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Abstract—Kinematic data wisely correlate vector quantities in 

space to scalar parameters in time to assess the degree of symmetry 
between the intact limb and the amputated limb with respect to a 
normal model derived from the gait of control group participants. 
Furthermore, these particular data allow a doctor to preliminarily 
evaluate the usefulness of a certain rehabilitation therapy.  

Kinetic curves allow the analysis of ground reaction forces (GRFs) 
to assess the appropriateness of human motion. 

Electromyography (EMG) allows the analysis of the fundamental 
lower limb force contributions to quantify the level of gait 
asymmetry. However, the use of this technological tool is expensive 
and requires patient’s hospitalization. This research work suggests 
overcoming the above limitations by applying artificial neural 
networks. 
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I. INTRODUCTION 

HE diseases which lead to amputation mainly affect the 
cardiovascular system, including diabetes and peripheral 

arterial disease causing infections or gangrene. Tumors are 
also regarded as causes of amputations as, due to cancer 
growth and metastasis, and would require a limb to be 
amputated not to incur more severe consequences. In 
industrialized countries like United States of America and 
United Kingdom, diseases cause approximately 65% of all 
amputations performed each year [1]. In the literature, elderly 
people (over 60) are usually those who get amputations due to 
diseases. Poor blood circulation associated to cardiovascular 
diseases is one of the most widespread causes of amputation 
nowadays [2]. By limiting the flow of arterial blood to the 
lower extremities of the body, such disease causes ulcers and 
gangrene, which usually lead to amputations.  

Diabetes is another common cause of limb loss. There are 
an estimated 177 million people with diabetes in the world [3]. 
Complications of diabetes involve a decrease in blood 
circulation and sensorial feedback from the limbs as well. This 
can result in ulcers and infection because of the unexpected 
and abnormal pressures on the extremities of the body 
(especially the feet) which may lead to amputations.  

The most frequent level of amputations in general is below 
the knee, BKA or transtibial amputations, with an occurrence 
of 47% of the cases [4]. 
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II. COMPENSATION MECHANISMS IN UNILATERAL TRANSTIBIAL 

AMPUTEES 

As transtibial amputees do not have plantar flexors, their 
locomotion results to be impaired, considering that this muscle 
group contributes to up to 80% of the biomechanical power 
required to perform a full gait cycle. Around the hip joint the 
amputated leg will experience abnormally increased 
absorption and energy generation rates and this can be 
regarded as the fundamental compensatory mechanism 
developed by unilateral transtibial amputees during 
ambulation [5]. 

III. THE BIOMECHANICAL MEANING OF KINETIC AND 

KINEMATIC CURVES IN GAIT ANALYSIS 

Kinematic curves wisely correlate vector quantities in space 
to scalar parameters in time to assess the degree of symmetry 
between the intact limb and the amputated limb with respect to 
a normal model derived from the gait of control group 
participants. Furthermore, these particular curves allow a 
doctor to preliminarily evaluate the usefulness of a certain 
rehabilitation therapy. Kinetic curves allow the analysis of 
ground reaction forces (GRFs) to assess the appropriateness of 
human motion. 

IV. THE INNOVATIVE APPLICATION OF NEURAL NETWORKS IN 

REHABILITATION ENGINEERING 

Electromyography (EMG) allows the analysis of the 
fundamental lower limb force contributions to quantify the 
level of gait asymmetry. However, the use of this 
technological tool is expensive and requires patient’s 
hospitalization. This research work suggests overcoming the 
above limitations by applying artificial neural networks [6]. 

Artificial Neural Networks (ANN) have been extensively 
used in research projects (such as applications in biomimetics 
for designing prostheses activated by PIC microprocessors) 
related to gait analysis to predict leg’s misalignments from the 
normal gait mostly with EMG signals [7]. Instead, this study 
proposes, for the first time, to use them in conjunction with 
raw gait data (GRFS) in Excel. Using raw gait data with 
neural networks to classify patient’s gait asymmetries can be 
very efficient and useful to improve the design of mechanical 
prostheses, and to define the most suitable rehabilitation 
therapy for each patient.  
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V. FIRST APPROACH: USING SELECTED TIME FRAMES  

A. NN Architectures Used for Data Classification 

As this study involves dealing with long-range data sets, 
neural networks such as the Multilayer Perceptron (MLP) and 
Radial Basis Functions (RBF) have been chosen for pattern 
recognition tasks and classification purposes [8]-[9]. The 
attractive features of simultaneous data handling and the 
concept of contextuality make such ANNs potentially useful 
tools in the automated recognition of various gait patterns. 
[10].  

B. Pre-Processing of the Raw Gait Data 

Once the raw gait data are converted from the .TXT to 
.XLSX format, they may present gaps in the measurements 
taken. Hence, 57 time frames (from the 47th to the 103rd) of a 
gait cycle have been selected as an example, in which the 
greatest number of repetitions for each prosthetic foot 
expected to be tested at each walking speed were included. 
Each time frame has to correspond to one triplet of angular 
kinematic data (ankle-hip-knee joint angles), for each 
prosthetic foot assessed at a certain speed.  

In the first place, different spreadsheets should be used to 
distinguish between the prosthetic foot attachments taken into 
account as well as with respect to the walking speed. 

The first data encoding approach consists of including a 
selection of 9 (over 57) time frames, for instance, equally 
spaced by six frame units (i.e. according to the convention 
followed, the time frames 1, 7, 13, 19, 25, 31, 37, 43 and 49), 
and considering these triplets of joint angles as inputs along 
with each relative walking speed. 

In summary, the input vector is composed of 28 
components, - columns - the first reports the type of walking 
speed and the remaining 27, i.e. 9 triplets of joint angle (ankle-
hip-knee) data. The desired output vector includes the two 
columns to distinguish the first prosthetic device from the 
second device. 

Once the data is randomized, the first 35 rows have been 
selected as training set, the following 12 rows of data for 
cross-validation and the last 12 rows have been used as testing 
set for testing the accuracy of the MLP neural network.  

These subclasses of the whole batch of data respect the 
widely accepted rule of thumb for neural networks whereby 
60% of the data set should be used as training set, 20% for 
cross-validation to avoid overtraining / over-fitting and the 
remaining 20% as testing set [11]. The MPL architecture is 
now composed of fifteen hidden neurons and two output 
neurons. The MLP is trained, on the abovementioned data, 
over different runs, where each run corresponds to 1000 
training cycles. The best results obtained with this encoding 
approach are discussed in the subsequent section. 

C. Results 

Fig. 1 shows the percentage of accuracy obtained on the 
testing set after having trained the MLP over three runs (3000 
epochs) on the training set.  

Three different performance reports (see Fig. 1 below) are 
shown in order to underline also the variability of the results.  

 

(a) 
 

 

(b) 
 

 

(c) 

Fig. 1 The percentage of correct classification obtained on the testing 
set after having trained the MLP on the testing set for three runs 

(3000 epochs), (a), (b) and (c) representing each run. The MLP has 2 
outputs and one hidden layer with fifteen processing elements (PEs). 

The reports are referred to the first approach used in this research 
work. 

 
The three training runs (3000 epochs) are needed in order to 

improve the MLP accuracy, since with only one run the 
accuracy was lower and even more variable, as it can be seen 
from the two performance reports illustrated in Fig. 2, where 
the training has been made on only one run (1000 epochs). 
The MLP architecture is the same as in Fig. 2. 
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In addition, decreasing the number of runs of training 
reduced the correlation number (r) (see reports in Figs. 1 and 
2). Hence, with three runs of training the final accuracy of the 
MLP neural network is not only higher, but also more reliable 
on a statistical viewpoint. This is because of the higher value 
of correlation coefficient (r = 0.39-0.56) indicates that there is 
a good correlation among the variables used for classifying 
whether the patient was wearing either the first prosthetic 
device or the second device. 

 

 

 (a) 
 

 

 (b) 

Fig. 2 Two performance reports obtained on the testing set for two 
runs (2000 epochs) with the same MLP architecture respectively 

represented by (a) and (b). The reports are referred to the first 
approach used in this research work. 

 
Considering the first approach followed in my experiment 

(see both Figs. 1 and 2), the obtained MSE results to be higher 
with respect to the MSE resulting by adopting the second 
approach. This aspect emerges from a comparison between the 
results reported in Figs. 1 and 2 on one side and the results 
shown in Figs. 3 and. 4 on the other side, as described in the 
following section of my research work.  

This is because more data have been included, i.e. nine time 
frames have been considered, rather than one triplet of 

averages of the modules for the three joint angles (ankle, hip 
and knee joint angles). However, overtraining occurred much 
faster, as it can be observed from the very few epochs in the 
cross-validation after which the neural network simulator had 
to stop the training process of the MLP neural network in 
order to avoid overtraining.  

The negative values of the angles were thought to have 
influenced the final accuracy of the classifier significantly and, 
therefore, their sign have been discarded and only their 
modules have been considered.  

This amendment slightly decreased the rate of change in 
accuracy given by the neural networks, giving us 70-72% of 
accuracy as average with three runs of training (Fig. 1) and 
58% of accuracy as average with one run of training (Fig. 2), 
as shown in the previous reports and confusion matrices. 

VI. SECOND APPROACH: EXPLOITING THE MAGNITUDE OF 

THE JOINT ANGLES  

A. Materials and Methods 

The resultant 57 components for each joint angle (ankle, hip 
and knee) formed a linear vector with the speed relative to 
each repetition/walking trial and the averages of their modules 
were used as input for the MLP classification network, thus 
resulting to an input vector of four components. 

The limitation of this method consists of neglecting the time 
frames, but only considering the variation of the magnitude 
with respect to the walking speed. 

After a randomization of the data, the two prosthetic 
devices have been used as desired outputs for the neural 
network.  

As in the previous approach, the first 35 rows of data (i.e. 
the first 35 repetitions, randomized with respect to the speed 
relative to each walking trial) have been used for training. The 
following 9 rows have been deployed for cross-validation to 
avoid over-fitting/overtraining, whilst the last 15 rows were 
used for testing, in order to check the accuracy of the neural 
network in learning and classify data which it had not seen 
before. 

B. Results 

By testing the test set, the ability of the MLP model built to 
discern whether either the amputee was wearing the first 
prosthetic device or the second device has been ascertained, 
with an accuracy of classification respectively of the 77.78% 
circa and 75% (Fig. 3). The same accuracy level was obtained 
by applying the RBF to the raw gait data (Fig. 4), but this type 
of neural network architecture resulted to have a higher MSE 
(Fig. 4).  

Therefore, the MLP did surprisingly model the gait data 
better than the RBF, as the RBF neural network was expected 
to model the batch of data better due to the few elements 
analyzed (59 repetitions, less than 100 elements) [12].  
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Fig. 3 Report of MLP performance on the second approach 

 

 
Fig. 4 Report of RBF performance on the second approach 

 

 
Fig. 5 MLP learning curves and Mean Squared Errors (MSEs), 

associated to the second approach 
 
The MLP learning curves show that the Mean Squared 

Error (MSE) for both training and cross-validation data sets 
decrease by increasing the number of epochs up to 1000 (Fig. 
5).  

This suggested that the MLP neural network built with one 
hidden layer was preliminarily a good model for classifying 
the gait data inputted.  

In fact, whilst the MLP learning curves are parallel to each 
other (Fig. 5), the RBF learning curves suggest a certain 
scarcity of ability in modeling the data (Fig. 6).  

 

 
Fig. 6 RBF learning curves and Mean Squared Errors (MSEs), 

associated to the second approach 

VII. DISCUSSION AND CONCLUSIONS 

Taking the considerations on the two approaches analyzed 
in the previous sections of this research paper into account, the 
second approach has to be preferred with respect to the first 
method. Therefore, the rate of change in the three joint angles’ 
magnitude, correlated to the walking speed only, resulted to be 
statistically more relevant than considering the change of joint 
angles through several time frames.  

The findings indicate that, neural networks, such as the 
MLP built in the first approach followed in this research work, 
can discriminate between the two prosthetic foot devices with 
a reasonably high accuracy (77.78% and 75% for the first 
prosthetic device and the second device, respectively).  

These results would provide a medical doctor with a tool to 
assess whether or not considering the kinematic data (i.e. the 
angles generated at each joint on the lower limb) would be 
relevant for each individual trans-tibial amputee, and would 
save time in assessing the performance of different prosthetic 
devices by choosing the most suitable criterion of analysis. 
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