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Abstract—This paper introduces a new generalization of the two 

parameter Weibull distribution. To this end, the quadratic rank 

transmutation map has been used. This new distribution is named 

exponentiated transmuted Weibull (ETW) distribution. The ETW 

distribution has the advantage of being capable of modeling various 

shapes of aging and failure criteria. Furthermore, eleven lifetime 

distributions such as the Weibull, exponentiated Weibull, Rayleigh 

and exponential distributions, among others follow as special cases. 

The properties of the new model are discussed and the maximum 

likelihood estimation is used to estimate the parameters. Explicit 

expressions are derived for the quantiles. The moments of the 

distribution are derived, and the order statistics are examined. 

 

Keywords—Exponentiated, Inversion Method, Maximum 

Likelihood Estimation, Transmutation Map. 

I. INTRODUCTION 

OR more than half a century the Weibull distribution has 

attracted the attention of statisticians working on theory 

and methods as well as in various fields of applied statistics. 

Thousands of papers have been written on this distribution. 

It is of utmost interest to theory orientated statisticians 

because of its great number of special features and to 

practitioners because of its ability to fit to data from various 

fields, ranging from life data to weather data or observations 

made in economics and business administration, in hydrology, 

in biology or in the engineering sciences.  

When modeling monotone hazard rates, the Weibull 

distribution may be an initial choice because of its negatively 

and positively skewed density shapes.  

However, the Weibull distribution does not provide a 

reasonable parametric fit for some practical applications 

where the underlying hazard rates may be bathtub or unimodal 

shapes.  

An interesting idea of generalizing a distribution, known in 

the literature by transmution, is derived by using the quadratic 

rank transmutation map [1].  

Recently, various generalizations have been introduced 

based on the transmuted generalization included the 

transmuted extreme value distribution [2], transmuted Weibull 

distribution [3], transmuted modified Weibull distribution [4] 

and transmuted log-logistic distribution [5].  

A random variable � is said to have a two parameter 

Weibull [6], [7] with parameters � � 0 and � � 0 if its 
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 ���	 
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The rest of the article is organized as follows. In Section II, 

the pdf and cdf of the subject distribution and some special 

sub-models are derived. In Section III, the statistical 

properties including quantiles, moments and moment 

generating function etc. are studied. The reliability analyses of 

the subject model are given in Section IV. Section V presents 

the maximum likelihood estimates and the asymptotic 

confidence intervals of the unknown parameters. The order 

statistics from the distribution are discussed in Section VI. 

II. EXPONENTIATED TRANSMUTED WEIBULL DISTRIBUTION 

A random variable � is said to have transmuted distribution 

if its cdf , ���	, is given by: 
 ���	 
 �1 �  	���	 �   !���	"#,                   (3) 

 

where ���	 is the cdf of the base distribution. 
The cdf, $��	, of the exponentiated transmuted distribution 

is given by: 
 $��	 
 �%��	 
 &�1 �  	���	 �   !���	"#'% , | | ) 1.      (4) 
 

Combining (2) and (4), gives the cdf of the ETW 

distribution as: 

 $��	 
 *1 � � � 1	��� ���� �  ��#� ����  +% , � � 0,             (5) 
 

where � � 0, � � 0 and | | ) 1 are the scale, shape and 
transmuted parameters, respectively. 

Differentiating (5) with respect to �, and doing the 

necessary simplifications, gives the pdf as: 

 

,��	 
 %�� �
����- ������� .1 �  � 2 �������0 1  *1 � � � 1	������� �  ��#�����  +%�-
(6) 

 

It is clear that the exponentiated transmuted Weibull (ETW) 

distribution is very flexible (as seen from Table I). This is so 

since several other distributions follow as special cases from 

the ETW, by selecting the appropriate values of the 

parameters. These special cases include eleven distributions 

(as shown in Fig. 1). Namely; the exponentiated transmuted 

Rayleigh (ETR), exponentiated transmuted exponential 

(ETE), transmuted Weibull (TW) [3], transmuted Rayleigh 
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(TR) [5], transmuted exponential (TE) [1], exponentiated 

Weibull (EW) [8], exponentiated Rayleigh (ER) [9], 

exponentiated exponential (EW) [10], Weibu

(R), and the exponential (E). 
 

Fig. 1 Submodels of the ETW distribution
 

TABLE I 
THE ETW DISTRIBUTION SUBMODELS

Submodels 
Parameters of ETW 

Cumulative distribution function� �   2 
ETR - 2 - - *1 � � � 1
ETE - 1 - - 31 � � �
TW - - - 1 1 � � �
TR - 2 - 1 1 � � �
TE - 1 - 1 1 � � �
EW - - 0 - *
ER - 2 0 - *
EE - 1 0 - 3
W - - 0 1 

R - 2 0 1 

E - 1 0 1 

 

Table I shows the specific values of the parameters used to 

generate the abovementioned eleven special cases.

Figs. 2 (a)-(d) illustrate some of the possible shapes of the 

pdf of the ETW distribution for different values of the 

parameters � � 0, � � 0, 2 � 0 and | | )
 

Fig. 2 (a) The behavior of the pdf of ETW

 

(TR) [5], transmuted exponential (TE) [1], exponentiated 

Weibull (EW) [8], exponentiated Rayleigh (ER) [9], 

exponentiated exponential (EW) [10], Weibull (W), Rayleigh 

 

Submodels of the ETW distribution 

UBMODELS 

Cumulative distribution function 

� 1	��� 
��4 �  ��#�
��4 +%
 

� � 1	���
�� �  ��#� 
�� 5%
 

� � 1	��� 
��� �  ��#� 
���
 � � 1	��� 
��4 �  ��#� 
��4
 � � 1	��� 
�� �  ��#� 
��
 *1 � ���
��� +%

 

*1 � ��� 
��4 +%
 

31 � ��� 
�� 5%
 

1 � ��� 
���
 1 � ��� 
��4
 1 � ��� 
��
 

cific values of the parameters used to 

generate the abovementioned eleven special cases. 

(d) illustrate some of the possible shapes of the 

pdf of the ETW distribution for different values of the ) 1. 

 

(a) The behavior of the pdf of ETW 

Fig. 2 (b) The behavior of the pdf of ETW

Fig. 2 (c) The behavior of the pdf of ETW

Fig. 2 (d) The behavior of the pdf of ETW

Figs. 3 (a)-(d) illustrate some of the possible shapes of the 

cdf of the ETW distribution for different values of the 

parameters � � 0, � � 0, 2 �
 

 

Fig. 2 (b) The behavior of the pdf of ETW 

 

 

Fig. 2 (c) The behavior of the pdf of ETW 

 

 

Fig. 2 (d) The behavior of the pdf of ETW 

 

(d) illustrate some of the possible shapes of the 

tion for different values of the � 0 and | | ) 1. 
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Fig. 3 (a) The behavior of the cdf of ETW

 

Fig. 3 (b) The behavior of the cdf of ETW

 

Fig. 3 (c) The behavior of the cdf of ETW

 

Fig. 3 (d) The behavior of the cdf of ETW

 

 

Fig. 3 (a) The behavior of the cdf of ETW 

 

Fig. 3 (b) The behavior of the cdf of ETW 

 

Fig. 3 (c) The behavior of the cdf of ETW 

 

Fig. 3 (d) The behavior of the cdf of ETW 

III. STATISTICAL 

This section explains statistical properties of the ETW 

distribution including the quantiles, the median, random 

number generation, the central and non

the moment generating function.

A. Quantiles of the Distribution

The 678 quantile, �9, of the ETW dist

solution of the equation 

 $:�
 

and is given by: 

 

�9 
 � ;�ln >?-@ �1 � A
 

In particular the ETW median is:

�B.C 
 � D�ln E.-@ F1 � �-#�
It follows, from (7) that, the 

special cases of the ETW distribution are:

1) The 6
G quantile of the ETR

�9 
 � D�ln E.1 H1 � 6-%I �
2) The 6
G quantile of the ETE, substituting 

�9 
 ��  ln E.1 H1 � 6-%I
3) The 6
G quantile of the TW, substituting 

�9 
 � D�ln E.1 �1 � 6	 �
4) The 6
G quantile of the TR, substituting

is 

�9 
 � D�ln E.1 �1 � 6	 �
5) The 6
G quantile of the TE by substituting� 
 1 

�9 
 ��  ln E.1 �1 � 6	

TATISTICAL PROPERTIES 

atistical properties of the ETW 

distribution including the quantiles, the median, random 

number generation, the central and non-central moments and 

the moment generating function. 

Quantiles of the Distribution 

, of the ETW distribution is the real 

:�9J 
 6, 

� A�K� � -L �-�@@ �#M�4 � -# �-�@@ �NO�� .        (7) 

In particular the ETW median is: 

 

� ��KP � -L �-�@@ �#0�4 � -# �-�@@ �QR
��.    (8) 

 

It follows, from (7) that, the 6
G quantiles of the following 
special cases of the ETW distribution are: 

quantile of the ETR , substituting � 
 2, is 
 

I � 14 H1 �   I#0-# � 12 H1 �   IQR
-#. 

 

quantile of the ETE, substituting � 
 1, is 
 

I � 14 H1 �   I#0-# � 12 H1 �   IQ. 
 

quantile of the TW, substituting 2 
 1, is 
 

	 � 14 H1 �   I#0-# � 12 H1 �   IQR
-�. 

 

quantile of the TR, substituting 2 
 1 and � 
 2, 
 

	 � 14 H1 �   I#0-# � 12 H1 �   IQR
-#. 

 

quantile of the TE by substituting 2 
 1 and 
 

	 � 14 H1 �   I#0-# � 12 H1 �   IQ. 
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B. Random Numbers Generation 

Using the method of inversion in [11], random num

from the ETW distribution can be generated with 

as the solution of following equation 

 *1 � � � 1	��� 
��� �  ��#� 
���  +
 

This yield 

� 
 � ;�ln >?-@ �1 � �T	�K� � -L �-�@@ �#M�4 �
 

Moreover, (9) may be used to generate random numbers 

from the ETW distribution when the parameters   are known. 
C. Central and Non-Central Moments 

The U
G noncentral moment, VWX 
 Y�
distribution is given by: 

VWX 
 2 �W   Γ HU� � 1I [  [  �2 � 1\]
^_B

%�-
]_B1   � � 1	]�^ .  �-�@	 �]`^`-	a�b�  �  # �]`^`

For a positive integer 2, the summation �2 � 1	. Then the expected value, Y��	cdU��	, of the exponentiated transmuted Weibull random 

variable � are, respectively, given by: 
Y��	 
 2 �  Γ H1� � 1I [  [  �2 � 1\]

^_B
e

]_B1   � � 1	]�^ .  �-�@	
 �]`^`-	��b�  �   �]

cdU��	 
 Y��#	 � Y#��
where Y��#	 is given by: 

 Y��#	 
 2 �#  Γ �#� � 1� ∑  ∑  �2 �\]̂ _Be]_B
  � � 1	]�^ .  �-�@	

 �]`^`-	4�b�  �   �]`^
 

The g
G central moment, hi can be obtained easily from 

the U
G noncentral moments through the relati

 

hi 
 Y�� � V	i 
 [ �gU�i
W_B  �– V	i

 

Thus, the g
G  central moment of the ETW distribution is 

given by: 

 

Using the method of inversion in [11], random numbers 

from the ETW distribution can be generated with T~l�0,1	 
� +% 
 T . 

 

� M � -# �-�@@ �NO�� .      (9) 

Moreover, (9) may be used to generate random numbers 

from the ETW distribution when the parameters �, �, 2 and 
��W	 of the ETW 

 

� 1� H\mI  �–   	 ^    
#@`#	a�b�  0 .            (10) 

 

, the summation ∑  e]_B stops at 	, and the variance, 
, of the exponentiated transmuted Weibull random 

 

� 1� H\mI  �–   	 ^    
#@

]`^`#	��b�  0 ,          (11) 
 ��	 ,                      (12) 
 

� � 1� H\mI  :–   J ^  1
#@� ^`#	4�b�  0.  

can be obtained easily from 

noncentral moments through the relation: 

� 	i�W Y��W	. 
central moment of the ETW distribution is 

 

Y�� � V	i 
 2 [ [e
]_B

i
W_B1  � � 1	]�^��V	i�W �W Γ �W� �

 

It follows that the coefficient of variation

coefficient of skewness�n-	, and the coefficient of kurtosis �n#	 of ETW distribution are, respectively, obtained by

o 
 √q4q� 

n- 
 qr!q4"r/4 
 t

n# 
 qu!q4"4 
 tuv�L

The moment generating function of the ETW distribution is 

given by 

 w��	 
 Y��
x	 
 ∑ 
aW!eW_B  Y��W	 

1	]�^  1 �� 
	aW! Γ �W� � 1�

IV. RELIABILITY 

In this section the survival, the hazard rate, the cumulative 

hazard rate and the mean residual lifetime functions for the 

exponentiated transmuted Weibull distribution are presented.

A. The Survival Function 

The exponentiated transmuted We

provides a useful tool for modeling the lifetime data analysis 

of a given system. To this end, the survival function, 

the exponentiated transmuted Weibull distribution is given by:

z��	 
 1 � *1 � � � 1
 

Figs. 4 (a)-(d) illustrate the behavior of the survival 

function of the ETW distribution for some

the parameters. 

 

Fig. 4 (a) The behavior of the survival function of the ETW

[  [  �2 � 1\ � H\mI �gU� �–   	 ^]
^_B  

� � 1� 1 .  �-�@	
�]`^`-	a�b�  �   #@�]`^`#	a�b�  0.   (13) 

It follows that the coefficient of variation �o	, the � 	, and the coefficient of kurtosis 
distribution are, respectively, obtained by 

 


 {t4v�t�v4
t�v   ,                           (14) 

 trv�|t4vt�v`#t�vr
}t4v�t�v4~r/4  ,                   (15) 

 Ltrvt�v`�t4vt�v4�|t�v4
}t4v�t�v4~4  .            (16) 

 

The moment generating function of the ETW distribution is 

� 	 
 2 ∑ ∑  ∑  �2 � 1\ � H\mI  :–   J ^  � �]̂ _Be]_BeW_B
� .  �-�@	

�]`^`-	a�b�  �   #@�]`^`#	a�b�  0 .         (17)  

LIABILITY ANALYSIS 

In this section the survival, the hazard rate, the cumulative 

hazard rate and the mean residual lifetime functions for the 

exponentiated transmuted Weibull distribution are presented. 

The exponentiated transmuted Weibull distribution 

provides a useful tool for modeling the lifetime data analysis 

of a given system. To this end, the survival function, z��	, of 
the exponentiated transmuted Weibull distribution is given by: 

 � 1	��� ���� �  ��#�����  +%  .      (18) 
(d) illustrate the behavior of the survival 

function of the ETW distribution for some selected values of 

 

The behavior of the survival function of the ETW 
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Fig. 4 (b) The behavior of the survival function of the ETW

 

Fig. 4 (c) The behavior of the survival function of the ETW

 

Fig. 4 (d) The behavior of the survival function of the ETW 

B. The Hazard Rate Function 

The other characteristic of interest of a random variable is 

the hazard rate function ���	 
 ��
	��
	 and defined by:
 

���	 
 %�� �
����- ������� .1 �  � 2 �������0 1 D-`�@�-
-�D-`�@

 

It can be seen that ���	 might be constant, increasing, or 

decreasing depending on the values of the parameters 

involved. For example, if  
 0 , 2 
 1 and  ���	 
 -�, a constant, and if  
 1 , 2 
 ���	 
 #�, which is also constant, while if  
 

 

The behavior of the survival function of the ETW 

 

Fig. 4 (c) The behavior of the survival function of the ETW 

 

he survival function of the ETW  

The other characteristic of interest of a random variable is 

and defined by: 

� -	��������@��4����� RK��

�@�-	��������@��4�����  RK  .(19) 
might be constant, increasing, or 

decreasing depending on the values of the parameters 

and � 
 1 then the 
 1 and � 
 1 then 
also constant, while if   
 0  and  2 
 1  , 

 ���	 
 �� �
����-
 which is increasing for

for  � � 1, and if  
 1  and 
increasing for � � 1 and decreasing for

Figs. 5 (a)-(d) illustrate the behavior of the hazard rate 

function of the ETW distribution for different choices of the 

parameters. 

 

Fig. 5 (a) The hazard rate behavior 

Fig. 5 (b) The hazard rate behavior

Fig. 5 (c) The hazard rate behavior 

which is increasing for � � 1 and decreasing   2 
 1,  ���	 
 #�� �
����-
which is 

and decreasing for � � 1. 
llustrate the behavior of the hazard rate 

function of the ETW distribution for different choices of the 

 

Fig. 5 (a) The hazard rate behavior  

 

 

Fig. 5 (b) The hazard rate behavior 

 

 

Fig. 5 (c) The hazard rate behavior  
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Fig. 5 (d) The hazard rate behavior of the ETW

  

As a consequence, the hazard rate functions of some special 

cases of the ETW distribution are: 

1) The failure rate of the ETR distribution, substituting � 
 2 is 
 

���	 
 22��# ���
��4 ?1 �  � 2 ���
��4M 1 31 � � � 1
1 � 31 � � �
 

2) The failure of  the ETE distribution, substituting 

 

���	 
 2� ���
�� }1 �  � 2 ��� 
��~ 1 �1 � � � 1	
1 � �1 � � �
 

3) The failure rate of the TW  distribution, substituting 2 
 1 is 
 

���	 
 �� ������- .1 �  � 2 ���
�1 �  	 �  ���
���

 

4) The failure rate of the  TR distribution, substituting

and � 
 2 is 
 

���	 
 2��# ?1 �  � 2 ���
��4M
�1 �  	 �  ���
��4

 

5) The failure rate of the  TE distribution, substituting

and � 
 1 is 
 

���	 
 1� }1 �  � 2 ���
��~�1 �  	 �  ��� 
�� .
C. The Cumulative Hazard Rate Function

Many generalized Weibull models have been proposed in 

reliability literature through the relationship between

reliability function z��	 and its cumulative hazard rate 

function ���	 given by ���	 
 � ���	��
B
the cumulative hazard rate function of the ETW distribution is 

given by: 

 

 

ard rate behavior of the ETW 

As a consequence, the hazard rate functions of some special 

The failure rate of the ETR distribution, substituting 

� 1	��� 
��4 �  ��#�
��4 5%�-

� � 1	��� 
��4 �  ��#� 
��4 5%. 
The failure of  the ETE distribution, substituting � 
 1 is 

	���
�� �  ��#�
�� �%�-
� � 1	��� 
�� �  ��#�
�� �% . 

The failure rate of the TW  distribution, substituting 

� 
���0
� . 

The failure rate of the  TR distribution, substituting 2 
 1 
� � M

� . 
distribution, substituting 2 
 1 

� �~
� . 

The Cumulative Hazard Rate Function 

Many generalized Weibull models have been proposed in 

reliability literature through the relationship between the 

and its cumulative hazard rate � 	�� 
  � ln z��	. Here, 
the cumulative hazard rate function of the ETW distribution is 

 

���	 
 � ln .1 � *1 �
 

where ���	 is the total number of failures or deaths over an 

interval of time, which describes how the risk of a particular 

outcome changes with time for an ETW distribution.

Figs. 6 (a)-(d) illustrate the behavior

hazard rate function for different values of the parameters.
 

Fig. 6 (a) The behavior of the cumulative hazard rate function

Fig. 6 (b) The behavior of the cumulative hazard rate function

Fig. 6 (c) The behavior of the cumulative

* � � 1	��� ���� �  ��#�����  +%0,     (20) 

is the total number of failures or deaths over an 

interval of time, which describes how the risk of a particular 

outcome changes with time for an ETW distribution. 

(d) illustrate the behavior of the cumulative 

hazard rate function for different values of the parameters. 

 

Fig. 6 (a) The behavior of the cumulative hazard rate function 

 

 

Fig. 6 (b) The behavior of the cumulative hazard rate function  

 

 

Fig. 6 (c) The behavior of the cumulative hazard rate function  
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Fig. 6 (d) The behavior of the cumulative hazard rate function

D. The Mean Residual Lifetime Function

The additional lifetime given that the component has 

survived up to time � is called the residual life function of the 
component, then the expectation of the random variable 

that represents the remaining lifetime is called the mean 

residual lifetime (MRL) and is given by: 

 

h��	 
 Y�� � �|� � �	 
 1z��	 � Te



 

The MRL represent the mean lifetime left for an item of 

age �. The failure rate function at � provides information on a 

random variable � about a small interval after 

MRL function at � considers information about the whole 

remaining interval ��, ∞	. 
The MRL function as well as the hazard rate function or the 

reliability function is very important as each of them can be 

used to characterize a unique corresponding lifetime 

distribution. 

The MRL function h��	 for ETW random v

by: 

 h��	 
 �� � �%
-�;-`�@�-	��� �����@��4�����OK 1 ∑e]_

1	]`^�� 	^ 1 ;�-�@	.�H��`-,�]`^`-	�����I
�]`^`-	��b� � #@.�H

V. ESTIMATION OF THE PARAMETERS

In this section, the method of maximum likelihood is used 

to estimate the parameters involved and hence build 

confidence intervals for the unknown parameters.

Let  �-, �#, … , �i be a sample of size 

distribution. Then the likelihood function �
ℓ 
 ∏ ,]��	i]_- 
 �%����i ∏ �]��-i]_- �� ∑ ���������� 1 ∏i]

 ��#������  �%�- 1 ∏ .1 �i]_-
 

Hence, the loglikelihood function � 
 ln
 

 

 

Fig. 6 (d) The behavior of the cumulative hazard rate function  

The Mean Residual Lifetime Function 

The additional lifetime given that the component has 

is called the residual life function of the 

component, then the expectation of the random variable �
  
that represents the remaining lifetime is called the mean 

	  ,�T	�T � �. 
The MRL represent the mean lifetime left for an item of 

provides information on a 

about a small interval after �, whereas the 
considers information about the whole 

The MRL function as well as the hazard rate function or the 

reliability function is very important as each of them can be 

used to characterize a unique corresponding lifetime 

for ETW random variable is given 

∑ �%�-^ � �]̂� � �]̂ _Be_B
H��`-,�]`^`#	�����I

�]`^`#	��b� O. (21) 
ARAMETERS 

In this section, the method of maximum likelihood is used 

to estimate the parameters involved and hence build 

confidence intervals for the unknown parameters. 

be a sample of size g from an ETW �ℓ	 is given by: 
 *1 � � � 1	�������� �i]_-

. �  � 2 ��������0      (22) 
ln ℓ becomes 

� 
 ln ℓ 
 g ln�2	 � g ln��	 � g� ln��	
� �2 � 1	 [ lni

]_-� �� � 1	 [ lni
]_-

 

Therefore, the MLEs of �
derivatives of  � . They shoul
equations: 

���� 
 � i�� � �� ∑ �
����i]_- �
1	 �� ∑ �@�-	�������

D-`�@�-
i]_-

 

���� 
 i� � g ln��	 � ln��]	 � ∑ �
����i]_- ln
∑ �-�@	���� ����H���I� ���

D-`�@�-	�
i]_-

 

���@ 
 ∑ #��H���I��-
E-�@`#@��H���I�Q

i]_- � �2 � 1	 1
 ���% 
 i% � ∑ ln *1 � � i]_-
 

To solve (24) through (27), it is usually more conve

use nonlinear optimization algorithms such as quasi

algorithm to numerically maximize the loglikelihood function. 

In order to compute the standard errors and asymptotic 

confidence intervals the usual large sample approximation is 

used, in which the maximum likelihood estimators can be 

treated as being approximately trivariate normal [12]. Hence 

as g � ∞, the asymptotic distribution of the MLE is given by,

 

�����2� �� ~ � 
�  
 ¡¢��2 £ ,

¤¥
¦

 

where c§]^ 
 c]^  |¨_©̈  and 
 

ªc--c#-c|-cL-

c-#c##c|#cL#

c-|c#|c||cL|

c-Lc#Lc|LcLL
« 


 

is the approximate variance covariance matrix with its 

elements obtained from 

� 	
	 ln *1 � � � 1	���
���� �  ��#�
���� +
	 ln��]	 � [ H�]�I�i

]_- � [ ln .1 �  � 2 ���
����0i
]_- . 

(23) 

�, �,   and 2 are derived from the 

. They should satisfy the following 

 

� � � �� ∑ #@��������H���I�

E-�@`#@��H���I�Q
i]_- � �2 �

� � ��H���I��#@��������4H���I�

� -	��� �����@��4H���I� R 
 0,  
(24) 

� � ln �
���� � 2 ∑ ������������� ��������
>-�@`#@�������N

i]_- � �2 � 1	 1
������`#@��������4H��� I� ��������

	 �H���I� �@��4H���I�  R 
 0,      
 (25) 

	 1 ∑ ��H���I� ���4H���I�
D-`�@�-	��H���I��@��4H���I�  R

i]_- 
 0.(27) 

� � 1	�������� �  ��#������ + 
 0 , (26) 
To solve (24) through (27), it is usually more convenient to 

use nonlinear optimization algorithms such as quasi-Newton 

algorithm to numerically maximize the loglikelihood function. 

In order to compute the standard errors and asymptotic 

confidence intervals the usual large sample approximation is 

hich the maximum likelihood estimators can be 

treated as being approximately trivariate normal [12]. Hence 

, the asymptotic distribution of the MLE is given by, 

£
¤¥
¦c§--c§#-c§|-c§L-

c§-#c§##c§|#c§L#

c§-|c§#|c§||c§L|

c§-Lc§#Lc§|Lc§LL¬­
®°̄°°

± , 

« 
 ª²--²#-²|-²L-

²-#²##²|#²L#

²-|²#|²||²L|

²-L²#L²|L²LL
«

�-
, 

is the approximate variance covariance matrix with its 
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²-- 
 � ³#�³�#     ²-# 
 � ³#�³�³�     ²-| 
 � ³#�³�³2     ²-L 
 � ³#�³�³ , 
 ²## 
  � ³#�³�#      ²#| 
 � ³#�³�³2     ²#L 
 � ³#�³�³ , 
 ²||  
  � ³#�³2#     ²|L 
 � ³#�³2³ , 
 ²LL 
  � ³#�³ # . 
 

By solving this inverse of dispersion matrix, these solutions 

will yield the asymptotic variance and covariance of these 

MLEs for ��, ��,  � and 2�. Approximate 100�1 � �	% 

confidence intervals for �, �,   and 2 can be determined as 

 �� µ ¶�#{c§--   ,   �� µ ¶�#{c§##,    � µ ¶�/#{c§LL ,   2� µ ¶�/#{c§||, 
 

where ¶� #⁄  is the upper �
G percentile of the standard normal 

distribution. 

VI. ORDER STATISTICS FROM THE DISTRIBUTION 

Let �-, �#, … , �i denotes g-independent random variables 

from a distribution function $x��	 with pdf ,x��	, 
then  ��-	, ��#	, … , ��i	 denote the order sample arrangement, 

and the pdf of ��^	  is given by: 
 ,x�¸	��	 
 g!�m � 1	! �g � m	! ,x��	!$x��	"^�-. !1 � $x��	"i�^ 
 

for m 
 1,2, … , g. 
Then the pdf of the order statistic  ��^	 from the ETW 

distribution is given by: 

 ,x�¸	 ��	 
 i!�^�-	! �i�^	!  %�� � 
����- ������� .1 �  � 2 �������0 1 .1 � � �
1	������� �  ��#�����~%^�- 1 *1 � .1 � � � 1	������� �  ��#����� 0%+i�^

   (28) 

 

Therefore, the pdf of the largest order statistic ��i	 and the 
smallest order statistic ��-	 are, respectively, given by: 

 ,x��	��	 
  i%�� �
����- ��� ���� .1 �  � 2 ��� ����0 1 .1 �
� � 1	��� ���� �  ��#�����~i%�-,        (29) 

 

 ,x��	��	 
  i%�� �
����- ������� .1 �  � 2 �������0 1 .1 � � � 1	��� ���� �
 ��#� ����~%�- 1 *1 � .1 � � � 1	��� ���� �  ��#�����  0%+i�-.         (30) 

 

It is possible to express the pdf of the �¹ � 1	
G ordered 
statistic from the exponentiated transmuted Weibull in terms 

of the pdf of ¹
G ordered statistic from the exponentiated 

transmuted Weibull, using the following relationship: 

,x�ºb�	��	 
  .1 � � � 1	��� 
��� �  ��#� 
���0%

1 � .1 � � � 1	��� 
��� �  ��#� 
���0% 1 Hg � ¹¹ I ,x�º	��	. 
 

Then, the special cases of the minimum and maximum 

order statistics of the derived submodels of the ETW 

distribution are mentioned in the following two cases as: 

Case A: Maximum order statistics for submodels  

1) The pdf of the maximum order statistic of the ETR, 

substituting � 
 2 , is 
 

,x��	��	 
  2g2��# ���
��4 .1 �  � 2 ��� 
��40 1 .1 � � � 1	���
��4 �  ��#� 
��40i%�-. 
 

2) The pdf of the maximum order statistic of the ETE, 

substituting � 
 1, is 
 ,x��	��	 
  g2� ���
�� ?1 �  � 2 ���
��M 1 ?1 � � � 1	���
�� �  ��#� 
��Mi%�-. 
 

3) The pdf of the maximum order statistic of the TW, 

substituting 2 
 1 , is 
 

,x��	��	 
  g�� H��I��- ���
��� .1 �  � 2 ���
���0 1 .1 � � � 1	���
��� �  ��#�
���0i�-. 
 

4) The pdf of the maximum order statistic of the TR,  

substituting 2 
 1 and � 
 2, is 
 

,x��	��	 
  2g��# ��� 
��4 .1 �  � 2 ��� 
��40 1 .1 � � � 1	��� 
��4 �  ��#� 
��4 0i�-. 
 

5) The pdf of the maximum order statistic of the TE, 

substituting 2 
 1 and � 
 1, is 
 ,x��	��	 
  g� ���
�� ?1 �  � 2 ��� 
��M 1 ?1 � � � 1	���
�� �  ��#� 
��Mi�-. 
 

Case B: Minimum order statistic for submodels  

1) The pdf of the minimum order statistic of the ETR, 

substituting � 
 2, is 
 ,x��	��	 
  2g2��# ��� 
��4 .1 �  � 2 ���
��40

1 .1 � � � 1	��� 
��4 �  ��#� 
��40%�- . *1
� .1 � � � 1	��� 
��4 �  ��#� 
��4 0%+i�- .  

 

2) The pdf of the minimum order statistic of the ETE, 

substituting � 
 1, is 
 ,x��	��	 
  g2� ��� 
�� ?1 �  � 2 ��� 
��M

1 ?1 � � � 1	��� 
�� �  ��#�
��M%�- . 31
� ?1 � � � 1	��� 
�� �  ��#� 
�� M%5i�-. 

 

3) The pdf of the minimum order statistic of the TW, 
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substituting 2 
 1, is 
 

,x��	��	 
  g�� H ��I��- ���
��� .1 �  � 2 ��� 
���0 1 .�1 �  	��� 
��� �  ��#� 
���0i�-. 
 

4) The pdf of the minimum order statistic of the TR, 

substituting 2 
 1 and � 
 2, is 
 

,x��	��	 
 2g��# ��� 
��4 .1 �  � 2 ���
��40 1 .�1 �  	��� 
��� �  ��#�
���0i�- . 
 

5) The pdf of the minimum order statistic of the TE by 

substituting 2 
 1 and � 
 1 
 ,x��	��	 
  g� ���
�� ?1 �  � 2 ���
��M 1 ?�1 �  	��� 
�� �  ��#�
��Mi�-. 
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