International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:8, No:5, 2014

Exponential State Estimation for Neural Networks
with Leakage, Discrete and Distributed Delays

Liyuan Wang, Shouming Zhong

Abstract—In this paper, the design problem of state estimator for
neural networks with the mixed time-varying delays are investigated
by constructing appropriate Lyapunov-Krasovskii functionals and
using some effective mathematical techniques. In order to derive
several conditions to guarantee the estimation error systems to be
globally exponential stable, we transform the considered systems
into the neural-type time-delay systems. Then with a set of linear
inequalities(LMIs), we can obtain the stable criteria. Finally, three
numerical examples are given to show the effectiveness and less
conservatism of the proposed criterion.
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I. INTRODUCTION

N the past decades, we can easily find that neural networks

have been applied in many fields such as signal processing,
pattern recognition and static image processing. And the
applications that introduced above strongly depend on the
dynamic behavior of the network. For a long time, many
investigator pay same attentions on the stability of delayed
neural networks, in [1-3], the authors discussed the recurrent
neural networks, the delayed stochastic genetic regulatory
networks and the uncertain fuzzy system. Therefore, because
of the finite switching speed of amplifiers or the finite signal
propagation time, neural networks often has time delays so
many sufficient conditions have been proposed for verifying
the globally asymptotically stable and globally exponential
stability of the neural networks [4-10] and [23,24].

In recent years,the state estimation problems of the neural
networks have been obtained large amount of attention from
[11-21], [25] discussed the problem of state estimation of
neural networks with the leakage delays, discrete time-varying
delays and distributed time-varying delays. By using convex
combination technique and some analysis techniques, some
stability criteria for the existence of the state estimator are
derived. [30] provided some sufficient conditions for the
system to be globally asymptotically stable and exponentially
stable, respectively. such conditions could be easily checked
by utilizing the recently developed interior-point methods and
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they are expressed in the form of LMIs. and not having
the tuning of parameters needed in [31]. And the author
of [22] used the delay departing technique to discuss the
problem of the stability criteria of neural networks with the
distributed time-varying delays, and it has derived the less
conservation criterion to deal with the analysis problem of
globally exponential stability for neural networks.

In this paper, the problem of state estimation of neural
networks with leakage delays, discrete time-varying delays
and distributed delays is investigated. By constructing a new
class of Lyapunov function and using the delay departing
technique, convex combination technique and some analysis
techniques, the problem of estimating the neural states via
available output measurements such that the estimation error
converges to zero exponentially is investigated. bucause the
system we discuss included the leakage delay, so at last we
discussed the upper bounds of some variable. Note that the
LMIs method can obtained less conservative criterion when
deal with the analysis problem of globally exponential stability
for neural networks, two numerical examples are given to
illustrate the effectiveness of the propose methods.

Notation: Throughout this paper, R™ denote the n-
dimensional Euclidean space and the set of all n x m real
matrices are denoted by R™™ ™. And when X and Y are
symmetric matrices, the notation X > Y means that X — Y
is positive. The superscript T denotes transposition of matrix.
|| - || and x denote the Euclidean norm and the symmetric
block,respectively, diag{- - - } is a block diagonal matrix. A,,in
and A, stand for the smallest and largest eigenvalue of a
given matrix, respectively.

II. PROBLEM STATEMENT

Consider the following neural networks with mixed time-
varying delays:

&(t) = — Ax(t — o) + Big(a(t)) + Bag(z(t — 7(t)))
VB[
t—r(t)

y(t) =Cx(t) + Df(t, (1)),

g9(x(s))ds + I, )]

where z(-) = [z1(-),22(-), - ,2n()]7 € R™ is neural
state vector; y(-) € R™ is the output of the networks;
A = diag{ay,--- ,an} > 01is a diagonal matrix with positive

entries a; > 0; the matrices By, Bo and E represent the
connection weight matrix, the discretely delayed connection
weight matrix, and distributively delayed connection
weight matrix,respectively; the matrices C € R™*™

866



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:8, No:5, 2014

and D € R"™ "™ are the output weighting matrices;
9@() = ln(@10)), 91(22()), g1 (zn()]T,g € R™
denotes the neural activation function; I = [Iy,---,,]T is
an external input vector, o is the leakage delay and o > 0, the
discrete time-varying delays and the distributed time-varying
delays are denoted by 7(t) and r(t), respectively, and they
satisfy

0<d; <7(t) <do,0<r(t) <7,7(t) < *)

in above inequality di,ds,7 and p are constants; and
f+ R x R" — R" represent the neural-dependent nonlinear
disturbances. Nest, we design the full-order state estimation
for the neural networks (1) as the following:

2(t) = — AZ(t — 0) + Big(Z(t)) + Bag(2(t — 7(1)))

+F g(z(s))ds + 1 + K(y — ) )
t—r(t)

y(t) =Cz(t) + Df(t, z(t)),

where Z(t) and g(t) represent the estimation of the neuron
state and the estimated output vector, respectively, and K €
R"™*™ is the gain matrix of the estimator to be designed later.
when the error vector is defined as €(t) = x(t) — Z(¢), we can
directly obtained the error dynamics from (1) and (2):

E(t) = — Ae(t — o) — KCe(t) + Bro(t) + Bap(t — 7(t))
+FE t o(s)ds — KDy(t)
Jt—r(t)
3)

where ¢(t) = g(z(t)) —g(2(1)).¥(t) = f(t,2(t)) - f(t, 2(1)),
then the above system can be translated into the following
equivalent form when the error vector is defined as (t) =

x(t) —Z(t) :
A/ —(A+ KC)e(t) + B1o(t)

+ Byp(t —7(t))+ E p(s)ds — KDy (t)
t—r(t)
“)
(3)and(4) satisfy e(t) = ®(t), t € [-7,0], andT = max{da, 7}
g and f satisfy the following Assumption.

Assumption (A): The neuron activation function g(+) in (1) is
bounded and satisfy the following two constant matrices p~ =

diag{¢y .05, oy b = diag{é .63, &1}, such that:
o < 79,(02:?(5) <o 5)

forall o, € Rya# 5,1=1,2,---,n
Assumption (B): The neuron-dependent nonlinear distur-
bances f in (1) is bounded and there are a positive diagonal

matrices W and two constant matrices w~ = diag{wy,
Wy, ywi f wh = diag{w], wi,w;i}, such that the fol-
lowing inequality:

[f(t,2(t)) = f(t,2(1)) - w™ (2(t) — 2()]"W ©)

< [wh(a(t) — 2(t) = (F(t,2(t) — f(£.2(1)] 2 0

In order to obtain our results,we will introduce some lemmas.
Definition 1 . The equilibrium point 0 of system (3) is said to
be globally exponentially stable, if there exist scalars £ > 0
and 0 > 0 such that:

le@®)l <& sup [ @(s)lle”, V¢t >0,

—7<s<

Lemma 1 (Schur complement). For a given symmetric matrix

S =57 = S S }, where S1; € RF*%, the following
*  Soo

conditions are equivalent:

(1)S < 05

(2)S11 <0, Soo — SITQSﬂISm < 0;
(3)522 < 07 Sll — 51252_215?2 < 0;

Lemma 2 [9]. For any constant matrix Z € R"*", 7 = Z T
0, scalars hy > hy > 0, such that the following integrations
are well defined, then:

t—hy
— (hg — hl) / .Z'T
Jt—hso
t—hy t—hi
< —/ mT(s)dsZ/ x(s)ds
t—ho t

hz

hq
h2 h?) / / s)dsdf
t+0
h1 h1
/ / s)dsd0Z / / s)dsdf
t+0 ha +6

Lemma 3 [10]. For any scalar h(t) > 0 and any constant
matrix Q € R, Q = QT > 0, the following inequalities
hold:

_/t » T (5)Qi(s)ds < h(H)CE)XQXTC(t) + 2¢T (1)
x [x(t) — z(t — h(t)],

where ¢T(t) = [27(t)
ha) () p(1)],

and y is free weighting matrix with appropriate dimensions.

(s)Zxz(s)ds

aT(t—h(t) 2Tt —"1) 2T(t -

III. STABILITY ANALYSIS

In this section we will give sufficient conditions under which
the system (3) or (4) is globally asymptotically stable. Firstly,
the following notations are introduced for the representation
convenience:

Ly = diag{¢y ¢, 0503, ,dn 01},
dmg{cbl +¢1 7¢2 ;% o +¢n}

From the above Assumption (A), we can obtain the following
inequalities:

lou(t) — oy er(t)] " [u(t) —

Theorem 1 For given scalars di,ds, 0,7 and p satisfy (*)
and Assumption (A) and (B) hold, then the system (3) or
(4) is globally exponentially stable with the rate index k if
there exist P > 0, B, > 0, (I = 1,2,3,4,5,6), Q,, > 0,
(m=1,2,3,4,5,6,7,8), T, > 0, (n = 1,2, 3), any matrices

dre()] <0,0=1,2,--- ,n,
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@’, Uss Vies Wieo X0, Yoy Zis, Si(k =1,2), and diagonal matrices
U >0,V > 0,W > 0 such that the following LMIs hold
according to (7) and (8), then one can obtain

Eiox16 + die *UQg ' UT + (d* — dy)e 2V
1y T _ g9\, —2kds y )1 x T @)
X Q7 V' +(d2—d)e XQ7'x" <0
Eiox16 + die 2 UQg U + (4 — dy)e W
“twT _ ey —2kds )1y T (®)
X Q7 W + (dy —d")e XQ:'XT <0
Fioxi6 + die M UuQgtuT + (d* — dy)e 24 S
18T _ g%\, —2kd> 1y T ©))
X Q7 8" 4 (d2 —d")e YQ:'y7T <o,
Figxao +die "M UQGUT +(d" —d)e™ s o

x QST 4 (dy — d*)e k2 ZQ ' ZT < 0,
where
U=[Ur'0o -uf0000000000000]7,
V=000V ov 0000000000,
wW=poowloowS 000000000 0],
X=000X"XT00000000000]%,
Y=[000Y 0¥ 0000000000]7,
Z=[00002zZF0000000000]7,
S=008'sToo0000000000]%,
and
Ey1=2kP—-PA—-ATP - GC - CTG" + Ry + R,
+ R34+ Ry + R+ 0°Q1 + d1Q3 + (d* — d1)Q4 + (d2
d*—d . .
= _ o,—2kd; _ 1 —2kd _
d")Qs — 2e Ty 27d*+d16 Ty — LU
X dy — d*
L —2kdy —2kdy 71T _ 2 2
sW +e Ui +e Uj do t d¥

Bz =e (U 4+ U] ), B 7 = —CTG",
E1g = PBy + LyU,Fy g = PBy, Fy 19 = —GD + LyW

672kd2 TB’

2
Biu = ~2kPA+ ATPA+ CTGTA, By = e,

Ei13 = PE, B4 = I rd _2kd*T27
1
Eyi15 = 2 e Ty By e = 2 e~ 2hd2y
’ d* +dy B dy + d* '

Eoy=—e 2k Ry, Fy7 = —ATP,

Esg=e M (U +Uy) — e 21 Ry + e 725 (W) + W),
Esg = e 2 (—W, + WY)

E4 4= _€—2kd"}%4 + e—2kd* (_Vl _ VlT) + e—dez (Xl
+X7),

Eis=—e (=X, + XJ),Es6 = —e " (11 = V1),
Ess5=—e 2Ry e 2kd2(_X, — XT),

Egg =LV — (1= p)e”*" Ry 4 e7 2k (v, 1 V1)

+e R (W, = W),

Eg9 = LoV,
d*2 o dQ

d2 dQ*d*2
E7,7:72P+d1Q6+31T1+ 5 174+ 2 5

+ (d* — d1)Q7 + (d2 — d*)Qs,

E;8=PB,, E;9=PBy, FE;;0=-GD,

Er13 = PE,Egg = Rs + Q2 — U, Es 11 = —B] PA,
Egg=—(1— pe Ry —V, Eg11 = —B3 PA,
Ei0,10 = W, Eio11 = DTG A,

Ei11 =2kATPA — e ?%Q,, Fy113 = -ATPE,

T3

1 2 _

—2kd —2kd — 2k

Ei212 = o Q3 — Z2° "1, Biziz = —e” 77 Q,
1 1

1 2 ok

E14’14 - _d* _ dl 672kd*Q4 - d*Q _ dge T27
1
2 opg*
Ei415 = *me 2hd T3,
— a3
1 . 2 -
E S5 = — —2kd _ /72kd T
15,1 a —dle Qa 7d*2—d%P 2,
1 _ _
Ei6,16 = TG pr hdz () — FrpT 2Zkd2
2 -
2 ok
F1’15 = d2 T e 2kd21"37

Fyg=e MRy 4+ e 2N (—Uy — UF) + e (8) + ST),
Fay=e (=8, +8T), Fy6=0,

Fig=e 2k Ry 4 72k (_Gy — STy 4 ¢=2kd2(y; 4y [T,
Fys5 =0, Fy6= e~ 2kd2 (Y1 + YQT)7

s

Fss=e 227, - 7Ty — e72d2 Ry
Fyg=e M2, — 23),
Foo=—(1—ple 2Ry e 2kz(_y, V)
+ e k27, 4 7T,

Fyog=—(1—p)e >Ry — v,

1 2
F 5= — /72]6(12 5 — ,72k,d2T
15,1 p— Q FrRpTE ;
2 —2kd
Fis16 = 2_a2° T3,
1 _ 2 _
Fie16 = e 2hda () e 2hdapy

the other entries of E is 0 and the other entries of F’ is the same
as E, and d* € (dy,d2),d* = Ady + (1 — N)da, A € (0,1),
The gain matrix of state estimator is given by

K=P'G an

Proof: Consider a novel augmented of Lyapunov-
Krasovskii functional for the system (3) or (4) as follows:

V(t) =Va(t) + Va(t) + Va(t) + Va(t), (12)

where

Vi () =e2t[(t) — A /ti c(s)ds]T Pl(t) — A /ti £(s)ds],

a
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2T (5)Q1e(s)dsdf

|
Q
<
+
£

e?ks

" (5)Q2(s)dsdf

Jr
=3

L.\ =
TS
)

el (5)Q3e(s)dsdd

+ 4+
L1442
> L=
r\h
z s

e?5eT (5)Que(s)dsdd

62ks

7 (5)Qse(s)dsdh

+
|

QL |

o Y
'

—

+ &

)

e (5)Qoé (s)dsdd

Jr

\\h\\\
A‘E”

e (5)Qré(s)dsdd

Jr
|
sH |
¥ a s
—
+
)

ke (5)Qsé (s)dsdf,

t t t
t) = / / / e2seT (5)T1é(s)dsd\df
t—dy A
it—dy  pt pt
/ / / e3¢l (5)Toé(s)dsd\df
t 6 JX
t—d* t t
+ / / / e3¢t (5)Tyé(s)dsddb,
t—do 6 JX

The derivative of V (¢) with respect to time along the
trajectory (1) is

V() = Vi(t) + Va(t) + Va(t) + Va(t),

The time derivative of V;(t),7 = 1,2, 3,4, is obtained as

w-af
. e(s )ds}—l—?ezkt[ (t)— A . €(s)d5]T

P[—(A+ KC)e(t) + Bigp(t) + Bap(t — 7(t))

+ E/t L £~ DY)

+
|
QL |
» IS
;
h
B}

(13)

Vi(t) =2ke?[e (s)ds]T Pe(t)

—A

(14)

)T (¢ — 7 (1))
2% (t—dy)

Va(t) <e®™e" () Rie(t) — (1 -
X Rie(t —7(t)) + €T () Roe(t) — e
T(t — di) Roz(t — dy) + €27 (t) Rz (1)
o2k(t—ds) eT(t — dy)Rse(t — da) + o2kt T(t)R,
x e(t) = T (¢~ d)Rac(t - d*) +
x T () Rsp(t) — (1 — ) =TT (1 — 7(1))
X Ryt (t — 7(t)) + T (t) Re(t) — 2F(t=7)

el (t — o) Ree(t — o)
as)

Va(t) <l (1)[0?Q1 + diQs + (d* — d1)Qq
+ (dz — d)Qs)e(t) + 72 " (1) Qaip(t)
+ 2T (1) [d1 Qs + (d* — d1)Q7 + (do — d*)

t
X QsJE(t) — oe?*=) / &7 (5)Qre(s)ds
. t—o
(1)t / 7 (5)Qaip(s)ds
t—r(t)

_ 2k(t—d")

t
— 2k(t=d1) / T (s)dsQze(s)ds
t—dy

t—dq t—d*
% / ET _ e?k(t—dg) / ET(S)
t—d* t

—ds
t
X Qse(s)ds — 2F(t—d0) / éT(5)Qeé(s)ds
t—dq

(s)Qae(s)ds

t—d;
- e2k‘(t7d*)/ €T(8)Q7E(S)ds - er(t*dQ)
t—d*
t—d*
></ T (5)Qgé(s)ds
t—ds
(16)
. d? d*? d2 d3 —d*?
Vi(t) <eeT (s )[ T+ LTy + =2 5 I3E(t)
2k (b= dl)/ / s)T1€(s)dsd\
t—dq
t—dy
2k(t— d*/ / §)Thé(s)dsdA — e2(t=d2)
t
></ / $)T3€(s)dsd,
t
(r7)

and U,V and W are positive diagonal matrices and from
Assumption (A) and (B) we can get:

=[O [ B[ e
=[]
[T ] =0
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[T T e [ [t

t—d* t—d*
From the (3), the following zero equalities with symmetric _/ g(S)dS}TTB[(dQ —d*)e(t) _/ e(s)ds],
matrices P is considered. t—ds t—ds
(26)
2kt - .
2e7E(t)p[—£(t) — Ae(t — 0) — KCe(t) + Bigp(t) and for any scalar d; < 7(t) < d*, and any constant matrix

Qy € V™, Q, = QF > 0,(b = 6,7,8), we can get the
following inequalities from Lemma 3.

- /H éT(8)Qeé(s)ds < di €T () UQG ' UTE(L)
+ 267 (Ue(t) — et — du)],

t
+ Boglt — 7(t)) + E /t |, #0)s —KDu(o)] =
@1

and P is the same with that in V7, from Lemma 2, we have

t ¢ t
7(t)
— O-/t\70 ET(S)ng(s)dS < 7[ . E(S)dS}TQl[/t,U 5(5)d5]7 - /td ! ( )Q7E( )dS < (d* - T(t))fT(t)VQ;lva(t)
t t t—d*
—r(t) /t " ¢ (5)dsQ2p(S)ds < —| A p(s)ds]" Q2 +26T(O)V[e(t —7(t) —e(t — d*)],
s Jt—r t—d;
A eton [ s < (r(e) - d)ETOWQ; WD)
)ds], tfr(f)
o + 26T (OW =t — dy) = e(t = ()],
s)d ds < —— 51T Q: —d*
/ e [/ e [ e < (@ - e X0 X
Jt—dsy
/ (s)ds], + 26T (1) X [e(t — d*) — (t — do)],
27
9 t
/ / s)T1E(s)dsd\ < *ﬁ[dlf(t) */ e(s)ds]" where ¢7(t) will defined next and U,V,W, X are free-
! = weighting matrices with appropriate dimensions.
Ti[die(t) — /t . e(s)ds], T@t) =[eT(t) eT(t—0) eT(t—dy) eT(t—d*) €T (t—dy)
(22) et —r(t) ') o"(t) "t —7(t) v (t)
t t t
(1) When d; < 7(t) < d*, / el (s)ds / el (s)ds / o7 (s)ds
t—o t—d; t—r(t)
t—dy t—dy t—dy t—(t) ot—d*
[, Qs < g [ e [ s [ s [ )
—d* -7 t—7(t) t—d* t—dz
t—dy f,,T( ) . . 5 . . .
% Q| » (5)ds] - 1 . [/Fd* t s(s)ds]TQ4 P}zy:sg)?t;zt:ﬁ (Olét)ai(jﬂ into (13) and use the relationship
[ e(spas V() < T () (), el
. /tfd* (s)ds], where ¥ = —Z; > 0 with

(23) z, = E+d18—2kd1UQ6—1UT T (d 7T(t))672kd*VQ7_1VT
+ (T(t) _ dl)e—2kd* WQ;lWT =+ (d2 _ d*)€_2kd2XQ§1XT,

t—d* . 1 t—d* - (29)
[ Qs < [ el | |
t—dy dy —d*"Ji_q, According to (7) and (8), then one can obtain

X Qs| / " oy E+die M UQg UT + (d — dy)e v QL VT
+ (dy = d")e X QXT <0,

E+die M UQgtUT + (d — dy)e M WQWT

+(dz —d")e X Qg XT <0,

(24)

R 2 (30)
_ / / () To(s)dsdA < ——ro—((d" — dn)
t—d* JA d*" —dy then, according to the convex combination technique, we can
t—dy t=7(t) - obtain
t) — ds — ds]" To[(d* — dqy)e(t . _ S
x g(t) /th(f,) £(s)ds /ﬁid* e(s)ds]” Ta[( 1)e(t) 1 = B+ die 2 UQ UT 4 (& — 7(t)e 2V Qs YT
t—dy t=r(t) +(7(t) — d)e WV 4 (dy — d*)e X Qg VT
—/ ( )ds—/ e(s)ds],
t—7(t) t—d* <0,

(25) 3D
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that is V(t) < —e?* T (1)21€(t) <0
(2) When d* < 7(t) < da, using Lemma 2, one get

/Hh T (5)Que(s)ds < ——— [/HI (5)ds]7Q

\ g (8)ge(s)as < d*—dl t_d*ES S 4
t—dq

X [/tid* e(s)ds],

t—d* 1 t—d*
_ /tid2 5T(3)Q55(s)ds < e [/tiT(t) 6(s)ds}TQ5

t=d 1 t—r(t)
ds| — d T
x [/t_T(t)s(s) 5] d27d*[ - (s)ds]TQ
t—7(t)
X [/t7d2 e(s)ds], .
(
t—dy t . . ) )
,/t;d* //\ET(S)T2€(S)CZSCD\ S*m[(d —dy)e(t)
f=dy t—dy
- / =(s)ds] " T[(d" — dy)(t) = / £(s)ds],
t—d i e
/t d* ET T{—j( )d d\ < —L[(d _d*)g(t)
t d A 8 SAA = & — 2
t= t—7(t)
/ s)ds — / e(s)ds) T Ts[(dy — d*)e(t)
t T(t) t—dy

- /H(t) e(s)ds — /t::(t)e(s)dsL

and for any scalar d* < 7(t) < do, and any constant matrix
Qy € R™™, Q, = QT > 0,(b = 6,7,8), we can get the
following inequalities from Lemma 3.

(35

- [ eueens < i (UQs U

+ 207 (OUT(0) - o(t — dy)),

[ s < @ —an @507
+ QnT(tzS[a(t —dy) —e(t—d)),

-/ j) 1 ($)Qu(s)ds < (r(1) — ')’
2 (Y [e( — ) — et~ 7(0),

- [T e atsiis < - o

+ 20T (1) Z[e(t — 7(t)) — e(t — do)),

OY Qs 'Y n(t)

(t)ZQg' Z n(t)

(36)

where 7n?(t) will defined next and U,S,Y,Z are free-

weighting matrices with appropriate dimensions.
' () =" (t) "t~ ) T(t—di) e'(t—d") '(t—dy)
ef(t—r(t) () oT(t) T (t—7(t) ¥ (1)

t t t
/ eT(s)ds / el (s)ds / o1 (s)ds
t—o t—dy t—r(t)

t—dy t—d t—7(t)
/ el (s)ds / el (s)ds / T (s)ds],
t—d t—7(t) t—ds

By substituting (14)-(22), (32)-(36) into (13) and use the
relationship PK = G, we obtain

V(t) < =T (t)San(t), 37
—Z9 > 0 with
Sy =F +die” " UQg U + (d" -

where Yo =

d1)672k:d* SQ;lST

F(r(t) — d)e LY QYT + (dy — 7(t))e 2k
205127,
(38)
According to (9) and (10), then one can obtain
F+die 2 0 yQatu” + (dF — dy)e 2F Q18T
+(do = d")e Y QYT <0, (39)

F + d1672kd1 UQ6—1UT + (d* _ d1)672kd* SQ;lST

+(dy — d*)e 2 2Q ZT <0,

then, according to the convex combination technique, we can

obtain

Ey =F +die " UQg'UT + (d* —
+ (T(t) _ d*)672kd2YQ871YT
ZQg'Z" <o,

d1)672k(i* SQ;IST
+ (do — 7(t))e 2%

(40)

that is V (t) < —e2*'nT (t)Syn(t) < 0,

Therefore, if (7)-(10) are satisfied, then (3) or (4)
is guaranteed to be globally exponentially stable for
d(t) S [dl,dg].

On the other hand, it is not difficult to obtain the following
inequalities:
0

s(s)ds\|2 < Amax(P)

—0

Vl(o) < )\maX(P)HE(O) - A

0

< (12O =1l [ lle(s)llds)* < Amax (P)I|2(0)]?

0
+ HA||2/ le(s)lPds < Amax(P)(1 + 0| AJI?)

—a

xsup_[[@(s)]?,

—7<s<0
(41
V2(0) S (d2)\max(R1) + dl)\max(R2) + d2)\max(R3)
+ dr AIII&X(R4 + d271 )\max(RS) + U)‘nlax(R(i)) (42)
< s oG
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$)dsdf + TAmax(Q2)

V3(0) < a)\max(Ql)/ /
[/ $)dsdf + Amax(Qs3) /d/
X dsdf + Amax(Q4) / /
/dz / $)dsd0 + Amax (Qs) /d/
X dsdf + Amax(Q7) / /
« (Q) / X / s)dsd,

$)dsdf 4+ Amax(Qs)

$)dsdf 4+ Amax

43)
T (5)é(s) < 6[Amax(ATA) + Anax (CTKTKC)
+ 93 Amax (BT B1) + 73 Amax (B3 B2) + 71 Amax(E" E)
+ 73 Amax(DT KT K D)] _Sup. 1®(s)]1%,
(44)
where
= maxi<i<a{ld; |, 167 [}, 72 = maxi<jcm{|w [, lw] [}
3 2
Amax(@2) / T / s < "0 (Q2)
X Sup H<I>

(45)

Va(0) < [ Amax (Th) + (d°% = d3) Ao (To) + (d3 — d*)
X Amax (T3)] Amax (AT A) + Anax (CTKTKC) + 2
X Amax (BT B1) + 71 Amax(B3 Ba) + ™} Amax(ETE) + 73
X Amax(DTKTKD)] sup [|®(s)]?,

—7<s<0

(46)

o = [)‘HIHX(P)(l + O-HAHz) + dQ)‘max(Rl) + dl)\max(RZ)
+ d2)\max(R ) +d* )\max(R4 + d2'Yl )\max(RS)

3 3
+ U/\tnax(RG) max(Ql) 71 max(Q2)
3 _ 2 2 _ %2
+ %)\lnax(Q3) + %)\lnax(Qﬁl) + %
X )\max(QS)] [3d2 de(QG) + 3(d*2 ) max(Q?)
+ 3(d§ - d%) max(Q8) + d?)‘max(Tl)
+ (d*g - d?)AmaX(TQ) + (dg - d**))‘maX(TS)]

% Amax(ATA) + Amax(CT KT KC) 4 7§ Amax (B B1)
+ V%AmaX(BZTBﬁ + FQ'Y%/\InaX (E E)

+ 7271 /\maX(DTKTKD)]

Then we can get:

V() <a sup [|®(t)]* < oo, 47

—7<5<0

Considering V4 (t), one can easily obtain that

le(t) A/ (s)ds|? < m[g(t) A 48
t ¢
X /ti(rs(s)ds]TP[s(t) - A/tﬂ7 e(s)ds] < #{2(1))
V(0)
- €2kt/\min(P) ’

Which implies that

t 4
Ol < 1 [ sl + |
t t—o min (49)
v (0)
<AL [ les)ds + 1y ey

Where [|4] = /S, S a2,

And by the well-known Gronwall inequality which can be
found in [35], it yields

le@®| < 4/ st — ell4lle < / ellAlle
€ t)\ mm P (50)

sup [ ®(s He ;

7T<9<0

Then from the Definition 1, the system (3) or (4) is
exponentially stable with convergence rate k, and the proof
is completed. u

In particular, the model (3) becomes the well-known case
when o0 = 0 and the system has been directly or indirectly
investigated by a lot of authors, see [26-29].

When there is no time delay in the leakage term in error-
state system (3) or (4), that is ¢ = 0, we get:

E(t) = —(A+ KC)e(t) + Bip(t) + Bap(t — 7(t))
_ ot 51
+FE o(s)ds — KDi(t), ©Dh
t—r(t)
where 7(t) and r(t) are the discrete time-varying delays
and the distributed time-varying delays satisfy the following
inequality:

0<di <7(t)<dy, O<r(t)<7, 7(t)<p<ox,

dy,ds, 7 and p are constants. for system (51), we can obtain
the following result.

Corollary 1 For the given scalars dj,de,7 and p < o0,
the equilibrium point of the error-state system (51) is
globally exponentially stable with the rate index Fk, if
there exist P > 0, Ry > 0, (I = 1,2,---,5), Qm > 0,
(m = 2,3,---,8), T, > 0, (n = 1,2,3), any matrices
G, Uk, Vi, Wi, Xie, Yk, Zi, Sg (k- = 1,2), and the diagonal
matrices U > 0, V> 0, W > 0 such that the following LMIs
hold.

H14><14 + d16—2kd1 UleUT + (d* _ dl)e—de*V

52
x Q7 VT 4 (dy — d*)e 2 X Qg XT < 0, 42

872



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:8, No:5, 2014

Higra + die” 20 UQs U + (d* — dy)e W

(53)
x Q7 W 4 (dy — d*)e M2 X Qg XT < 0,
Nasia + die” 2 UQ UT + (d* — dy)e 2 S 54
x Q71ST 4 (dy — d)e Ry Qg 'YT <0,
Laxia + die” 2 UQ UT + (d* — dy)e 2" S 55)

x Q7 ST + (dg —
where

U=[Uf ~UF 00000000000 0],
V=00V0V, 000000000,
W=[0Wl00WS 00000000 0],
X=[00Xx]{ X70000000000],
Y=00Y"0Y, 000000000,
7 =
S =

d*)€72kd2 ZlezT < 07

0002 ZzF000000000],
05T sT0o0000000000],

Hy, =2kP - PA—-ATP -GC - CTGT + R, + Ry

+ R34+ Ry + d1Q3 + (d* — dl)Q4 + (dz — d*)Q5

d* —di _opgr N .

_— T — WU - L

g +d16 2 1U 3W
do — d*

—2kd; ~2kdy 7T _ 992

+e Uj+e Uj & 1 d°

Hyp=eM(=Uy+U]), Hie=-CTG",

Hy7 = PB) + LU, Hygz= PBs,

R

e—ZkZdz T3

. 2
Hyg=-GD+ LyW, Hy 0= d—e_%lel,
1

- 2 oLg*
Hy11=PE, Hi 1= F1d e~ 2kd T,
1
2 * 2
H _ —2kd T, H _ —2kd2T
1,13 d*+d1€ 2, 111,14 d2+d*€ 3

Hyp = e K0 (US + Uy) — e N Ry 4 72K (W + W),
Hys = e 2" (—wy + W)

Hys = —e 2% Ry 4 e 2K (L)) — V)T 4 = 2hd2

x (X1 +XT),

Hyy=—e2*2(=X1 + XJ), Hss=—e " (Vi = V),

Hyq= —e MRy 4 e 2 (=X, — XJ),

Hss=—L1V — (1 —p)e 2 Ry + e 2 (Vo + ViF)

e (0 — ),

Hsg = LoV,

d*2 o d2 d2 _ d*Q
1T2 + 2

T
2 2 3

Hgo = —2P +di1Qs + %%Tl +
+ (d" — d1)Q7 + (d2 — d")Qs,
He7 = PBy, Heg=PBy, Hsg=—-GD, Hg, = PE,
H77=Rs+7Qy—U, Hgg=—(1—p)e " Ry —V,
Hyg =W, FEj1 =DTGTA,

1 2 -

—2kd —2kd —2kr

Hyg10 = ¢ Q3 — 2°¢ Ty, Hyp = —e Q2,
1 1

1

His10 = e i e—zkd*Q4 _ m@-zkd*Tz’
2 oL *
H12,13 - —me 2kd T: )
1
H _ 1 e—Zk:d*Q _ 2 e—de*T
13,13 = & —d 4 7(1*2 —d% 2,
1
i _ —2kdy ) —2kds
14,14 &> e Qs B 72¢ 3
2
T — 72k’d2T
1,13 4ot d* e 3

Iy = e MRy 4 72k (U, — UT) + 72k (8, + ST),
Iy =e (-8 + 87, I6=0,

Isg=e PRy 4+ o720 (G, — ST) 4 e~ 2k2(y; 4y,
Iis =0, Iyg=e 22 (V1 +Y]),

Lyg=e (=2, — Z7) — e 2Ry,

Ig=e 2%2(7, — 77,

1575 _ _(1 _ u)e—degRl 4 6_2kd2(—§/2 _ YQT)

+ 672kd2 (ZQ + ZQT), Ig,g = —(1 — u)eiQk{bRg’; =+ V7
1 2

_ ~2kd —2kd
113,137—d2_d*€ *Qs — FoL T,
2
2
Ligiq = —————e 2Ty
5 2 2 )
&
1
_ —2kd: —2kd:
haga = & " *Qs — F T,
2

the other entries of H is 0 and the other entries of I is the same
as H, and d* € (dy,ds),d* = Ady + (1 — N)da, A € (0,1),
The gain matrix of state estimator is given by

K =P G, (56)

Proof: Consider a novel augmented of Lyapunov-
Krasovskii functional for the system (51) as follows:

V() =Va(t) + Va(t) + Va(t) + Va(t), (57
where

Vi(t) = e*Me(t)T Pe(t),

Va(t) = et (s)Rie(s)ds

t—7(t)
t

+/ k3T () Roe(s)ds
t—dy
t

+/ e3¢l (5)Rye(s)ds
t—ds
t

+/ e?*eT (s)Rye(s)ds
t—d
t

b ) Raps)ds,
t—7(t)
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Vi = | ) /+9 2% 57 (5) Quip(s)dsdf
" /, Odl /;9 e?eT (5)Qse (5)dsdd
*/_: /+9 e (5)Que(s)dsd
/ N /tt <7 (5)Qse(s)dsdf
" /_ Odl /+€ 7 (5) Qo2 (s)dsdo
/ t
/

—d;
+ / e?3eT (5)Qré(s)dsdf
—d= Jtyo

—d*
+ / e3¢t (5)Qgé(s)dsdb,
—dy Ji+6

t ot
Va(t) = / e2seT (5)Tyé(s)dsdAdf
t—dy JO JAX

t—dy

/ / / ks T (5)Toé(s)dsdAdf
t

+ / / / e3¢l (5)Tyé(s)dsdAdb,
t—do 6 JX

According to the similar procedure discussed in Theorem 1,
we obtain
(1) When d; < 7(t) < d*,

V(t) < T H + dye 1 UQg ' UT + (dF — 7(t))e 2R

x VQ7 VT 4+ (7(t) — d)e M WQ7 VT + (dy — d)
x e 2R XQTVT(HE() <0,
(58)
where
EN () =[eT(t) eT(t—dy) T (t —d*) €' (t—dy)
t—7(t) €T(t) o7 P (t—T(t) v ()

5T(
t

t t—dy
/ T (s)ds / eT(s)ds / T (s)ds
Jt—dy t—r(t) Jt—7(t)

t—7(t) t—d*
/ T (s)ds / 7' (s)ds],
t—d= t—ds

(2) When d* < 7(t) < da,

V(t) < e2kt£T[I+ d16—2kd1UleUT + (d* _ T(t))e_de*

x VQ7WT 4+ (r(t) — d)e” ¥ WQWT + (dy — d*)
x e P EXQIIXT](HE(t) < 0,
(59)
where
0" () =[e"(t) e"(t—dy) e"(t—d*) e"(t—dy)

ef(t—r(t) €°(t) oT(t) ¢T(t—7(1) ¢ (1)

t t t—dy
/ el (s)ds / T (s)ds / T (s)ds
t—dy t—r(t) t—d-

t—d t—7(t)
/ el (s)ds / el (s)ds],
t—7(t) t—ds

From the (58) and (59), by using the convex combination
technique and Schur complement, the (60) are equivalent to
(52)-(54). This completes the proof. |
Remark 1 It is noted that [25] discussed the error-state
system (3) and (4) is globally asymptotically stable and it did
not use the delay departing technique, in this paper, Theorem
1 proposes an improved exponential stability condition for
neural networks with mixed time-delays. we divided [dy, da)
into [dy,d*] and [d*,ds], which d* satisfy linear combination,
Each segments has a different Lyapunov matrix, which can
obtain less conservative results. and the constructed Lyapunov
functional V' (¢) is much more general and desirable than that
in [25].

Remark 2 Although the system (51) has been studied in
[27]-[28], the results in [27] and [28] can not tackle the
estimation problems when the derivative of the time-varying
is not less than one, and they did not have the leakage delay.
Remark 3 The author of [34] investigated the system with
distributed delay, the system in this paper also has leakage
delay o, so [34] is a special situation of this paper’s system
when d; = 0 and o = 0. that is to say this paper discuss the
discrete with certain bounds.

IV. NUMERICAL EXAMPLES

In this section, three examples with be given to illustrate
the usefulness of obtained results.
Example 1 Consider the error-state system (3) and (4) with
the following parameters

2.0 0 —02 0.4
A=|0 3 0 0.2 |,
00 2 04 0.4
0.2 02 02 0.2 0.1 0.1
Bo=|02 02 02 |,E=]01 02 01|,
0.2 0.2 0.2 0.1 0.1 02

1 0 0 1 0 0
c=]lo10|,p=|01 0],
0 0 1 0 0 1

2sint + 0.03t>
J = 3cost —0.03t3 |,

2cost — 0.03¢>

Where Ly = diag{0,0,0}, Ly = diag{0,0,0}, Ly =
Ly = diag{—0.25,—0.25,0.25}. If that 7(¢) = 3sin?t+0.01,
r(t) = cos®t,o = 0, we can easily get d; = 0.01,d> = 3.01,
@ =3 and r = 1. when k£ = 0.01, A\ = 0.5, by Corollary 1
and the LMI toolbox in solving (51), we have the estimator
gain matrix P and G as follows:

0.0416  0.0257  0.0048
P = 0.0257 0.0455 —0.0015 |,
0.0048 —0.0015 0.0198
0.0007  0.0007 0.0000
G = 0.0014  0.0002 0.0000 |,

—0.0002 0.0000 0.0000
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Fig. 1. Error trajectories of the state estimation in case of o = 0.01.

Thus, the estimator gain matrix K as follows

—0.0006  0.0239  0.0000
K=P'G= 0.0302  —0.0084 0.0000 |,
—0.0069 —0.0070 0.0000

It is easy to known that 7(¢) is a time-varying one and
pn=32>1.52>1,[30,32,33] fail to tackle the state estimation
problem, though [34] succuss to tackle the state estimation
problem when p > 1, the variation range of 7(¢) we get is
bigger than it. when ;2 = 3 we known it satisfied the corollary
1 and when k£ < 0.4711 and A = 0.5 we can always obtain
a K. If that 7(¢t) = 0.9sint + 1, we can easily get d; = 0.1,
do =19, p=09,if 7 = 1,0 = 0.01,k = 0.01,\ = 0.5,
by using the Theorem 1, we can get the corresponding gain
matrix as follows.

0.0034  0.0456 0
K=P'G=1| 00470 —0.0180 0 |,
—0.0188 —0.0087 0

It can be seen that the dynamical behavior of (3) or (4)
id global exponential stable when o = 0.01,k = 0.01, the
trajectories of the error system (3) or (4) converge to zero as
shown in Fig 1.

Example 2 Consider the error-state system (3) and (4) with
the following parameters

TABLE I
ALLOWABLE UPPER BOUND OF d2 WITH VARIOUS di AND o

[ 0.01 0.02 0.05 0.1
o= 9.4212 8.8106 6.7741 2.8619
o =0.01 9.4205 8.8106 6.7678 2.8618
oc=0.1 9.4023 8.7569 6.5624 2.3646
o=1 8.9460 7.7203 3.5692 infeasible
TABLE II

ALLOWABLE UPPER BOUND OF k WITH VARIOUS o AND do

o 0 0.1 0.2 0.5 1
da = 1.5 0.6738 0.6707 0.6634 0.6344 0.5669
da =3 0.4722 0.4693 0.4643 0.4441 0.4008

2 0 0 02 —02 04
A=|0 3 0|,Bi=| -04 2 02 |,
00 2 02 04 —04

02 02 027 0.2 0.1 0.1
Bo=|02 02 02 |,E=]01 02 01|,
0.2 0.2 0.2 0.1 0.1 0.2
100 00 0
C=D=|010/|,Li=Ls=|0 0 0|,
00 1 00 0
—025 0 0
Lo=1L4= 0 -025 0 ,
0 0 —025

If u=3,7r=1,A=0.5,k = 0.01. by Theorem 1| and the
LMI toolbox in solving (3) or (4), we have estimated the
allowable upper bound of d, when d; and o are varied in
Table I .

Example 3 Consider the error-state system (3) and (4) with
the following parameters

2.0 0 0.2 —02 04
A=|0 3 0|,Bi=| -04 2 02 |,
00 2 02 04 —04

0.2 02 027 0.2 0.1 0.1
Bo=102 02 02 |,E=|01 02 01 |,

0.2 0.2 0.2 0.1 0.1 02

100 100
c=|010|,D=|01 0]/,

00 1 00 1

If giving the parameters as L1 = L3 = diag{0,0,0}, Ly =
Ly = diag{—0.25,-0.25,0.25},d; = 0.01,u = 1.5, A = 0.5
and r = 1. by Theorem 1 and the LMIs toolbox in solving
(3) or (4), we tackle the state estimation problem when o and
ds are varying, and obtain the allowable upper bound of % in
Table II.

V. CONCLUSIONS

In this paper, the state estimation problem for neural
networks with mixed time-varying delays has been studied,
through the LMI approach and delay departing measurements,
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an exponential state estimator is designed to estimate the
neuron state and verify the dynamics of the estimation error
is globally exponentially stable, and by dividing the discrete
delay interval into multiple segments, the upper bounds of
some variables are obtained. Finally, numerical examples have
been given to illustrate the effectiveness of the proposed
methods.
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