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Exponential Stability and periodicity of a class of
cellular neural networks with time-varying delays

Zixin Liu, Shu Lü, Shouming Zhong, and Mao Ye

Abstract—The problem of exponential stability and periodicity for
a class of cellular neural networks (DCNNs) with time-varying delays
is investigated. By dividing the network state variables into subgroups
according to the characters of the neural networks, some sufficient
conditions for exponential stability and periodicity are derived via
the methods of variation parameters and inequality techniques. These
conditions are represented by some blocks of the interconnection
matrices. Compared with some previous methods, the method used in
this paper does not resort to any Lyapunov function, and the results
derived in this paper improve and generalize some earlier criteria
established in the literature cited therein. Two examples are discussed
to illustrate the main results.

Keywords—Cellular neural networks, exponential stability, time-
varying delays, partitioned matrices, periodic solution.

I. INTRODUCTION

IN past few decades, cellular neural networks (CNNs)[1]
and delayed cellular neural networks (DCNNs) have been

well investigated since they play an important role in appli-
cations such as static image treatment [2], [3], processing of
moving images, speed detection of moving objects [4], and
pattern classification [5], et al,. And many stability criteria for
DCNNs have been obtained (see [6]-[12]). In [6], a sufficient
condition for complete stability of DCNNs with positive cell
linking and dominant templates is given. In [7], it was proved
that if the sum of the feedback matrix and the delayed feedback
matrix is symmetrical and the length of delay is smaller than a
certain value depending on the delayed feedback matrix, then
the DCNNs is stable.

In this paper, by dividing the network state variables into
subgroups according to the characters of the neural networks,
the problem on exponential stability and periodicity for a
class of cellular neural networks with time-varying delays
is investigated. By using methods of variation parameters,
some sufficient conditions ensuring exponential stability and
the existence of periodic solution are derived. These results
improve and generalize some earlier criteria obtained in the
literature cited therein. Two examples are given to illustrate the
improvement and effectiveness of the main results. However,
the conditions obtained in [7], [9], [11], [12], [13] are not
applicable to determine the stability of the system for these
examples.
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II. PRELIMINARIES

Notations. The notations are used in our paper except where
otherwise specified. For A,B ∈ Rn, A ≤ B(A > B)means
that each pair of corresponding elements of A and B satisfies
the inequality ≤ (>). In particular, A is called a nonnegative
matrix if A ≥ 0; ‖ · ‖ denotes a vector or a matrix norm
and ‖x‖ = (

∑n
i=1 x2

i )
1/2, ‖A‖ = sup‖x‖�=0

‖Ax‖
‖x‖ ; I denotes

the identity matrix and ρ(·) denotes the spectral radius of a
square matrix.

In [14], Zhong and Liu investigated the following dynamics
of continuous time DCNNs model with discrete time delay

dx(t)
dt

= −x(t) + Af(x(t)) + Bf(x(t− τ)) + u, (t ≥ 0)

In this paper, we will study the generalized dynamics of
continuous time DCNNs with time-varying delays defined by
the following state equations

dx(t)
dt

= −x(t)+Af(x(t))+Bf(x(t−τ(t)))+u, (t ≥ 0) (1)

where x(·) = [x1(·), x2(·), . . . , xn(·)]T is state vector;
u = [u1, u2, . . . , un]T is constant vector; f(x(·)) =
[f1(x1(·)), f2(x2(·)), · · ·, fn(xn(·))]T is the output; A =
(aij)n×n is feedback matrix; B = (bij)n×n is delayed
feedback matrix; x(t − τ(t)) = [x1(t − τ1(t)), x2(t −
τ2(t)), . . . , xn(t−τn(t))]T ; τi(t) ≥ 0(i = 1, 2, . . . , n) is delay
parameter and the output equations are given by

fi(xi(·)) =
1
2
(|xi(·)+1|− |xi(·)−1|), i = 1, 2, . . . , n. (2)

One can see that fi is globally Lipschitz continuous with
Lipschtiz constant μi = 1 for i = 1, 2, . . . , n, i.e

|fi(u) − fi(v)| ≤ |u − v|,∀u, v ∈ R.

This implies that system (1) admits a unique solution in its
maximum existence interval for the initial condition given
by x(t) = φ(t), t ∈ [−τ∗, 0], where φ(t) is continuous on
[−τ∗, 0], and 0 ≤ τi(t) ≤ τ∗, i = 1, 2, . . . , n.

In order to discuss the exponential stability properties of
DCNNs (1), the following concept of exponential stability is
needed.

Definition 2.1: An equilibrium x∗ of system(1) is said to
be exponentially stable if there exist α ≥ 1, β > 0, such that
for any t ≥ 0 and φ ∈ C([−τ∗, 0], Rn), ‖x(t)−x∗‖ ≤ α‖φ−
x∗‖Δe−βt, where ‖φ − x∗‖Δ = {∑n

i=1 sup−τi≤t≤0 |φi(t) −
x∗

i |2}
1
2 , C([−τ∗, 0], Rn) is the Banach space of continuous

functions which map [−τ∗, 0] to Rn with the topology of
uniform convergence.
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For further discussion, the following lemmas are needed,
which will be used in section 3.

Lemma 2.1: there exists at least one equilibrium point of
system (1)
Proof. Denote Ω = {x ∈ Rn×1, ‖x − u‖ ≤ ‖A‖Mk + ‖B‖Mk},
where Mk = sup{‖f(x(t))‖}, since f(x(t)) is bounded, thus
Mk exists. Define a map F : Rn → Rn

F (x(t)) = Af(x(t)) + Bf(x(t − τ(t))) + u (3)

From (3), we obtain

‖F (x(t)) − u‖ = ‖Af(x(t)) + Bf(x(t − τ(t)))‖
≤ ‖A‖‖f(x(t))‖+‖B‖‖f(x(t − τ(t)))‖(4)
= ‖A‖Mk + ‖B‖Mk

It follows that F maps Ω into itself. Since Ω is a convex
compact set, then by the Brower Fixed Point theorem, we
know F : Ω → Ω has at least one fixed point x(t) = x∗,
which completes the proof of the lemma.

Lemma 2.2: (Holder inequality).Assume that there exist
two continuous functions f(x), g(x) and a set Ω, p and q
satisfying 1/q + 1/p = 1, for any p > 0, q > 0, if p > 1,
then the following inequality holds.∫

Ω

|f(x)g(x)|dx ≤ (
∫

Ω

|f(x)|pdx)1/p(
∫

Ω

|g(x)|qdx)1/q.

Lemma 2.3: [15] Assume that there exist constants ak ≥
0, k = 1, 2, . . . , n, p and q satisfying 1/q + 1/p = 1, for any
p > 0, q > 0, if p > 1, then the following inequality holds

(
n∑

k=1

ak)p ≤ np−1
n∑

k=1

ap
k.

Lemma 2.4: (Horn[12]).If M ≥ 0 and ρ(M) < 1, then
(I − M)−1 ≥ 0, where I denotes the identity matrix and
ρ(M) denotes the spectral radius of a square matrix M.

Let x∗ be an equilibrium point of system (1) and define y(·) =
x(·) − x∗, then we get

dy(t)
dt

= −y(t) + A(f(y(t) + x∗)

− f(x∗)) + B(f(y(t − τ(t)) + x∗) − f(x∗)). (5)

Let us divide the set I = {1, 2, . . . , n} into subsets I1, I2 and
I3,such that I = I1∪I2∪I3 where I1 = {i ∈ I|x∗

i > 1}, I2 =
{i ∈ I| − 1 ≤ x∗

i ≤ 1}, I3 = {i ∈ I|x∗
i < −1}

We may rearrange the order of y1, y2, . . . , yn such that

I1 = {1, 2, . . . , r},
I2 = {r + 1, r + 2, . . . , r + m},
I3 = {r + m + 1, r + m + 2, . . . , n},

where r,m, n−r−m are non-negative integers. The variables
of system (5) are reordered, but for convenience, we may use
the same symbols as those in system (5).
Let

y(t) =

⎛
⎝ y(1)(t)

y(2)(t)
y(3)(t)

⎞
⎠ ,

where

y(1)(t) = (y1(t), y2(t), . . . , yr(t))T ,

y(2)(t) = (yr+1(t), yr+2(t), . . . , yr+m(t))T ,

y(3)(t) = (yr+m+1(t), yr+m+2(t), . . . , yn(t))T ,

So system (5) can be decomposed into

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

dy(1)(t)

dt
= −y(1)(t) + A11g(y(1)(t)) + A12g(y(2)(t))

+ A13g(y(3)(t)) + B11g(y(1)(t − τ(t)))

+ B12g(y(2)(t − τ(t))) + B13g(y(3)(t − τ(t)))

dy(2)(t)

dt
= −y(2)(t) + A21g(y(1)(t)) + A22g(y(2)(t))

+ A23g(y(3)(t)) + B21g(y(1)(t − τ(t)))

+ B22g(y(2)(t − τ(t))) + B23g(y(3)(t − τ(t)))

dy(3)(t)

dt
= −y(3)(t) + A31g(y(1)(t)) + A32g(y(2)(t))

+ A33g(y(3)(t)) + B31g(y(1)(t − τ(t)))

+ B32g(y(2)(t − τ(t))) + B33g(y(3)(t − τ(t))),

(6)

where

A =

⎛
⎝ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ , B =

⎛
⎝ B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠ ,

⎛
⎝ g(y(1)(·))

g(y(2)(·))
g(y(3)(·))

⎞
⎠ = f(y(·) + x∗) − f(x∗).

Let k = min{mini∈I1(x
∗
i −1),mini∈I3(−1−x∗

i )}, then k > 0.
Assume that the initial function φ satisfied ‖φ − x∗‖Δ < k.
By continuity, there exists a T > 0, such that for any t ∈
[−τi(t), T ), |yi(t)| < k. Therefore, for ∀t ∈ [0, T ), we have

f(yi(t) + x∗
i ) − f(x∗

i ) = 0,∀i ∈ I1 ∪ I3

f(yi(t − τi(t)) + x∗
i ) − f(x∗

i ) = 0,∀i ∈ I1 ∪ I3

Thus g(y(1)(t)) ≡ g(y(3)(t)) ≡ 0, g(y(1)(t − τ(t))) ≡
g(y(3)(t − τ(t))) ≡ 0.

It follows that, for any t ∈ [0, T ), we obtain
8>>>>><
>>>>>:

dy(1)(t)

dt
=−y(1)(t) +A12g(y(2)(t)) +B12g(y(2)(t − τ(t)))

dy(2)(t)

dt
=−y(2)(t) +A22g(y(2)(t)) +B22g(y(2)(t − τ(t)))

dy(3)(t)

dt
=−y(3)(t) +A32g(y(2)(t)) +B32g(y(2)(t − τ(t)))

(7)

III. EXPONENTIAL STABILITY

In this section, we consider the exponential stability for
delayed neural networks (7). By the method of variation
parameters, for all t ≥ 0, we have

y(2)(t) = y(2)(0)e−t +

Z t

0

e−(t−s)[A22g(y(2)(s))

+ B22g(y(2)(s − τ(s)))]ds,
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namely

yr+i(t) = yr+i(0)e−t +

Z t

0

e−(t−s)
mX

j=1

ar+i,r+jg(yr+j(s))ds

+

Z t

0

e−(t−s)
mX

j=1

br+i,r+jg(yr+j(s − τr+j(s)))ds

= I1i + I2i + I3i, ( i = 1, 2, . . . , m).

Following from lemma2.3, when n=3, the following inequality
holds

|yr+i(t)|2 ≤ 3(|I1i|2 + |I2i|2 + |I3i|2),
then it yields for all t ≥ 0,

eλt|yr+i(t)|2 ≤ 3eλt(|I1i|2 + |I2i|2 + |I3i|2).
Here we denote Gr+j(t) = sup0≤s≤t |yr+j(s)|2eλs, j =
1, 2, . . . , m where 0 < λ < 1. In order to get the exponential
stability theorem, we first give some lemmas.

Lemma 3.1: For I2i, the following inequality holds

eλt|I2i|2 ≤ 1
1 − λ

m∑
j=1

|ar+i,r+j |2
m∑

j=1

Gr+j(t).

Proof

eλt | I2i|2 = eλt|
Z t

0

e−(t−s)
mX

j=1

ar+i,r+jg(yr+j(s))ds|2

≤ eλt[

Z t

0

e−(t−s)
mX

j=1

|ar+i,r+j ||g(yr+j(s))|ds]2

= eλt[

Z t

0

e
−(t−s)

2 e
−(t−s)

2

mX
j=1

|ar+i,r+j ||g(yr+j(s))|ds]2

≤ eλt{[
Z t

0

e−(t−s)ds] · [
Z t

0

e−(t−s)

× (

mX
j=1

|ar+i,r+j ||g(yr+j(s))|)2ds]}

≤ eλt{[
Z t

0

e−(t−s)ds] · [
Z t

0

e−(t−s)

× (

mX
j=1

|ar+i,r+j ||yr+j(s)|)2ds]}

= eλt(1 − e−t)[

Z t

0

e−(t−s)(

mX
j=1

|ar+i,r+j ||yr+j(s)|)2ds]}

≤ eλt[

Z t

0

e−(t−s)(

mX
j=1

|ar+i,r+j ||yr+j(s)|)2ds]}

≤ eλt

Z t

0

e−(t−s)[

mX
j=1

|ar+i,r+j |2
mX

j=1

|yr+j(s)|2]ds}

= eλt
mX

j=1

|ar+i,r+j |2(
Z t

0

e−(t−s)
mX

j=1

|yr+j(s)|2ds)

=

mX
j=1

|ar+i,r+j |2(
Z t

0

e−(t−s)
mX

j=1

eλt|yr+j(s)|2ds)

=

mX
j=1

|ar+i,r+j |2(
Z t

0

e−(1−λ)(t−s)
mX

j=1

eλs|yr+j(s)|2ds)

≤
mX

j=1

|ar+i,r+j |2
mX

j=1

Gr+j(t)

Z t

0

e−(1−λ)(t−s)ds

=

mX
j=1

|ar+i,r+j |2
mX

j=1

Gr+j(t) · 1 − e−(1−λ)t

1 − λ

≤ 1

1 − λ

mX
j=1

|ar+i,r+j |2
mX

j=1

Gr+j(t),

which complete the proof.
Lemma 3.2: For I3i, the following inequality holds

eλt|I3i|2 ≤ 1
1 − λ

m∑
j=1

|br+i,r+j |2eλτ∗

×(
m∑

j=1

sup
−τ∗≤θ≤0

|yr+j(θ)|2 +
m∑

j=1

Gr+j(t))

Proof

eλt|I3i|2 = eλt|
Z t

0

e−(t−s)
mX

j=1

br+i,r+jg(yr+j(s − τr+j(s)))ds|2

≤ eλt{
Z t

0

e−(t−s)
mX

j=1

|br+i,r+j |

× |g(yr+j(s − τr+j(s)))|ds}2

= eλt{
Z t

0

e
−(t−s)

2 e
−(t−s)

2

mX
j=1

|br+i,r+j |

× |g(yr+j(s − τr+j(s)))|ds}2

≤ eλt{[
Z t

0

e−(t−s)ds][

Z t

0

e−(t−s)(

mX
j=1

|br+i,r+j |

× |g(yr+j(s − τr+j(s)))|)2ds]}

= eλt{(1 − e−t)[

Z t

0

e−(t−s)(

mX
j=1

|br+i,r+j |

× |g(yr+j(s − τr+j(s)))|)2ds]}

≤ eλt[

Z t

0

e−(t−s)(

mX
j=1

|br+i,r+j |

× |g(yr+j(s − τr+j(s)))|)2ds]

≤ eλt{
Z t

0

e−(t−s)[

mX
j=1

|br+i,r+j |2]

× [

mX
j=1

|g(yr+j(s − τr+j(s)))|2]ds}

≤ eλt
mX

j=1

|br+i,r+j |2 · {
Z t

0

e−(t−s)

×
mX

j=1

|yr+j(s − τr+j(s))|2ds}

=

mX
j=1

|br+i,r+j |2 · {
Z t

0

e−(t−s)(1−λ)

×
mX

j=1

eλτr+j(t)eλ(s−τr+j(t))|yr+j(s − τr+j(s))|2ds}

≤ eλτ∗
mX

j=1

|br+i,r+j |2 · (
Z t

0

e−(t−s)(1−λ)ds)
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×
mX

j=1

sup
0≤s≤t

eλ(s−τr+j(t))|yr+j(s − τr+j(s))|2

= eλτ∗
mX

j=1

|br+i,r+j |2 · (1 − e−(1−λ)t

1 − λ
)

×
mX

j=1

sup
0≤s≤t

eλ(s−τr+j(t))|yr+j(s − τr+j(s))|2

≤ 1

1 − λ
eλτ∗

mX
j=1

|br+i,r+j |2

×
mX

j=1

sup
0≤s≤t

eλ(s−τr+j(t))|yr+j(s − τr+j(s))|2

≤ 1

1 − λ
eλτ∗

mX
j=1

|br+i,r+j |2 ·
mX

j=1

sup
−τ∗≤θ≤t

eθ|yr+j(θ)|2

=
1

1 − λ
eλτ∗

mX
j=1

|br+i,r+j |2

×
mX

j=1

( sup
−τ∗≤θ≤0

eθ|yr+j(θ)|2 + sup
0≤θ≤t

eθ|yr+j(θ)|2)

≤ 1

1 − λ
eλτ∗

mX
j=1

|br+i,r+j |2

× (

mX
j=1

sup
−τ∗≤θ≤0

|yr+j(θ)|2 +

mX
j=1

Gr+j(t)),

which complete the proof.
Lemma 3.3: If ρ(MK + NK) < 1 then y(2)(t) satisfied

the following inequality

‖y(2)(t)‖2 ≤ 3[
r+m∑

i=r+1

Rii][
r+m∑

i=r+1

r+m∑
j=r+1

Mij(α)]‖y(2)(0)‖2e−λt,

where

M = diag{a1, a2, . . . , am}, ai = 3
m∑

j=1

|ar+i,r+j |2,

N = diag{b1, b2, . . . , bm}, bi = 3
m∑

j=1

|br+i,r+j |2,

R = diag{1+r1, 1+r2, . . . , 1+rm}, rj satisfy the inequality
1

1−λeλτ∗ ∑m
j=1 |br+i,r+j |2 · (∑m

j=1 sup−τ∗≤θ≤0 |yr+j(θ)|2 ≤
rj · |yi+r(0)|2 and M(α) = (I − (I − αI)−1(MK +
eατNK)),K = (kij)m×m, kij = 1, 0 < α ≤ λ.
Proof According to lemma3.1, lemma3.2, we can obtain the
following inequality for all t ≥ 0

eλt|yr+i(t)|2 ≤ 3{ 1
1 − λ

m∑
j=1

|ar+i,r+j |2
m∑

j=1

Gr+j(t)

+
1

1 − λ
eλτ∗

m∑
j=1

|br+i,r+j |2
m∑

j=1

Gr+j(t))

+ |yr+i(0)|2 +
1

1 − λ
eλτ∗

m∑
j=1

|br+i,r+j |2

× (
m∑

j=1

sup
−τ∗≤θ≤0

|yr+j(θ)|2)}

it can be found that there must exist some positive constants
rj , such that the following inequality hold

1

1 − λ
eλτ∗

mX
j=1

|br+i,r+j |2·(
mX

j=1

sup
−τ∗≤θ≤0

|yr+j(θ)|2) ≤ rj ·|yi+r(0)|2.

Thus, for all t ≥ 0

Gr+i(t) ≤ 3{(1 + rj)|yr+i(0)|2 +
1

1 − λ
[

m∑
j=1

|ar+i,r+j |2

+eλτ∗
m∑

j=1

|br+i,r+j |2]
m∑

j=1

Gr+j(t)}.

Namely,

G(2)(t) ≤ 3Ry2
(2)(0)+(I−λI)−1(MK+eλτ∗

NK)G(2)(t),

where G(2)(t) = (Gr+1(t), Gr+2(t), . . . , Gr+m(t))T , y2
(2)(0) =

(y2
r+1(0), y2

r+2(0), . . . , y2
r+m(0))T .

Since ρ(MK + NK) < 1 and MK + NK ≥ 0, from
Lemma 2.4, it deduces

[I − I−1(MK + NK)]−1 ≥ 0.

Hence, there exists a sufficiently small positive constant α ≤ λ
such that

[I − (I − αI)−1(MK + eατ∗
NK)]−1 ≥ 0

One can derive that
r+mX

i=r+1

|yi(t)|2 ≤ 3[

r+mX
i=r+1

Rii][

r+mX
i=r+1

r+mX
j=r+1

Mij(α)][

r+mX
i=r+1

|yi(0)|2]e−λt

That is

‖y(2)(t)‖2 ≤ 3[
r+m∑

i=r+1

Rii][
r+m∑

i=r+1

r+m∑
j=r+1

Mij(α)]‖y(2)(0)‖2e−λt,

which complete the proof.
Theorem 3.1: The equilibrium of system(7) is exponential

stability if ρ(MK + NK) < 1
Proof Set M2

2 (α) = 3[
∑r+m

i=r+1 Rii][
∑r+m

i=r+1

∑r+m
j=r+1 Mij(α)],

thus we have

‖y(2)(t)‖ ≤ M2(α)‖y(2)(0)‖e−λt
2 ≤ M2(α)‖φ − x∗‖Δe−

λt
2

For the first and the third equations of system (7), by using
the method of variation of parameters, for i = 1, 3, we have

y(i)(t) = y(i)(0)e−t+

Z t

0

e−(t−s)[Ai2g(y(2)(s))+Bi2g(y(2)(s−τ(t)))]ds,

then, we can obtain

‖y(i)(t)‖ ≤ ‖y(i)(0)‖e−t +
∫ t

0

e−(t−s)[‖Ai2‖‖g(y(2)(s))‖
+ ‖Bi2‖‖g(y(2)(s − τ(t)))‖]ds

≤ ‖y(i)(0)‖e−t +
∫ t

0

e−(t−s)[‖Ai2‖‖y(2)(s)‖
+ ‖Bi2‖‖y(2)(s − τ(t))‖]ds

≤ ‖φ − x∗‖Δ[e−t + M2(α)(‖Ai2‖
+ e

λτ∗
2 ‖Bi2‖)

∫ t

0

e−t+s− ε
2 sds]
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≤ [1 +
2M2(α)
2 − α

(‖Ai2‖ + e
λτ∗
2 ‖Bi2‖)]‖φ − x∗‖Δe−

λ
2 t

= Mi(λ)‖φ − x∗‖Δe−
λ
2 t, (i = 1, 3)

where Mi(α) = 1 + 2M2(α)
2−α (‖Ai2‖ + e

λτ∗
2 ‖Bi2‖).

Let M = max M1(1),M2(1),M3(1), then we have
Mi(α) ≤ M for i = 1, 2, 3. Since α ∈ (0, 1), and if
choose the initial function φ such that ‖φ − x∗‖Δ < k

M ,
∀t ∈ [0, T ), (i = 1, 2, 3), it yields

|y(i)(t)‖ ≤ Mi(α)‖φ−x∗‖Δe−
λ
2 t ≤ M‖φ−x∗‖Δe−

λ
2 t < k,

By repeating these procedures, we can ensure that the same
result holds for t ∈ [T, T1), [T1, T2), . . . , [Tn−1, Tn) with
Tn → ∞ when n → ∞. So under the condition of the
theorem, the existing interval of solution of system(5) is
[0,+∞) and zero solution of system(5) is exponential stable,
thus, the equilibrium x = x∗ of system (1) is exponentially
stable, which complete the proof.

Theorem 3.2: The equilibrium of system (7) is exponential
stability if

‖A22‖2
2 + ‖B22‖2

2 <
1
3

Where ‖·‖2 is Frobenius norm, namely ‖A‖2 = (
∑

i,j a2
ij)

1/2.
Proof. From lemma3.1, lemma3.2, we have

eλt|yr+i(t)|2 ≤ 3{ 1
1 − λ

m∑
j=1

|ar+i,r+j |2
m∑

j=1

Gr+j(t)

+
1

1 − λ
eλτ∗

m∑
j=1

|br+i,r+j |2
m∑

j=1

Gr+j(t))

+ |yr+i(0)|2 +
1

1 − λ
eλτ∗

m∑
j=1

|br+i,r+j |2

× (
m∑

j=1

sup
−τ∗≤θ≤0

|yr+j(θ)|2)}

≤ 3{ 1
1 − λ

m∑
j=1

|ar+i,r+j |2
m∑

j=1

Gr+j(t)

+
1

1 − λ
eλτ∗

m∑
j=1

|br+i,r+j |2
m∑

j=1

Gr+j(t))

+ (1 +
eλτ∗

1 − λ

m∑
j=1

|br+i,r+j |2)

×
m∑

j=1

sup
−τ∗≤θ≤0

|yr+j(θ)|2)}.

Let ki = 1 + eλτ∗
1−λ

∑m
j=1 |br+i,r+j |2, then we have

Gr+i(t) ≤ 3(ki‖φ − x∗‖2
Δ +

1
1 − λ

[
m∑

j=1

|ar+i,r+j |2

+eλτ∗
m∑

j=1

|br+i,r+j |2]
m∑

j=1

Gr+j(t)),

namely,

(1 − 3
1 − λ

m∑
i=1

m∑
j=1

(|ar+i,r+j |2 + eλτ∗ |br+i,r+j |2))

×
m∑

i=1

Gr+i(t) ≤ 3
m∑

i=1

ki‖φ − x∗‖2
Δ

If 3(‖A22‖2
2 + ‖B22‖2

2) < 1, from lemma2.4, it deduces

[1 − 3(‖A22‖2
2 + ‖B22‖2

2)]
−1 > 0

Hence there exists sufficiently small positive constant α ≤
λ < 1 such that

[1−(1−α)−13(
m∑

i=1

m∑
j=1

(|ar+i,r+j |2+eατ∗ |br+i,r+j |2))]−1 > 0

It can be derived that
m∑

i=1

Gr+i(t) ≤ 3
∑m

i=1 ki‖φ − x∗‖2
Δ

β

= M
′
2(α)3ki‖φ − x∗‖,

where β = 1 − (1 − α)−13(
∑m

i=1

∑m
j=1(|ar+i,r+j |2 +

eατ∗ |br+i,r+j |2)), M
′
2(α) = [1 − (1 −

α)−13(
∑m

i=1

∑m
j=1(|ar+i,r+j |2 + eατ∗ |br+i,r+j |2))]−1,

hence

‖y(2)(t)‖2 ≤ M
′
2(α)3

m∑
i

ki · ‖φ − x∗‖2
Δe−λt

The rest proofs are similar to the of Theorem 3.1, which
complete the proof.

IV. EXISTENCE AND STABILITY OF PERIODIC SOLUTION

Consider the following DCNNs with periodic input vector
function u(t) of period ω

dx(t)

dt
= −x(t)+Af(x(t))+Bf(x(t−τ(t)))+u(t), (t ≥ 0) (8)

In this section, we shall give the stability criteria for periodic
solution of system (8).

Theorem 4.1: There exists a unique ω-periodic solution of
system (8) and all other solutions converge exponentially to
the ω-periodic solution as t → ∞ if the coefficient matrices
of system (8) satisfies

ρ(M
′
K

′
+ N

′
K

′
) < 1,

where

M
′
= diag{a′

1, a
′
2, . . . , a

′
n}, a

′
i = 3

n∑
j=1

|aij |2,

N
′
= diag{b′

1, b
′
2, . . . , b

′
n}, b

′
i = 3

n∑
j=1

|bij |2,

K = (kij)n×n, kij = 1, i, j = 1, 2, . . . , n
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Proof For all φ(t), ψ(t), which are continuous functions
on [−τ∗, 0], denote the solutions of system (8) through
(0, φ), (0, ψ) by xφ(t) and xψ(t), respectively. Then

d(xφ(t) − xψ(t))
dt

= −(xφ(t) − xψ(t)) + A(f(xφ(t)) − f(xψ(t)))
+B(f(xφ(t − τ(t))) − f(xψ(t − τ(t)))). (9)

Set y(t) = xφ(t) − xψ(t), h(y(t)) = f(xφ(t)) − f(xψ(t)),
h(y(t − τ(t))) = f(xφ(t − τ(t))) − f(xψ(t − τ(t))) then we
can rewrite the above equation as

dy(t)
dt

= −y(t) + Ah(y(t)) + Bh(y(t − τ)).

Like previous proof, we can obtain

y(t) = y(0)e−t +

Z t

0

e−(t−s)[Ah(y(s)) + Bh(y(s − τ(t)))]ds

= I
′
1i + I

′
2i + I

′
3i, (i = 1, 2, 3) (10)

Following from lemma2.3, when n=3, the following inequality
holds

|y(t)|2 ≤ 3(|I ′
1i|2 + |I ′

2i|2 + |I ′
3i|2),

for all t ≥ 0, it yields,

eλt|y(t)|2 ≤ 3eλt(|I ′
1i|2 + |I ′

2i|2 + |I ′
3i|2)

Denote Gj(t) = sup0≤s≤t |yj(s)|2eλs, j = 1, 2, . . . , n where
0 < λ < 1. Similar to the proof of lemma3.1, lemma3.2,
lemma3.3 and theorem3.1, we can obtain

‖y(t)‖ ≤ M(α)‖y(0)‖e−λ
2 ≤ M(α)‖φ − ψ‖e−λ

2 .

Choose a positive integer m such that M(α)e−
mαω

2 ≤ 1
2 .

Define a Poincare mapping:

P : C([−τ∗, 0], Rn) → C([−τ∗, 0], Rn)

by Pφ = xφ(ω). Then we derive that

‖Pφ−Pψ‖ = ‖xφ(ω)−xψ(ω)‖ ≤ M(α)‖φ−ψ‖Δe−
α
2 ω

‖P 2φ − P 2ψ‖ = ‖Pxφ(ω) − Pxψ(ω)‖
= ‖xxφ(ω)(ω) − xxψ(ω)(ω)‖
= ‖xφ(2ω) − xψ(2ω)‖
≤ M(α)‖φ − ψ‖Δe−

α
2 2ω (11)

By induction and M(α)e−
mαω

2 ≤ 1
2 , we have

‖Pmφ−Pmψ‖ ≤ M(α)‖φ−ψ‖Δe−
α
2 mω ≤ 1

2
‖φ−ψ‖Δ

This implies that Pm is a contraction mapping, hence there
exists a unique fixed point ϕ ∈ Csuch that Pmϕ = ϕ. Thereby
we have Pm(Pϕ) = P (Pmϕ) = Pϕ. This shows that Pϕ ∈
C is also a fixed point of Pm, so Pϕ = ϕ, i.e.xϕ(ω) = ϕ
Let xϕ(t) be a solution of system (8) through (0, ϕ), then
xϕ(t + ω) is also a solution of system (8) and

xϕ(t + ω) = xxϕ(ω)(t) = xϕ(t), (t ≥ 0),

which implies that xϕ(t) is a ω−periodic solution of system
(8) and we know that all other solutions of system (8) converge

exponentially to this ω − periodic solution as t → ∞ and
hence this xϕ(t) is a unique ω − periodic solution of system
(8). Similar to the proof of Theorem3.2 and Theorem4.1 we
can easily get the following Theorem.

Theorem 4.2: There exists a unique ω-periodic solution of
system (8) and all other solutions converge exponentially to
the ω-periodic solution as t → ∞ if the coefficient matrices
of system (8) satisfy ‖A‖2

2 + ‖B‖2
2 < 1

3 .
Notice that ρ(A) ≤ ‖A‖ for any A ∈ Rn×n, in which ‖·‖ is

an arbitrary matrix norm. Moreover, for any matrix norm and
any nonsingular matrix S, a matrix norm ‖A‖S can be given
by ‖A‖S = ‖S−1AS‖. For the convenience of calculation,
in general, taking S = diag{s1, . . . , sn} > 0. Therefore,
corresponding to the matrix norm widely appliedł the row
norm, column norm and Frobenius norm, we can obtain the
following corollary.

Corollary 4.1: The equilibrium of system (7) is exponential
stability provided one of the following conditions hold

(1)
m∑

j=1

[
si

sj
(ai + bi)] < 1, (i = 1, 2, . . . , m),

(2)
m∑

j=1

[
sj

si
(aj + bj)] < 1, (i = 1, 2, . . . , m),

(3)
m∑

i=1

m∑
j=1

[
si

sj
(ai + bi)] < 1.

where s1, s2, . . . , sm are positive real numbers.
Corollary 4.2: There exists a unique ω-periodic solution of

system (8) and all other solutions converge exponentially to the
ω-periodic solution as t → ∞ provided one of the following
conditions hold

(1)
n∑

j=1

[
si

sj
(a

′
i + b

′
i)] < 1, (i = 1, 2, . . . , n)

(2)
n∑

j=1

[
sj

si
(a

′
j + b

′
j)] < 1, (i = 1, 2, . . . , n)

(3)
n∑

i=1

n∑
j=1

[
si

sj
(a

′
i + b

′
i)] < 1

where s1, s2, . . . , sn are positive real numbers.

V. NUMERICAL EXAMPLES

Example 1. Consider the following system
8>>>>>>>>><
>>>>>>>>>:

dx1(t)

dt
= −x1(t) + 2f(x1(t)) +

1

2
f(x2(t))

− 2f(x1(t − τ1(t))) +
1

2
f(x2(t − τ2(t))) + 2

dx2(t)

dt
= −x2(t) +

2

3
f(x1(t)) +

1

4
f(x2(t))

+
1

3
f(x1(t − τ1(t))) − 1

4
f(x2(t − τ2(t))) − 1

(12)

where τ1(t) = 1
2 sin t + 1

2 , τ2(t) = 1
2 cos t + 1

2 . It is easy to
see that 0 ≤ τi(t) ≤ 1, i = 1, 2
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If (x1, x2) = (x∗
1, x

∗
2) is an equilibrium point, then we have

{
x∗

1 = f(x∗
2) + 2

x∗
2 = f(x∗

1) − 1.
(13)

If x∗
1 ∈ (−∞,−1), then f(x∗

1) = −1. By the second equation
of (12), we have x∗

2 = −2. By the first equation of (12), we
have x∗

1 = 1 /∈ (−∞, 1). There is no solution of (12).
If x∗

1 ∈ [−1, 1], then f(x∗
1) = x∗

1. By the second equation
of (12), we have x∗

2 = x∗
1 − 1. By the first equation of (12),

we have x∗
2 = f(x∗

2) + 1. We can easily get x∗
2 = 2, x∗

1 =
1 + x∗

2 = 3 /∈ [−1, 1]. There is no solution of (12).
If x∗

1 ∈ (1,∞), then f(x∗
1) = 1. By the second equation of

(12), we have x∗
2 = 0. By the first equation of (12), we have

x∗
1 = 2 ∈ (1,∞). So (2,0) is a unique equilibrium of (12).
Let y = x − x∗, then the system(12) can be written as the

following equivalent system⎧⎪⎨
⎪⎩

dy1(t)
dt

= −y1(t) +
1
2
f(y2(t)) +

1
2
f(y2(t − τ2(t)))

dy2(t)
dt

= −y2(t) +
1
4
f(y2(t)) − 1

4
f(y2(t − τ2(t))).

(14)

Since A22 = (1/4)1×1, B22 = (−1/4)1×1 are 1-dimension
matrices, then K = (1)1×1 is a 1-dimension matrix, and

ρ(MK+NK) = ρ(3×(1/4)2×1+3×(−1/4)2×1) = 3/8 < 1.

According to theorem 3.1, the equilibrium of system (12) is
exponentially stable.

Remark 1. When τi(t) = τi, then system (1) becomes
a cellular neural networks with discrete time delays. At
this case, since |a11| + |a12| + |b11| + |b12| = 5 > 1,
|a21| + |a22| + |b21| + |b22| = 3

2 > 1, the
condition of Corollary 3 in [11] does not hold. Since

−(A + AT ) =
( −4 −7/6

−7/6 1/2

)
is not positive definite,

thus the condition (i) of Theorem 1 in [9] does not hold.

Additional, since −(A + B) =
(

0 −1
−1 0

)
is not

diagonally row dominant, thus the conditions of Theorem 3.2
in [12] are not applicable, from which one can see that the
criteria obtained in this paper are less conservative.

Example 2. We consider the following system8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dx1(t)

dt
= −x1(t) + a11f(x1(t)) + a12f(x2(t))

+ a13f(x3(t)) + b11f(x1(t − τ1(t)))

+ b12f(x2(t − τ2(t))) + b13f(x3(t − τ3(t)))

− a11 − b11 + a13 + b13 + 2

dx2(t)

dt
= −x2(t) + a21f(x1(t)) + a22f(x2(t))

+ a23f(x3(t)) + b21f(x1(t − τ1(t)))

+ b22f(x2(t − τ2(t))) + b23f(x3(t − τ3(t)))

− a21 − b21 + a23 + b23

dx3(t)

dt
= −x3(t) + a31f(x1(t)) + a32f(x2(t))

+ a33f(x3(t)) + b31f(x1(t − τ1(t)))

+ b32f(x2(t − τ2(t))) + b33f(x3(t − τ3(t)))

− a31 − b31 + a33 + b33 − 2,

(15)

where

τ1(t) =
1
2

sin t +
1
2
, τ2(t) = τ3(t) =

1
2

cos t +
1
2
.

It is easy to see that 0 ≤ τi ≤ 1, i = 1, 2, 3. Direct computation
shows that x∗ = (2, 0,−2) is an equilibrium solution of
system(15). Let y = x− x∗, and |yi(t)| ≤ 1, then system(15)
can be rewritten as the following equivalent system small⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy1(t)
dt

=−y1(t)+a12g(x2(t)) + b12g(x2(t − τ1(t)))

dy2(t)
dt

=−y2(t)+a22g(x2(t)) + b22g(x2(t − τ2(t)))

dy3(t)
dt

=−y3(t)+a32g(x2(t)) + b32g(x2(t − τ3(t))).

(16)

If 3(|a22|2 + |b22|2) < 1, the existence interval of the solution
of system (16) is [0,∞) and the equilibrium x∗ = (2, 0,−2)
of system(15) is exponentially stable, moreover the result is
independent of the parameters ai1, ai3, bi1, bi3 ∈ R, i = 1, 2, 3
and a12, a32, b12, b32. When these coefficients are sufficiently
large, the method on paper [5] can not decide the stability of
the system in this example.

VI. CONCLUSIONS

In this paper, we have derived some sufficient conditions
for exponential stability for the equilibrium point and the
existence and global exponential stability of periodic solutions
for DCNNs by dividing the state variables of the system.
Compared with the previous methods, our method does not
resort to any Lyapunov function, and the results derived in
this paper improve and generalize some earlier works reported
in the literature. The new conditions, which are associated
with some initial values, are represented by some blocks of
the feedback matrix. So the conditions are related to some
elements of the feedback matrix, and do not depend on
other parameters, and thus these parameters can be chosen
arbitrarily.
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