
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3672

Expressive Modes and Species of Language
Richard Elling Moe

Abstract — Computer languages are usually lumped together

into broad ’paradigms’, leaving us in want of a finer classification

of kinds of language. Theories distinguishing between ’genuine

differences’ in language has been called for, and we propose that

such differences can be observed through a notion of expressive mode.

We outline this concept, propose how it could be operationalized and

indicate a possible context for the development of a corresponding

theory. Finally we consider a possible application in connection

with evaluation of language revision. We illustrate this with a case,

investigating possible revisions of the relational algebra in order to

overcome weaknesses of the division operator in connection with

universal queries.

Keywords — Expressive mode, Computer language species,

Evaluation of revision, Relational algebra, Universal database queries

I. INTRODUCTION

THE evolution of computer languages has produced a vari-

ety of kinds of languages and programmers’ preferences

differ. A quick look at computer language discussion forums

will reveal the warm feelings some has for their favorite (kind

of) languages, as well as spiteful resent for others. We remain

neutral to rankings of languages, but observe that the rich

variety brings out the question of what kind, or species, of

languages exist.

... we want, that is, a theory that is sensitive to
genuine differences between languages, and only to
those. (Graham White [26])

Computer languages are usually lumped together into broad

classes or ’paradigms’, such as imperative or functional, which

renders the classification of language in terms of species to

rather coarse judgements. Therefore we understand White’s

statement as a call for a finer classification of kinds of

language.

Pigott [18] presents a taxonomy in which programming

languages are classified in terms of being conversational,

imperative, operation-oriented, expression-oriented, a lambda-

calculus etc as well as their membership in families descending

from early languages. I.e. Algol-family, Fortran-family etc. We

suggest an other approach. Since computer languages has dif-

ferent repertoires of mechanisms we might hope that ’genuine

differences’ may be operationalized in terms of selections of

mechanisms. The extent to which such classification coincides

with Piggott’s taxonomy remains to be seen.

White does not provide much detail about the structure and

content of his desired theory. In the following we propose

the concept of expressive mode as a possible basis. We shall

Manuscript received August 27, 2006
Richard E. Moe is with the Department of Information science and Media

studies, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway.
Email: Richard.Moe@infomedia.uib.no

only outline the concept and rely on examples to flesh out

the idea and demonstrate its relevance. Beyond that we will

merely point to the discipline of formal semantics as a possible

context for the development of such a theory.

Finally, we suggest how expressive mode may be applied

in connection with evaluation of revisions of language. We

illustrate our points with a case: In the relational algebra, so-

called universal queries are traditionally handled by means

of the division operator ÷ [3]. However, it has been pointed

out that this approach isn’t suitable for all kinds of universal

quantification [2], [4], [7], [8], [10], [17]. Moreover, it has

been suggested that such queries should be dealt with in an

entirely different manner:

... we should point out that queries of that general
nature are often more readily expressed in terms of
relational comparisons.
(Date [6] on universal queries and division)

This gives rise to the question of whether the relational

algebra should be revised to facilitate a different approach to

universal queries. We aim to demonstrate that expressive mode

may have an impact on the decision.

II. EXPRESSIVE MODE

The expressive mode of a language concerns the line of

thinking involved when forming expressions. Different lan-

guages lend themselves to different lines of thinking. Contrast

an imperative language with a language for logic program-

ming. The imperative line of thinking does not translate

naturally to the workings of logic programming. Clearly these

are two very different ways of going about the business of

programming.

So, we have every reason to believe that there are genuinely

different languages, but what makes up the differences? The-

ories of expressive power provides little help since languages

of equal power would fall under the same theory. Clearly we

need to look elsewhere for distinctive features of languages,

which in turn may form the basis for an operationalized

understanding of the otherwise rather intangible concept of

expressive mode.

To our knowledge, no formal foundation for a notion of

expressive mode has been established. Well-known lines of

division, such as the declarative/procedural dichotomy, are

clearly relevant but form too general classes of languages.

This would also be the problem if one links the notion of

mode too strongly to programming language paradigms such

as logical vs functional vs imperative languages. The problem

here is one of granularity. Whereas these notions certainly

distinguish entire languages from each other, they provide no

detailed account as to why. For a more finely grained approach

we suggest focusing at the mechanisms-level.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3673

A. Computer Language Mechanisms

Computer languages provide the means for describing ob-

jects and processes. Each language offers a number of mecha-

nisms, and the repertoire surely influences how one goes about

solving problems. It seems reasonable to believe that many

aspects of expressive mode can be viewed from a mechanism-

perspective.

Given the great variety of languages used on computers

we should be careful not to fix a too narrow definition of the

term mechanism. For the present discussion we merely provide

a list of examples of concepts found in common computer

languages that should qualify as mechanisms: Variables (local
or global; updatable or not), assignment (destructive or not),
types (simple or complex), coercion, sequencing, conditionals,
operators, functors, pointers, arrays, lists, streams, predicates,
connectives, quantifiers, relations, functions, procedures, calls,
parameters, binding, scope, nesting, recursion, loops, jumps,
modules, higher-order functions, objects, classes, subsump-
tion, inheritance, polymorphism, concurrency, threads, de-
layed and forced evaluation, quotation, backtracking, cuts,
destructive functions, mutable data No claim of the list

being exhaustive is implied, nor that all items are relevant for

the notion of expressive mode. Our concept of mechanism is

independent of the notation used to represent it.

In the following we try to further explicate the concept of

expressive mode through an example. As a prelude to our case

of application in section IV we focus on the mechanisms of

relational comparison and nested queries as found in relational

algebra.

III. EXAMPLE

The relational algebra is the original query-language of

the relational model for databases [3]. There is a wealth of

literature in which notation and terminology varies. We adopt

that of Elmasri and Navathe [12].

For the purpose of illustration let us consider the following

schema for a database containing facts about employees,

departments and projects of an imaginary enterprise:

• EMP(ID,DNO) relates the IDs of employees to the ID-

numbers of the departments that employ them.

• PROJ(PNUM,DNUM) relates each project, given by a

project-number, to the department that controls it.

• WORK(EID,PNO,HOURS) relates employees and the

projects they work on along with the number of hours

per week they put in.

The operations of relational algebra produce relations from

relations. Either by means of set-operations or using some of

the operators introduced specifically for the algebra, such as

projection π, selection σ, join ��, attribute renaming ρ and

assignment ← (cf [12] for details).

A. Relational Comparison and Relational Algebra

In connection with database query-languages the term rela-
tional comparison refers to predicates, for use in selection-

conditions, where one or more of the arguments are rela-

tions. In SQL we find for instance in, exists, >all and

contains.

The selection-operator σϕ retrieves from a relation the

tuples which satisfy the selection-condition ϕ . Selection-

conditions are simple, quantifier-free, boolean formulas using

elementary attribute comparison-operators such as equality,

’less than’ etc for domains of atomic values. Furthermore, in

selections σϕ(R), it is traditionally required that ϕ refers only

to attributes in the relation R.

Relational comparison operators on the other hand would

allow more complex selection-conditions. Take for instance the

task of retrieving the departments that employ people working

more than 20 hours on a project. A straightforward solution

would be:

πDNO(σHOURS>20(EMP ��ID=EID WORK))

Now consider how it could be done had the set element relation

∈ been available for use in selection conditions:

πDNO(σID∈πEID(σHOURS>20(WORKS))(EMP))

Here the outermost σ-conditions employs the ∈-operator for

which the second argument is a relation. But this violates

the traditional requirement that arguments in such conditions

should be atomic values.

Suppose now that the query was restricted to retrieve the

departments with employees working more than 20 hours on

any of their own projects. Typically the solution would be

to define an auxiliary relation where information about the

controlling departments of projects have been integrated in

the WORK-relation.

WORK′ ←WORK ��PNO=PNUM PROJ
WO ← πEID,PNO,DNUM,HOURS(WORK′)

Now the above queries could be modified as follows.

πDNO(σHOURS>20∧DNUM=DNO(EMP ��ID=EID WO))

and

πDNO(σID∈πEID(σHOURS>20∧DNUM=DNO(WO))(EMP))

Note that in the second query the σ-condition HOURS >
20 ∧ DNUM = DNO refers to an attribute (DNO) outside

the scope of the σ-operator. This violates the traditional

requirements for applications of σ, whereas in the first query

the corresponding σ-condition is a valid expression. Allowing

relational comparison operators to be used in this manner

would in effect introduce the kind of correlated nested queries
we find in SQL, but which is not part of the original algebra

repertoire.

We believe that the introduction of relational comparison

and/or correlated nested queries would alter the dynamics

of the language and the line of thinking we employ when

dealing with queries. Not only can the σ-conditions involve

far greater complexity, but an entirely different approach to

solving queries would emerge and thus a possible shift in the

pragmatic dimension of the language.

It seems reasonable to conclude that the adoption of such

mechanisms would affect the expressive mode of the algebra,

perhaps. On the other hand, we can hardly claim it would

represent a transition from one paradigm to another. Thus,

the example supports the view that modes and paradigms,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3674

although related concepts, differ in levels of detail and gran-

ularity.

B. Semantics as Foundation for a Theory of Mode

Where could we find the basis for a proper theory of

expressive mode, operationalized in terms of mechanisms? If

we look for others who need to identify and reason about

mechanisms we find those concerned with programming lan-

guage semantics.

Traditionally, the semantics of programming languages are

specified by means of denotation functions based on Scott

domains [24], [26]. This provides a sufficiently detailed frame-

work for overcoming the problem of coarse granularity. But

there is also the danger of producing a too finely grained

account. Hence, an important concern is that the theory

should establish suitable levels of abstraction reflecting the

desired granularity, rather than just reducing everything to first

principles.

White’s reflections [26] cited above contains similar

thoughts. Although he does not mention mechanisms as the

basis for the theory, we observe that our proposal is consistent

with White’s considerations.

As formal semantics maps syntactic constructs onto denota-

tions over Scott domains, every mechanism must be embedded

in some syntactic representation. The essence of its nature is

then reflected at some (abstract) level of denotation. Finding

the right level is essential to obtaining a proper conceptual-

ization of mechanisms. Only then can the theory be a vehicle

for identifying and representing genuine differences and give

rise to a taxonomy of languages, which ultimately could form

the basis for a theory of expressive mode.

The goal for such a theory would be to form a thesis
of correspondence between mechanism-defined categories and

modes. I.e principles for how mechanisms can be used to

identify or distinguish between expressive modes. It does

seem obvious that mechanisms are relevant to the question

of mode, after all we can identify ’hallmark’ mechanisms of

programming paradigms. On the other hand it is unlikely that

every combination of mechanisms you might conceivably put

into a language defines a unique line of thinking.

It is beyond our present scope to attempt a formulation of

such a thesis. Still, under the assumption that it could be found,

we proceed to present a possible application for a mechanism-

oriented concept of expressive mode.

IV. APPLICATION: EVALUATING LANGUAGE-REVISION

Different kinds of languages might lead to different styles of

problem solving. Expressive mode is thus an important factor

in the pragmatic dimension of a language and should therefore

have a role in the evaluation of computer language revisions.

When languages evolve, a certain conservativeness comes

naturally with respect to the expressive mode. There should

be no major shifts in the pragmatics of forming expressions.

Presumably one would introduce changes in a language

for the purpose of enhancing it in some way. Often with

respect to the qualities we may refer to as expressive power

and expressive convenience. We hold that such developments

should not be seen in isolation from expressive mode.

The three concepts involves different kinds of methodology.

Whereas the expressive power is a mathematical inquiry, the

expressive convenience rests crucially on human preference.

Its study therefore relies on methods resembling those applied

within Human-Computer Interaction (HCI) [11], a discipline

which has absorbed techniques from a variety of fields,

including psychology and the social sciences. Importantly,

it embraces ’human factors’ which are central in earlier

evaluations of computer languages [20], [21], [23], [25].

In the following we consider these concepts and their roles

as criteria for the evaluation of language revision.

A. Expressive Power

Theoretically, a formal language has a certain expressive
power. I.e. the potential for what might be achieved using the

language, regardless of how easy or hard it may be to write

the code.

A notion of expressive power could also apply to individual

mechanisms of languages (see section II-A). Revision of a lan-

guage may well be through the strengthening of mechanisms,

but may be for convenience only and need not change the

expressive power of the language as a whole.

In its purest form, the relational algebra comprises the

selection and projection operators σ and π, the set operations

∪, − and ×, in addition to the renaming operator ρ. In

principle, these operators are all that is needed. They define

the expressive power of relational algebra1. Any set of op-

erators which is equally expressive, or more, is said to be

relationally complete. This way of measuring the expressive

power readily lends itself to other languages [14], [15]. In fact,

relational completeness has become a minimum requirement

for relational database query languages.

Other operators has been added to the algebra for practical

reasons, such as the join �� and division ÷. Even if their in-

troduction makes no difference when it comes to the power of

the algebra, certain types of queries seems to be more readily

expressed when these operators are available. Apparently, their

presence in the language is entirely for convenience.

B. Expressive Convenience

Expressive convenience is the quality of a language related

to its ease of use and suitability. In contrast, where expres-

sive power concerns what can be expressed, the expressive

convenience is a matter of how it may be expressed.

Expressive convenience is a very different sort of inquiry

than expressive power, not least in terms of the methods

involved. It could be studied by adapting HCI-techniques

[11] dealing with human factors and ease-of-use. Trovåg [22]

works along these lines when he operationalizes expressive

convenience in terms of effectiveness and learnability.

Occasionally, claims for convenience are supported by ref-

erence to syntactic complexity. Suppose you have revised a

1We disregard extensions of the algebra designed to add to its original
power, such as aggregate functions and recursive closure operators.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3675

mechanism by adding to its power. It might be tempting to

prove its convenience through examples showing that certain

expressions may be simplified in some superficial way. For

instance in terms of the length of the expression, depth of

nesting or the number of operators used. This is a pitfall.

Even if such examples can demonstrate aspects of expressive

convenience they will not suffice to establish an overall gain in

this respect. Plausibly, an increase in power of the mechanism

may render it more difficult to understand and use, causing

a loss of expressive convenience which measures of syntactic

complexity may fail to register.

Mechanism may have different syntactic manifestations.

Such apparent differences will by nature be superficial. Com-

pare, for instance, ontology-specifications in description logics

with those of RDF-based ontology-languages like OWL or

DAML+OIL. The differences in terms of verbosity is strik-

ing. Nevertheless there is a close correspondence between

these languages and how they describe concepts [1]. We

hold that measures based on syntactic complexity alone are

too superficial. Reisner’s investigation [20] include reflections

over syntactic form, but we maintain that human factors are

essential for evaluation.

Past evaluations of computer languages mainly deal with

aspects of convenience when trying to provide answers to

questions like ’How difficult is it to learn the language?’, ’How
well do operators perform using the language?’, ’How much
effort is required to use the language?’ and ’How well do the
features of the language match the tasks to be accomplished?’
[23], all with a focus on human factors and ease-of-use.

Human factor studies are typically conducted by measuring

the performance and/or polling the opinions of a suitable

selection of human respondents. Whereas HCI mainly deals

with end-users, computer programmers usually have much

higher levels of computer expertise. This does not imply

that less attention is required with regard to the selection of

respondents. The evaluation of computer languages in terms

of expressive convenience is by no means neutral to the skills

held by the users. In some circumstances, for instance when

complex mechanisms are evaluated, expert respondents would

be called for.

With skilled respondents the evaluation can be cooperative
in the sense that their professional opinions are also input for

the analysis, and not only the observation of their behaviour.

C. Criterion Interdependence

A change for the better with respect to one criterion could

be a change for the worse with respect to some other. Hence,

a proposed change may require evaluation along several di-

mensions before being adopted into the language.

Enhanced expressive convenience may result from increas-

ing the power of a single mechanism, but not necessarily.

Added strength may lead to higher complexity which could

in turn render the mechanism difficult to understand and use.

Having revised a language with an apparent gain in expres-

sive convenience, there is still a need to check whether the

revision has caused changes in the overall expressive power.

A loss of power is unlikely to be acceptable, but could occur

if one mechanism is replaced with an other. Furthermore,

one should not add to the expressive power of a language

without some consideration. It is not always the case that ’The

more power the better!’ because powerful languages are also

complex languages so desired properties may be harder to

maintain. For example: It is very hard, if not impossible, to

implement a truly declarative programming language. Whereas

for less powerful languages, such as query-languages, it may

be easier to obtain declarative qualities.
It is not so apparent whether a shift of mode can have

an effect on the expressive convenience of a language. There

are some indications that database users perform better with

procedural query languages than with declarative ones [25],

but because of the confinement to query languages and the pro-

cedural/declarative dichotomy, these findings will not bring us

to conclude that some modes are objectively more convenient

than others.
When languages are merged, the result may be a mix

of modes. (We are reluctant to think that a mix of modes

necessarily represents a separate unique mode.) For instance,

the object-relational model for databases combines the declar-

ative SQL query language with an imperative object-oriented

programming language for defining structured objects and

operations associated with them. Plausibly, having to switch

between, or even mix, lines of thinking within the same

language could pose a threat to expressive convenience.

V. CASE: UNIVERSAL QUERIES IN RELATIONAL ALGEBRA

Universal queries involve forms of universal quantification,

similar to the kind expressed by means of the ∀ quantifier in

first order logic. For example:

Find the employees who work on all projects (1)

run by department 5.

Universal queries are somewhat complicated compared to

the typical database query. They have received a fair amount

of attention, both with respect to their specification [2]–[4],

[7], [10] and the algorithms for processing them [13], [19].
Database query languages come in different shapes, with

different approaches to handling universal queries. In relational

algebra the division operator is typically called into action

when specifying a universal query.

A. Division
Division (÷) operates on two relations where the attribute-

set of the first properly includes that of the second. Given

relations R and S with attribute-sets X and Y , respectively2,

such that Y ⊂ X ; R÷ S denotes a relation with attribute-set

X −Y . Specifically, t ∈ R÷S iff {t}×S ⊆ R.
The division operator was designed for universal queries,

which otherwise are complicated to express. Using the division

operator ÷ query (1) may be formulated as follows:

WO ← πEID,PNO(WORK)
PRO5 ← ρ(PNO)(πPNUM(σDNUM=5(PROJ)))
RESULT ←WO÷PRO5

2Technically, the attributes are ordered within the relation-schema. We do
not go to this level of detail since the reader can easily induce the necessary
order on the fly.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3676

There has been numerous reports of ÷ being obscure and

difficult to learn [2], [10], [16]. Furthermore, some voices has

been raised against its usefulness and generality [2], [4], [7],

[8], [10].

We now look into a kind of universal query for which the

standard division operator is insufficient [17]. Consider the

following example:

Find the employees who work on all projects (2)

run by their own department.

The crucial difference when it comes to the use of division

is that for query (1) the ’divisor’ (PRO5) is unique and

pre-defined, whereas this query corresponds to a series of

divisions, each with a different divisor. Moreover, this series

can not be pre-defined since it relies on the database state,

which changes over time.

Before we elaborate on how the division line of thinking

may still be an approach to query (2) we consider some

alternatives.

It is well known that universal queries can be expressed

using relational comparison operators. Date [6], [8], [9] argues

that such operators would have advantages over the traditional

operators of relational algebra, and maintain that they offer a

more convenient solution for universal queries. Adapting his

approach, employing the relational comparison operator ⊆,

query (2) might look like this:

σπPNUM(σDNUM=DNO(PROJ))⊆πPNO(σEID=ID(WORK))(EMP)

There is another approach to query (2) without the use of

relational comparison [5], [17]:

EMP ��ID=EID
(πEID,PNO(WORK)÷πPNUM(σDNUM=DNO(PROJ)))

However, correlated nesting is still present in that the σ-

operation refers to the attribute DNO which belongs to the

EMP-relation.

These may well be alternative ways of expressing query (2)

and some would prefer them to the division-approach, but for

reasons discussed in sections III-A and IV, relational compari-

son and/or correlated nested queries should not be adopted just

like that. Moe [17] proposes to modify the division operator

for the purpose of solving such queries, rather than introducing

alien mechanisms. The context-sensitive division operator [17]

adds to the power and applicability of ÷ while retaining the

original expressive power, and presumably the mode, of the

algebra as a whole.

Let R and S be relation-schemas with attribute sets X and

Y respectively. Suppose T ⊆ X , X ∩Y = C and C∩T = /0. Let

ϕ be a boolean condition over X ∪Y . For the intended use,

T and C will be non-empty. Now, context-sensitive division
R T

ϕ S is defined to be equivalent with

πT (R)−πT (πT∪C(σϕ(πX−C(R)×S))−πT∪C(R))

This amounts to a generalization of ÷: If X ∪Y = T ∪C and

ϕ evaluates to true in all cases, then context-sensitive division

boils down to being the same as ordinary division.

Using context-sensitive division, query (2) can be expressed

conveniently as follows:

WO ← πID,DNO,PNO(EMP ��ID=EID WORK)
WO′ ← ρ(ID,DNO,PNUM)(WO)
RESULT ←WO′ ID

DNO=DNUM PROJ

The usefulness of context-sensitive division extends beyond

the specific kind of queries discussed above. An example

can be found in [22]. In addition, we find a further class of

universal queries which appears to be fundamentally different

from query (2) and for which ÷ is of little use: Let R be a

relation with a single number-valued attribute N. The query

for the least number in R would typically be solved by means

of aggregate functions, but, in fact, this is a universal query.

Whereas ÷ is insufficient for finding minimal values, context-

sensitive division handles the situation with relative ease [17]:

(ρ(M)(R) ��M=N R) M
M≥N′ (R ��N=N′ ρ(N′)(R)) (3)

B. Evaluating the Revised Mechanism

Context-sensitive division has a clear advantage in being

more powerful than ÷, extending the division-approach to a

wider range of universal queries [17]. The expressive power

of the algebra as a whole is left unchanged by the revision.

The expressive mode is also likely to be retained since the

new operator is clearly a conservative generalization of ÷.

Aside from that, syntactic measures provide some sugges-

tive evidence of context-sensitive division being more conve-

nient than ÷. For instance, query (1) becomes less verbose:

PROJ ← ρ(PNO,DNUM)(πPNUMBER,DNUM(PROJECT))
RESULT ←WORK EID

DNUM=5 PROJ

Specifically, the solution for query (1) in section V-A uses 8

operators while this has 5, assignments and renaming included.

However, it is questionable whether this reflects a genuine

improvement of expressive convenience since the user must

handle the extra parameter.

This brings us to a crucial question. Does the inconvenience

of added complexity cancel out the convenience gained from

the extra power? Now we are in human factors territory. The

utility of the operator should be contrasted with the ease and

transparency of its use. Query (3) above, for the least number

in R, might not be very promising in this respect. Surely

the solution is concise, but the trick of joining R to itself is

perhaps not something that would spring to mind or suggest

itself naturally. Furthermore, at first sight the reader may well

jump to the conclusion that the use of ≥ in finding the least
number must be a mistake. But, it isn’t. Anyhow, these are

only indications and a proper investigation is called for.

The human factors of context-sensitive division have been

investigated by Trovåg [22], adapting HCI-techniques. His

respondents was recruited among very capable students hav-

ing gained a basic knowledge of relational algebra and the

division operator through an introductory database course.

Given the selection of (near-)expert users, Trovåg conducts

a cooperative evaluation using the Think Aloud Protocol [11]

to collect responses. In the choice between participatory and

non-participatory role of the observer, Trovåg opts for middle

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3677

ground allowing restricted intervention while stressing the

need for an intervention protocol to secure equal treatment

of all respondents and to avoid giving away too many clues

during the interaction.

Trovåg’s investigation tends to support the conclusion that

the expressive convenience of relational algebra would gain

from incorporating context-sensitivity into the division opera-

tor.

C. Relational Comparison vs Context-sensitive Division

We know of no investigations into the expressive conve-

nience of relational comparison but, for the sake of discussion,

let us accept Date’s confident claim for its qualities in this

respect. Then the question of how to handle universal queries

becomes a choice between the two mechanisms. Both are

deemed convenient but, in Date’s opinion, relational com-

parison is more so than division. So without regard for

expressive mode, relational comparison might be the solution.

However, the introduction of relational comparison may affect

the expressive mode of relational algebra. Perhaps too much,

since it might involve changes beyond what can reasonably

be called conservative towards the feel and dynamics of the

language. Hence, bringing the dimension of expressive mode

into the picture could make a difference.

VI. CONCLUSION

Our first goal has been to outline, and demonstrate the

relevance of, a notion of expressive mode. Developing a

corresponding formal theory is beyond the present scope, but

we have pointed out the concept of mechanism as a key

component and suggested an approach building on the theory

for programming language semantics. Should the semanticists

follow up on White’s reflections [26] and endeavor to produce

a taxonomy of languages based on mechanism, it could form

the basis for a formal theory and a thesis of correspondence

between mechanisms and modes. With such an approach it is

the success in attaining a suitable degree of abstraction that

could eventually give rise to an operationalized concept of

expressive mode.

We have considered expressive mode as an evaluation crite-

rion for (revisions of) computer languages. Past evaluations of

computer languages has mainly focused on human factors, and

new mechanisms often receive only a superficial treatment.

The evolution of a computer language should be a process

of developments for the better in some respect but conservative

towards the feel and pragmatics of the language. Hence, revi-

sions should not be done by whim. We propose that expressive

mode, as well as convenience and power are important, and

interdependent, factors to be taken into consideration in order

to avoid languages evolving haphazardly.

As for the relational algebra, none of the alien mecha-

nisms that we have surveyed has been seriously proposed for

adoption, though profiled members of the database community

comes pretty close to doing so. C. J. Date, quoted in section

I, clearly states his preference for relational comparisons over

division. Moreover, the correlated nested query presented in

section V-A originates from Date’s suggestion [5] of how to

solve query (2).

Should a version of the algebra emerge that includes such

mechanisms, we might conclude that there has been a shift

in the expressive mode, and subsequently debate whether it

has been for the better. Or even whether the revised language

should be referred to as relational algebra at all.

REFERENCES

[1] Baader, F., Horrocks, I., Sattler, U., 2005. Description Logics as Ontology
Languages for the Semantic Web. In: D. Hutter, W. Stephan (Eds).
Mechanizing Mathematical Reasoning, LNAI 2605. Springer Verlag.

[2] Carlis, J. V., 1986. HAS, a Relational Algebra Operator or Divide is not
Enough to Conquer, Proceedings of the second international conference
on data engineering, IEEE Computer Society

[3] Codd, E. F., 1972. Relational completeness of data base sublanguages. In:
Justin, R. J. (ed) Data base systems, Courant computer science symposia
series 6, Englewood Cliffs, N.J., Prentice-Hall

[4] Dadashzadeh, M., 1989. An improved division operator for relational
algebra, Information systems 14(5),

[5] Date, C. J., 2003. On relational division, Discussion on Database De-
bunkings website, www.dbdebunk.com

[6] Date, C. J., 2004. An introduction to database systems, Addison Wesley
[7] Date, C. J., Darwen, H., 1992a. Into the great divide. In: Date, C. J.,

Darwen, H., Relational database writings 1989-1991, Addison Wesley
[8] Date, C. J., Darwen, H., 1992b. Relation-valued attributes or Will the real

first normal form please stand up? In: Date, C. J., Darwen, H., Relational
database writings 1989-1991, Addison Wesley

[9] Date, C. J., Darwen, H., 1992c. Toward a reconstituted definition of the
relational model Version 1 (RM/V1), In: Date, C. J., Darwen, H., Relational
database writings 1989-1991, Addison Wesley

[10] Date, C. J., Darwen, H., 1994. Divide and Conquer? In: Date, C. J.,
Darwen, H., Relational database writings 1991-1994, Addison Wesley

[11] Dix A., Finlay J., Abowd, G. D., Beale, R., 1994. Human-Computer
Interaction, Prentice-Hall

[12] Elmasri, R., Navathe, S. B., 2003. Fundamentals of database systems,
Addison Wesley

[13] Graefe, G., Cole, R. L., 1995. Fast algorithms for universal quantification
in large databases, ACM Transactions on database systems, Vol. 20, No 2.

[14] Klug, A., 1982. Equivalence of relational algebra and relational calculus
query langages having aggregate functions, Journal of the ACM, Vol 29,
No. 3

[15] Libkin, L., 2003. Expressive power of SQL, Theoretical Computer
Science 296

[16] McCann, L. I., 2003. On making relational division comprehensible,
ASEE/IEEE Frontiers in education conference, 2003

[17] Moe, R. E., 2004, Context-sensitive relational division, WSEAS Trans-
actions on information science and applications, Issue 1, Vol 1.

[18] Pigott, D., 2006, HOPL: an interactive Roster of Programming Lan-
guages, http://hopl.murdoch.edu.au/

[19] Rantzau, R., Shapiro, L. D., Mitschang, B., Wang, Q., 2003. Algorithms
and applications for universal quantification in relational databases. Infor-
mation Systems 28

[20] Reisner, P., 1981. Human factors studies of database query languages:
a survey and assessment. Computer Surveys, Vol 13, No. 1

[21] Rosson, M. B., 1996. Human factors in programming and Software
Development. ACM Computing Surveys, Vol 28, No. 1

[22] Trovåg, A., 2004. Beyond the divide, Master thesis, Department of
information science and media studies, University of Bergen

[23] Turner, J. A., Jarke, M., Stohr, E. A, 1985. Coupling field studies
with laboratory experiments for the evaluation of computer languages.
Proceedings of the 1985 ACM Computer Conference

[24] Watt, D. A., 1991. Programming language syntax and semantics, Pren-
tice Hall

[25] Welty, C., Stemple, D. W., 1981. Human factors comparison of a
procedural and a nonprocedural query language, ACM Transactions on
database systems, vol. 6. No. 4,

[26] White, G., 2004. The Philosophy of Computer Languages, In: Floridi,
L. (ed), 2004. Philosophy of Computing and Information, Blackwell

