to have related knowledge and know
about the underlying technologies. It is not a free learning
environment in which personal, new functions can be made
by everyone. Additionally, the database of the LMS includes
classified information with respect to students. It is essential
that database security be taken into account even while freely
allowing the average user to construct new functions that can
access the database. All these challenges have to be taken into
account by the developer when considering allowing the user
to freely extend the LMS with additional functions. For the

K.Nakamura is with the Faculty of Computer Science, Hokkaido University,
Sapporo, Hokkaido, 060-0811 Japan e-mail:knakamura@ist.hokudai.ac.jp.

K.Akama is with the Information Initiative Center, Hokkaido University,
Sapporo, Hokkaido, 060-0811 Japan e-mail:akama@iic.hokudai.ac.jp.

H.Mabuchi is with the Faculty of Software and Information Sci-
ence, Iwate Prefectural University, Takizawa, Iwate, 020-0193 Japan e-
mail:mabu @soft.iwate-pu.ac.jp.

first technical issue, we propose a construction model for new
functions based on clauses and equivalent transform rules. In a
word, this is a construction methodology for Web applications
that inclusively describes the database technologies, network
connection, and WWW technologies. In comparison to other
construction methods, the user can specify the system by a
lower cost using this methodology.

The second technical (security) issue is solved by permitting
only users who are listed on a specified menu to execute
the program. We solve these technical issues by instituting
a mechanism which allows safely, automatic database access.

Additionally, since a constructed function can be shared and
published by other users, users can use copies of functions
constructed by any other user. A user can construct new
function based on that copy, so the LMS can evolve by
extending it with many such functions. In developing this
evolutionary e-learning system, it is important that it includes a
simple construction model independent of any particular Web
technology, database technology or network environment. In
addition it should have a safety mechanism for connecting
to a database, and a framework for sharing and expanding
functions. In section 2, the difficulties and security risks
involved when permitting the user to freely make functions for
the system are discussed. Additionally, the section proposes a
simple construction model for resolving these problems, and
discusses the safety of the model.

In section 3 we outline the mechanism for implementing
a program specified by the proposed construction model
introduced in Section 2, and a framework for executing the
model on the system. Additionally, the section discusses the
effectiveness of the model, and a structure for sharing and
publishing constructed programs.

II. CLAUSE-RULE MODEL
A. Challenges Faced by the User in Creating Functions

An e-learning system is a Web application. The basic
mechanism of a Web application is data communication be-
tween client and server via a network connection. The basic
components are a web browser, a CGI[2] script, a database and
a network. The main components of an e-Learning system are
a CGI script and the database access functions via a network
connection. Fig. 1 shows the relationship of these components.
A Web browser has two main functions: 1. to display HTML
documents obtained from a server, and 2. to send a request
for data to a server. The CGI script operates in accordance
with the request from the client. It accesses the database and
dynamically composes documents from the data and returns
them to the client.

1196

International Journal of Information, Control and Computer Sciences

ISSN:
Vol:3,

Client Server
..-l-""-?
n-'-_' -...-I f-ﬂ-_ _'_,_,..-'-"";II
Web- Browser &= > I
»Display » 0B access

Network *Processing

Fig. 1. the mechanism of a Web Application

This mechanism is the basic operation of a Web application.
However, it is also the reason why knowledge of network
technology and database operation are essential in order to
construct a properly operating system.

As a result knowledge of HTML for interface specification,
database query model for database management, and Web and
network related knowledge for Web application construction,
are indispensable.

As depicted in fig.2 the developer uses a script which to
specify these varied models.

It is very difficult to simplify the function creation process
for the user because it requires knowledge of several Web
technologies.

In addition, a developer must consider security in the
database and there is an anxiety in make construct the new
function by the viewpoint of the safety management of the
system. Moreover, from the viewpoint of system management,
there is a need to consider security of the database, even while
allowing the user to make the function. If a simple construction
framework for LMS functions was provided for students and
teachers, then everyone would be able to construct new LMS
functions based on individual needs.

We propose the Clause-Rule model for such a framework.

B. Modeling of Web application by clause set and rule

Using this model knowledge concerning the Web appli-
cation technologies is not necessary and the security of the
database is guaranteed, when the user constructs the LMS
functions. Because an e-Learning system consists of various
models, such as interface description model, database query
model, etc., the difficulty , for the user, of creating functions

’—E\A RDBMS
) e] !

~ |Web
\@Server
Essenceof | 7 Database 50
e-Learning %\% Program
feature "3 Interface
Traditional model
"-)‘.
Web Client

Fig. 2. Traditional Model

2517-9942
No:4, 2009

increases. Then, it thinks about the method of simply describ-
ing a new function of the LMS. Therefore we need to come up
with a simple means of specifying the system. An e-Learning
system’s function can be specified using clause sets and rules.
For example, the database can be specified using clause sets.
Also, rules can be used to process the clause sets. These clause
sets and rules specify the essence of the function.

C. To describe the DB access via definite clause

Definite clauses can be used to model the database. The
table of a database corresponds to an atom and database query
corresponds to logical computation.

As shown in fig.3, by converting definite clauses via N-rules
and using logical computation on the resulting clauses, access
to the database is possible.

Also, the N-rule can process definite clauses. The table of
the database corresponds to an atom and database invocation
corresponds by the logical calculation. Thus, the N rule can
operate the database by the definite clause. The purpose of the
reason to use N rule is to obtain two or more solutions in the
data base access that uses a definite-clause. To access the data
base of N rule is describe as follows: D atom named getScore
is executed as shown in line cly. The rule that describes D
atom is shown since line cly. The getScore atom is rewritten
in the rule that executes the Ims:db atom, and acquired from
the Score table in S-expression. The database table can be
modeled by expressing the list according to the number of
tupples of tables by S-expression.

clh: Hs = {(getScore *list)}, Bs.
cly : (getScore*list) —
cly : (Ims:db(table:select Score (*id *qid *score))*list).

This DB access method is not as efficient as SQL in
data processing, but it gives a clear, simple description
in S-expression. The specification-program can describe the
essence quite simply.

2]=]

predicate: score

[score] DB table |

s | (score 1 “tare* 5 90) <--
: s B | Em 2 *salou” 5 a!J; P
:t:u 3 3 | (score 3 “katou™ € B8) <.
keatou B B8 | [w_w_n_—l Kalou 7 79) <=,
X Ko 1 ii] logical execution

| (score 7 “katou" 77) |
result

! (score 3 “katou™ & B8) <—.
| (score 4 “katou" T T79)<—.

Fig. 3. Logical DB access

By applying data selection rules to the clause sets data can
be extracted. For example, to produce student individual data,
the information can be derived from the clause sets. When
the database is represented using clause sets, N-rules can be
used to extract the information it contains. An N-rule is one
type of equivalent transform rules based on ET theory[5][6].

1197

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

Combining N-rules with D-rules enables us to achieve flexible
data processing and realize bot sides of Web application
functioning. An interpreter for application of the S-expression
and rules in the e-Learning system already exists. As shown
in fig.4, the specified essence is read by the interpreter and
automatically converted into separate functions. This is called
the Clause-Rule model.

D. Syntax of the Clause-Rule Model

1) N-rule Syntax: The Clause-rule model can specify using
N-rule syntax. An N-rule is composed of a head part(Hy), a
condition part(C), an execution part(£,,) and a body part(B;,,).
It has the following format;

Hsv{C} — {El}, le;
— {E2}7 BSQ;

= {E,}, Bs,,.

A head part consists of one or more atoms while all
other parts consist of zero or more atoms. When a head is
transformed into two or more bodies as shown above, “;” is
used for dividing those bodies. If the head is transformed to
only one body, such an N-rule is described as shown in the
following format;

H,{C} = {E}, Bs.

Each part is composed of atoms and executes as follows;

1) Head atom matching
2) Cond atom execution
3) Exec atom execution
4) Conversion to replacement atom

The condition and execution parts consist of zero or more
atoms. In the case where there are zero atoms these parts are
deleted. Variables in a rule begin with the asterisk **’ symbol.

N-rule syntax can describe flow of computation, user inter-
face definition, and data display, in a natural, intuitive way.
As depicted in cl, the program starts from (S init). The getdb
section specifies database access. This is detailed in II-D3.
Next the data acquired from the database is processed as a
list specified in S-expression. The list in S-expression simply
defines a table as is, and can be outputted to the user interface.
The details are shown in ?? Next, data is passed to the user
interface (display device) as shown in clsand it is displayed on
the screen. In addition, the button to accept the next request
is shown to the user.

cly i (S init) = {getdb(d), makelist(d,d1)}, (C send(dy)).
cla . (C recv(dy)),{disp(dy), setClick(c)} = (S send(c)).

cls : getdb(d) — ... (ref fer 1I-D3)
cly : makelist(d,dy) — ... (ref ferll-D2)

2) Specifying Tables using S-Expression Lists: For the
Clause-rule model, the page can be presented in table form
by composing the data. As depicted in Fig.5 the table can be
expressed by a simple S-expression type list. The S-expression

The abstraction level of data structure

(table ((() (1st) (2nd) (Ave))
((Math) (85) (90) (875))
((English) (60) (82) (71))
((Physics) (88) (90) (89))
))

Data structure and HTML description

<table>

<t <td> tdr <td>1stl/td> <td>2nd</td>
<d>Ave /td> <t

<tr> <td>Math.</td> <td>85</td> <td>90</td>
<td>87.5</td></tr> -«

<tr> <td>English</td> <td>60</td> <td>B2<{/td>
Gd>T1</td> </t

{tr> <td>Physics </td> <td>88<{/td> <td>90</td>
<td>89</td> </tr> <{/table>

Show Tables
1st 2nd Ave.
Math. 85 90 87.5
English 60 82 71
Physics 88 90 89

Fig. 5. Description Table by S-exp.list

type list can define the logical structure, etc., of the data
necessary to express the table.

A Web browser displays data tables constructed in HTML.
Therefore, we need to come up with a method of transforming
the data in the S-expression list to HTML. For example, the
description of a table is shown in Fig.5. The S-expression list
can express the table structure in the same way HTML tags
do. The S-expression list can describe the output page without
us having to think about the HTML structure because the list
structure corresponds to the HTML format.

The advantage of using list processing lies in the fact that
columns and rows can be flexibly added. For example, the
description of a simple specification program is shown in Table
I. The transformation of this program is shown in fig.6.

| 3x3 TABLE

"SHOW TABLES!!"

TESTI11 | TEST21 | TEST31
TEST21 | TEST22 | TEST32
TEST31 | TEST23 | TEST33

Fig. 6. Transformation of 3x3 Table

3) Specifying Database Access using Clause Sets and N-
Rules: A database can be modelled using clause sets. By using
N-rules to treat clause sets, a logical method of processing
is proffered. When compared to SQL, the efficiency of this

1198

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

RDBMS
Sy
-3
w. |Web
Essence s egSenrer
of > Clauses = Rule g ®
feature | E
S-Expression 3
Clause-rule model
N ®
Web Client
Fig. 4. Clause-rule model
TABLE I
PROGRAM LIST OF 3 X 3 TABLE III. LMS FUNCTION CONSTRUCTION SYSTEM FOR
EXTENDING
line I : °(S init)” atom is starting. A. Features
line 2 : A data make in the server and send to the client.
line 6 - The Textdata make on the server. In the fo]lowmg sections we will explain the features of just
line 7-10: The Tabledata (list) make on the server. such a new function framework that was developed by us.
line 13 : The Data show at the client. The features are:

1: (S init)
2% — { (ible2 *dat)}, (C showT *data). o (The system) interprets specifications via Interpreter CGI
3 « facilitates sharing of specifications

4 (table2 *data) « finds convenient functions

5: ——(Ims:setData *data(

6: (text “SHOW TABLE!!”)
7 (table (B. Menu
8 ((text TEST11) (text TEST21) (text TEST31))

o P et The function of the menu shown in fig.7 is to make and

10: ((text TEST31) (text TEST23) (text TEST33))) to edit the new features made and included (program), and
11:) manage shares and user authentication. The menu facilitates
12:

the management of the program by acting as an intermediary
between the new features made by the user and the Clause-rule
model interpreter. In addition, the process of user authentica-
tion for a safe database access is automated.

1) User’s Authentication: The menu accesses the table in
the database to manage user information, and guarantees that a
certified user is using the program. The menu can understand
who pushed the execution button of the program by internal
processing as shown in fig.8.

2) Program Launcher(Button): The program launcher is a
button to start the program with the e-Learning system. There
is a button that corresponds from Menul to Menu3 as shown in
fig.9. The new features included managed with the repository
is allocated in the button, and it is possible to use it with LMS.

13: (C showT *data),{(Ims:print *data)} =>.

method is low however the framework offers a simple, intuitive
way of treating data. By processing the data structure using N-
rules, actual RDB tables need not be considered and database
access can be flexibly specified.

cy (S init) = {getdb(d), makelist(d,dy)}, (C send(dy)).
cla: (C recv(dy)), {disp(dy), setClick(c)} = (S send(c)).
cls: getdb(d) — ... (ref fer II-D3)

cly : makelist(d,dy) — ... (ref ferll-D2)

4) D rule: The data acquired from the data base is pro- M
1 1 : enu database:
cessed, and the following is the output as a table corresponding / pareais P
to S-expression list. The condition and execution parts are [User’s Authentication j:
described using D rules[5]. The syntax of D rule is as shown
below: [Program Launcher(Button) J

—
(Head atom), {(Cond [zero or several atoms....])} [Program Editor & Sharing]——P
A

— (Body atom). J repository:
shared user programs

D-rules specify flexible database access and processing of
the data returned to the Web browser. Fig. 7. Menu:feature manager

1199

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

Shared Rule

Customize

registration

tom Rule

Fig. 9. Program shared system

Write Query. (mble ("N *N2*N3 'S[*§2953)) (table (*id NI N2 *N3 *S| %52 53))

Add User Info. ({3 User’s Session 1D Info. | ammnmj

Do Query. (able (NI *N2 N3 51 *52 %53)) :wuc\@'m-m N3 #5152 453))

Check User. [User Account Permission Check]
id NI N2 N3 51 52 53
A 70 80 75 math,

Do DBAccess. —— ot L L
B &0 70 | %0 | math | eng | ph
c

Get DATA. |@|n|a|n|m|n|m| @[nl

Get LIST, (70 80 75 “math" “eng." “phys.")

v [om |

(6070 90 “math.” “eng “phys.")

Fig. 8. User Authentication

3) Program Editor and Sharing: The program editor can
edit the program. In addition, the program that I made can be
shared in the repository. Certainly, programs made by other
users can also be used.

C. Interpreter

We will now explain the mechanism by which the menu
allows the program to be executed. The proposed model is
executed as shown in Fig.10 by the interpreter acting as
a Web application. When the menu button is pushed, the
corresponding program in the program launcher is executed.

Clause-rule model >
% (N rule, D rule)

P

Menu +
Interpreter

User's cal

Program - interpretation| | Database HTML

Fig. 10. Interpreter

1) The Interpreter CGI for Specification execution: In this
section, we explain the execution environment of interpreter
CGI. The execution environment loads the interpreted spec-
ification program as input data and executes it like a CGI

program. The user selects the specification program from
the database and can execute the selected program. We now
explain the execution process shown in fig.11:
1) User starts access to server. (by Client)
2) Acquire the specification program from a database. (by
Server) Specification is interpreted by Interpreter CGI.
(by Server)
3) Interpreted data generates HTML of execution result at
execution environment.
(by Server) Output to Web browser (by Client)

Storing to Specification (Spec.)

__________________ X
Function “
<

Edit/Reg.

Getting a Spec.q

Execution - - - Interpreter

Learner/Teacher

Send to Result

Fig. 11. Execute Specification

D. The Repository and Program Sharing

All programs are made from S-expression and the rule in
this system as shown in Fig.9, and it is accumulated and
shared in the repository. The program put on the repository
can privately use the one that I made. Moreover, other users
can use it because it shares. The program acquired from the
repository can be customized. In addition, the customized
program can itself be shared.

IV. DISCUSSION
A. Clause-rule Model

It was necessary to mount the Web application in a past
model based on the knowledge of an individual elemental

1200

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

technology, and it was necessary to assume Web, the data
base system, and the network. On the other hand, they are
inclusively modeled by S-expression in the Clause-rule model,
and it is possible to execute it as a program by the clause
and the rule. The Clause-rule model is Web application
construction model where the essence of the function can
be inclusively described by the clause and the rule as for
an individual function like string data, the data base access,
and the network, etc. that are the elemental technologies in
the Web application. The Clause-rule model goes flexibly in
a logical access method to the data base compared with the
model of a procedural model and an object-oriented model,
and facilitates the treatment of flexible string data in the list
processing. Moreover, a logical access method can be flexibly
execute as well as the model of a procedural model and an
object-oriented model compared with the construction model
of the list processing like a functional programming language.
It is difficult to describe going side by side requested from the
Web application though the definite clause model of the data
base can be similarly described when thinking about modeling
the Web application in Prolog. In addition, the Clause-rule
model can be made while piling the rule though Prolog should
describe the entire Web application at a time by a definite
clause and the rule. This is convenient in making of each
Web function a component. The Clause-rule model has the
feature of catching the whole image of the Web application
specification easily by describing the essence of an inclusive
function by the N rule, and calling the component of each Web
function in the ET D rule for such reasons.

B. Concurrency and Clause-rule model

In the Web application, correspondence to the data base
access and the rich Internet application is indispensable. There
is going side by side in the data base access and the Rich
Internet application, and the frame that can describe such
going side by side is important. The Clause-rule model enables
correspondence to such going side by side by using N rule
where going side by side can be described the clause by the
rule. For the Clause-rule model, going side by side can be
expressed as follows by a final paragraph by showing of one
atom one client:

cly: (Websystem) — (ClientA), (ClientB),

C. Security

It now becomes possible to automate the user authentication
process by utilizing the mechanism provided by the menu to
call the program, and to execute the program safely. The user
doesn’t have knowledge concerning the security of the system.
Therefore, the method to access the database safely via N
rule was offered. Using this method, it is now easy to make
functions as long as the Clause-rule model and N rule are
understood.

D. Function Sharing

The sharing function is a mechanism to share the learning
supporting function with very high utility in LMS. The teacher

who doesn’t have the knowledge of the programming can use
the share function. Moreover, if it knows the Clause-rule model
and syntax to some degree, the study support function can be
constructed for myself, and it be shared. Moreover, the shared
learning supporting function can be voluntarily improved. The
mechanism of such sharing and the improvement can evolve
the function in LMS. This developer makes a big framework
of LMS, and the user can also make a detailed function of
LMS. In the purpose of making the user make the function of
LMS simply and safely, the Clause-rule model is an extremely
important method.

E. A component-based Web programming

A D rule is built-in and a component of the basic Web
function. Now it discuss a component of Web function. Since
software systems become larger and more complex, the need
for the development of cost-effective and high quality soft-
ware in a short period of time increases accordingly. As a
result, there has been increasing attention to component-wise
program generation[3][4][7]. In the development of the web
application, there is a component-based method shown in Fig-
ure 12. To achieve this method, the object-oriented language is
adopted well. Since a lot of reuse knowhows are shared and
it is used well. The purpose of this is with the feature that
the behavior of the calculation execution by the component
division and the message passing is managed easily and it is
easy to reuse. The combination between components exists
hugely. As for the check on all models, and the guarantee
of the correctness when components combine, these are high
cost. It introduces the associated study on the specification-
program in the component-based program construction. The
ET rule is excellent as the component technologies. Since
ET rules have complete independence with regard to partial
correctness, adding new ET rules to an existing ET rule set
does not impair the correctness of the existing ET rule set.
Therefore, the ET rule can create a large scale and correct
program by adding a small program (new ET rule) on existing
ET rule set. In response, the squeeze method[?] where a
program is created by successively accumulating ET rules
has been proposed. Since ET rules can be considered as
components constituting a program, also when viewed from
the perspective of component-wise program generation, they
can confer considerable advantage[8]. I want to discuss the
applicability to the Web component that the specification-
program uses as a library as future tasks.

FE. Future Tasks: Compiler CGI

Presently, interpreter CGI can interpret the specification.
However,high speed calculation is difficult. The Compiler CGI
can transform a fast CGI beforehand from the specification
program. At that time, it can construct the e-Learning system
from the specification program.

V. CONCLUSION

In this paper, we suggested an evolvable e-Learning system
via a specification program and constructed an LMS function

1201

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:3, No:4, 2009

E —
B
o= A pattern of component
E integration testing
i
El

Programy F]
G
Gl K} fA]
é_ DB Access

Fig. 12. A component-based Web programming

construction system. Also, we proposed the necessary require-
ments for new functions. We showed the challenges facing free
function construction proposed the Clause-rule model as the
solution. Thereupon, we explained the structure of Interpreter
CGI and sharing of the specification program. In addition,
we extended the execution environment of the specification
program for the e-Learning system. If a user can construct
this function, the system’s functionality increases based on
individual needs. If the function can be shared by a user, the
whole system evolves.

REFERENCES

[1] Dougiamas, M. and Taylor, P.C., Moodle: Using Learning Communities
to Create an Open Source Course Management System. Proceedings of
the EDMEDIA 2003 Conference,pp.171-178, Honolulu, Hawaii, 2003.
[2] D. Robinson, K. Coar, The Common Gateway Interface (CGI) Version
1.1, Network Working Group, RFC3875, Category: Informational, 2004.
Hopkins,J., Component primer, Communications of the ACM, vol.43,
no.10, pp.27-30, 2000.
IBM San Francisce, Concepts and facilities, IBM Corporation, 1977
Project, Software Development, vol.6, no.2, 1998.
K.Akama, H.Koike and H.Mabuchi, A Theoretical Foundation of Pro-
gram Synthesis by Equivalent Transformation, Perspectives of System
Informatics, Lecture Notes in Computer Science ,Vol.2244, pp.131-139,
Springer Verlag, Heidelberg, 2001.
Koike,H., K.Akama and E.Boyd, Program synthesis by generating equiv-
alent transformation rules, Proc. of the 2nd International Conference on
Intelligent Technologies, Bangkok, Thailand, pp.250-259, 2001.
Szyperski,C., Component software: Beyond object-oriented program-
ming, Addison-Wesley, 1999.
Mabuchi,H., K.Akama and T.Wakatsuki, Equivalent transformation rules
as components of programs, International Journal of Innovative Comput-
ing, Information & Control, vol.3, no.3, pp.685-696, 2007.

3

=

[4

=

[5

[6

=

[7

[8

Keisuke Nakamura Affilication:
Fuculty of Computer Science, Hokkaido University

Address:
North 11, West 5, Kita-ku, Sapporo, Hokkaido, 060-0811 Japan

Brief Biographical History:
2001 - Faculty of Bussiness Admin. and Information Science, Hokkaido
Information University
2005 - Graduate School of Hokkaido Information University
2007 - Faculty of Computer Science, Hokkaido University

Membership in Academic Societies:
Information Processing Society of Japan(IPSJ)

Kiyoshi Akama Affiliation:
Professor, Division of Large-Scale Computational Systems, Information Ini-
tiative Center, Hokkaido University

Address:
North 11, West 5, Kita-ku, Sapporo, Hokkaido, Japan
Brief Biographical History:
1984.4 - Associate Professor, Faculty of Engineering, Hokkaido University
1999.4 - Professor, Center for Information and Multimedia Studies, Hokkaido
University
2003.4-Professor, Information Initiative Center, Hokkaido University
Main Works:
“Formalization of Computation Models in View of Program Synthesis,”
Proc. of the 4th International Conference on Intelligent Technologies (InTech
2003), Chiang Mai, Thailand, pp.507-516, 2003.
Membership in Academic Societies:
The Japanese Society for Artificial Intelligence (JSAI)
Information Processing Society of Japan (IPSJ)

Hiroshi Mabuchi Affiliation:
Fuculty of Software and Information Science, Iwate Prefectural University

Address:
152-52, Sugo, Takizawa, Iwate 020-0193, Japan
Brief Biographical History:
1995 - Lecturer, Tohwa University
1998 - Lecturer, Iwate Prefectural University
2002 - Associate Professer, Iwate Prefectural University
Main Works:
“Equivalent Transformation of Member Constraints on Interval-Variable Do-
main,”
Journal of the Japanese Society for Artificial Intelligence, Vol.17, No.l1 C,
pp.23-31, 2002.
Membership in Academic Societies:
The Japanese Society for Artificial Intelligence (JSAI)

1202

