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Experimental Testing of Statistical Size Effect in

Civil Engineering Structures

Abstract—The presented paper copes with an experimental evalua-
tion of a model based on modified Weibull size effect theory. Classical
statistical Weibull theory was modified by introducing a new param-
eter (correlation length lρ) representing the spatial autocorrelation of
a random mechanical properties of material. This size effect modifica-
tion was observed on two different materials used in civil engineering:
unreinforced (plain) concrete and multi-filament yarns made of alkali-
resistant (AR) glass which are used for textile-reinforced concrete.
The behavior under flexural, resp. tensile loading was investigated
by laboratory experiments. A high number of specimens of different
sizes was tested to obtain statistically significant data which were
subsequently corrected and statistically processed. Due to a distortion
of the measured displacements caused by the unstiff experiment
device, only the maximal load values were statistically evaluated.
Results of the experiments showed a decreasing strength with an
increasing sample length. Size effect curves were obtained and the
correlation length was fitted according to measured data. Results did
not exclude the existence of the proposed new parameter lρ.

Keywords—Statistical size effect, concrete, multi-filaments yarns,
experiment, autocorrelation length.

I. INTRODUCTION

THE behavior of concrete structures in tension is usually

described by simplified models reducing, or even neglect-

ing the tensile strength of concrete. The tendency to exploit the

material effectively calls for more precise models describing

the tensile behavior, which is covered by fracture mechanics.

Introducing the models of fracture mechanics quasibrittle

materials (as concrete) was initiated a long time after these

models occurred in steel structures (mainly in aircraft, naval

and nuclear engineering). One of the reasons to consider

the fracture mechanics of concrete is the effect of size on

a nominal strength of a structure.

The scope of this paper is a description of experimental

testing of two types of materials used in concrete structures

when their size increases. The first material was plain unre-

inforced concrete, the second type were multifilament yarns

from alcali resistant (AR) glass used for production of textile

reinforcement for concrete. In the first case, series of beams of

constant cross–section with an increasing length was designed

(5 different lengths) and tested in flexure. In the letter case,

yarn specimens of 6 different lengths were prepared to be

tested in tension. Obtained data were statistically processed

and compared with prediction according to the classical and

modified Weibull size effect theory.

The experimental testing was done in the laboratory of In-

stitute of Structural mechanic, Brno University of Technology

J. Kaděrová and M. Vořechovský are with the Institute of Structural
Mechanics, Faculty of Civil Engineering, Brno University of Technology,

on the testing machine Z100 Zwick/Roell Gruppe equipped by

two load cells measuring the force (20 kN and 2.5 kN). For the

bending tests, special equipment for 3PB and 4PB was used,

while for the tensile tests of yarns, mechanical tensile clamps

of combined type (self-locking with pre-stressing screws) were

installed [1], [2].

In Section II, the classical statistical Weibull’s size ef-

fect theory is shortly described. The spatial autocorrelation

influence is considered and some modification of the size

effect law is introduced. Section III describes the theoretical

presumptions and the designed experiment investigating the

size effect on samples of plain concrete. In Sec. IV a bundle

model together with tensile experiments on AR-glass yarns are

presented. The main obtained results are summarized in last

Sec. V.

II. STATISTICAL SIZE EFFECT THEORY

The definition of classical Weibull integral for strength of

structures can be derived from illustrative example of structural

segments coupled in series (chain model). Each segment of

the chain is independent of others and its strength is a random

variable with a given probability distribution function. If the

cumulative density function (CDF) is identical for all segments

of the chain, then we call segments as independent and

identically distributed (IID). All the segments share the same

loading σ (due to a common force F ).

The probability of failure of any segment P1(σ) is equal to

the strength CDF. The probability of survival of one segment

is the complement 1 − P1(σ). The probability of survival of

the whole chain is 1 − Pf and is given by condition that all

the segments must survive (the collapse of one segment means

the collapse of the whole chain). For independent segments,

the survival probability is the product of survival probabilities

of individual segments linked in series:

1− Pf = (1− P1)(1− P1)...(1 − P1)
︸ ︷︷ ︸

N−times

= (1− P1)
N (1)

By taking the logarithm of the equation, we obtain:

ln(1− Pf) = N ln(1− P1) (2)

As the probability of chain failure Pf is a very low number

in practical situations, the expression can be simplified by

substitution ln(1−P1) ≈ −P1, which leads to approximation:

Pf (σ) = 1− e−NP1(σ) (3)

Pf (σ) = 1− exp

[

− l

lr
P1 (σ)

]

(4)
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where P1(σ) is the probability distribution of failure of a ref-

erence length lr for a given stress level σ. The reference length

can be understood as a part of the total length l of structure

(chain) and each segment of such a length is considered

independent of other parts. The number of independent chain

segments is then N = l/lr.
The behavior of Weibull probability distribution is demon-

strated for increasing number of chain segments in Fig. 1. The

random strength of each segment is given by Weibull PDF and

CDF as:

F1 (σ; s,m) = 1− exp [−(σ/s)
m
] (5)

f1 (σ; s,m) =







(m/s) (σ/s)
m−1

exp [−(σ/s)
m
]

σ ≥ 0; s,m > 0

0 σ < 0

Using (1) we can express the CDF and PDF of Weibull

distribution for N number of elements:

FN = 1− [1− F1 (σ; s,m)]
N

(6)

fN =
∂FN

∂ σ
= N · f1 (σ; s,m) [1− F1 (σ; s,m)]N−1

Graphs of the probability densities (full lines) and the cumu-

lative distribution functions (dash lines) are plotted in Fig. 1

for different N . The trend of decreasing mean value and the

standard deviation with increasing number of elements can be

observed.
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Fig. 1. Weibull strength distribution PDF (full line) and CDF (dashed line).

This reduction of strength can be even more clearly shown

in the double logarithmic plot of strength as a function of

number of segments. For chosen level of failure probability

Pf = 0.5 (median strength) the size effect curve is presented

in Fig. 2. In logarithmic coordinates, the curve appears as

a straight line with a slope given by the shape parameter

(−1/m).

The above described derivation for a chain strength can be

generalized for continuous bodies. Consider a body (structure)

under uniform stress containing randomly distributed flaws,

see Fig. 3a. The size of the body is characterized by its

length l (e.g. the length of a fiber). The structure fails once

the stress at the weakest point (cross section) reaches its
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Fig. 2. Weibull median strength σmed vs. number of segments N in double-
logarithmic scale.

local strength. Assume that the local strength is random and

characterized by the Weibull distribution (two parametric).

Using the weakest-link model together with the Weibull-type

function for concentration of defects, the probability of failure

Pf at a given level of stress σ is expressed as the so-called

Weibull integral [3]:

Pf (σ) = 1− exp



−
∫

l

〈
σ

s0

〉m
d l

l0



 (7)

where the Malacuya brackets stand for positive part 〈•〉 =
max (•, 0). The argument in the Malacuya brackets with

its power m represents a particular choice of concentration

function. It represents a contribution to the failure probability

of the whole structure. For a given Weibull modulus (shape

parameter) m, we have a reference length l0 with correspond-

ing scale parameter s0 of the Weibull strength. The uniform

stress level is independent of the position over the length and

therefore we can rewrite (7) as − ln (1− Pf) = (σ/s0)
m
l/l0.

Now, the stress level for a chosen probability of failure Pf can

be expressed as a function of the structural size (length l):

σ (l) = s0 (l0/l)
1/m

[− ln (1− Pf)]
1/m

= s0 fW (l) [− ln (1− Pf)]
1/m (8)

This function is a power law and therefore its graph in

a double logarithmic plot for arbitrary level of probability

Pf (quantile) is a straight line with decreasing slope of

−1/m. For example, the mean strength of the structure

depends on its length as σ (l) = s0Γ (1 + 1/m) (l0/l)
1/m

=
s (l) Γ (1 + 1/m), where Γ is the Gamma function. The effect

of length in this equation and also in (8) has been inserted

into the scale parameter which then reads

s (l) = s0 (l0/l)
1/m

= s0 fW (l) (9)

From here on, we call fW (l) the Weibull length dependent

function. The strength distribution of such a structure is

Weibull for arbitrary length:

F (x) = 1− exp

{

−
[

x

s (l)

]m}

(10)
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and its shape (parameter m) is independent of the structure

size and the corresponding coefficient of variation (CoV) of

fiber strength distribution is a constant depending solely on

the Weibull modulus m:

CoV =
√

Γ (1 + 2/m) /Γ2 (1 + 1/m)− 1 (11)

There is a strong relation between the theory of extreme values

and the weakest link model.

The important property readily seen from the above equa-

tions is that the scale parameter of the Weibull distribution

can be adjusted by for any length l1 to deliver the same Pf

as for the original reference length l0: s1/s0 = fW (l1) =

(l0/l1)
1/m

. This demonstrates the inherent feature of the

Weibull distribution in the context of the weakest-link model

already revealed in (8): it is arbitrarily scalable with respect

to the reference length l0; there is no length scale inside.

Realizing that the reference length of one segment l1 is

arbitrarily scalable, we may perform this randomization with

arbitrary segment length, including very small l1 → 0 with the

scaling parameter s1 → ∞ and still obtain the same size effect.

The extreme value theory gives us an analytical solution,

which was recently proposed to simplify computations of large

structures with stochastic finite element method [4], [5].

However, it has been argued [6] that the independence

assumption of neighboring strengths is not correct for a real

spatial distribution of strength in a material and must be

abandoned at a certain length scale. Also, the strength must

remain bounded for short segments. The origin of the strength

bound is not discussed here, but surely, it is not possible to

measure arbitrarily high strength with very short specimens.

This discrepancy calls for solution.

Fig. 3. Unidirectional fibrous structures with breaks at peak load: a) one
fiber discretized into segments of length l0 with a sketch of a strength random
field and its minima; b) Daniels’s bundle of (discretized) fibers.

In order to impose an upper bound on the strength of

small structures in the Weibull theory, the independence as-

sumption of any pair of local substructures must be aban-

doned [7]. A plausible and physically acceptable assumption

is that neighboring segments of a structure are statistically

dependent, while two remote segments are independent. This

can be easily modeled by an autocorrelated random field. In

other words, it is assumed here that the local strengths are

dependent via autocorrelation function. The autocorrelation

can be just a function of Eucledian norm of two points,

Fig. 4. Top: mean size effect curves for an increasing number of fibers n in
a bundle for fiber strength described by Weibull random process, m = 4.52.
The curves nearly overlap for l > 160. Bottom: effective Weibull modulus
m (11).

moreover, it can be isotropic, i.e. the autocorrelation can be

independent of direction. An example of such a function

can be the squared exponential function (power p = 2):

R (∆d) = exp [−(|∆d| /lρ)p]. In the model, the strength

random field is homogeneous and isotropic, meaning simply

that the local distribution is identical in all points of the

structure. To remain consistent with the previous text, the

strength is assumed to be Weibull distributed from here on.

In addition, the relation between the pair of reference shape

and scale parameter of the distribution and the autocorrelation

length must be formulated explicitly. The reason is that the

simple scaling relation s1/s0 = fW (l1) = (l0/l1)
1/m

does

not hold anymore. Why? Because a statistical length scale in

a form of the autocorrelation length lρ have been incorporated.

As a consequence, the strength dependence upon the size

(length) is not a power law anymore. The autocorrelation has

the effect of imposing an upper bound on strength for infinitely

small (short) structures. When the structural size converges to

zero, the weakest link mechanism disappears and the strength

is identical to the elemental distribution (the highest attainable

strength of the model at the currently modeled scale such as

micro, meso, macro, etc.). By adding more material (increasing

length), the weakest link effect gradually overtakes and causes

the decrease of structural strength (both, the mean of strength

and also its standard deviation reduces). In limit, one can show

that the large size asymptotic behavior is the classical Weibull

size effect. In other words, for very large structures the effect

of relatively small autocorrelation length becomes insignificant

and the model can again be treated as the weakest link

model of independent identically distributed random strength

elements. The crossover length is the autocorrelation length.

To conclude, the fiber strength has the same form as in (8),

but with a different length dependent function. In particular,

a smooth interpolation function proposed recently in [7], [8]

has correct asymptotes: the left asymptote at the small size

limit is horizontal and the right asymptote is the classical

B. Modified Theory with Length Parameter
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Weibull function fW (l) from (8):

fV (l) =

(
lρ

l + lρ

)1/m

(12)

At large sizes, self-similar behavior is recovered (the double

logarithmic plot is a straight decreasing line with a slope

−1/m). At small sizes, the weakest link mechanism is sup-

pressed by the fact that all substructures share an identical

strength due to their perfect positive dependence. Note that

this relation is supported by numerical simulations of extremes

(minima) of random fields and is an alternative to currently

available analytical results [9]. Note also that the shape (m or

CoV) of the distribution remains independent of size l in (8).

An illustration of the mean fiber size effect exploiting (12) is

provided in Fig. 4 with comparison to the classical Weibull

dependence.

III. FLEXURAL STRENGTH OF PLAIN CONCRETE

According to the theory of elasticity, the nominal strength

of a beam under four point bending (4PB) is attained when

in bottom fibers of the cross section within the bending span

sb reach tensile strength. In the bending span, the bending

moment has a constant value M = F · ss and the beam is

loaded by pure flexure as the shear force is equal to zero.

Fig. 5. Elastic stress field: reduction of the region contributing to Weibull
integral (7) depending on parameter m.

The distribution of the longitudinal tensile stress is linear

over the beam’s depth D. The tensile stress enters the Weibull

integral (7) and contributes to it. Fig. 5 shows the region

contributing with its stress field into the Weibull integral. The

region size reduces with the increasing shape parameter m.

Nevertheless, it can be observed, that only a very narrow

area with a tensile stress is relevant for the calculation of

the Weibull integral. This area can be then easily modeled as

a chain, where the local strength is represented by elements

with identically distributed random strengths sharing the same

load, Fig. 6 right. Failure due to the crack initiation from

a smooth surface can appear anywhere inside the bending span

in a place with the weakest local strength (weakest link of the

chain).

As discussed in Sec. II-B, the size effect law plotted in

a double-logarithmic scale as a straight line was modified by

introducing a new left asymptote expressing the strength of

a single chain element, which is never infinitely high, and

a parameter lρ describing the correlation length of a random

field of a material strength.

F/2 F/2

ss sb

M

V

F/2 F/2ss

FF

FF

Vr

Fig. 6. Left: Geometrical scheme of bent beam. Right: Random strength of
chain segments.

The experiment was focused on the observation of effect

of size (resp. length sb) on the specimens’ strength. Conse-

quently, a wide range of specimen lengths was desired with

emphasis on production of the longest possible bending span,

so that the behavior in this region could be mapped. The

length groups were suggested with equal distribution of their

logarithms, as the size effect curve is usually visualized in the

double-logarithmic scale.

The bending experiment was inspired by results mentioned

in [10]. The material of plain concrete was designed with

respect to the loading capacity of the experimental equipment,

the size of concrete specimens was designed according to

Table I keeping the cross–section and the length of edges o
and shear span ss constant, Fig. 6 left. The bending span sb
varied in range from 0 (for 3PB) to 300 mm; five different

length groups of concrete beams were produced, Fig. 7.

TABLE I
SIZE OF CONCRETE SPECIMENS

Group Shear Bending Edge Total Number of
nr. span span length specimens

ss [mm] sb [mm] o [mm] L [mm] [-]

1 100 0 30 260 26
2 100 50 30 310 29
3 100 100 30 360 29
4 100 200 30 460 27
5 100 300 30 560 28

Cross–section: 60× 60 [mm2]
∑

139

Concrete beams were produced in 4 days, each day a new

batch of fresh concrete was mixed. Despite the effort to follow

the given recipe, the series from different batches embodied

different strength characteristics. The total number of produced

specimens was 139. The testing was performed always 35

days after casting. The testing schedule was created to respect

some elementary principles of laboratory testing and design of

experiments. Samples of different size were present in each of

the testing series. The loading rate was chosen to ensure the

static response of the samples: concrete samples were loaded

by rate 5 mm/min.

The maximal measured load (force) was in case of bending

test transformed to the value of nominal strength σN according

to (13), where the moment contribution due to self–weight

A. Theoretical Strength

B. Experimental Testing
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Fig. 7. Five different lengths of concrete samples.

Msw in the spot of beam failure was added.

σN =
Mmax

W
=

Msw (x) +MF

W
=

Msw (x) + F/2 · ss
W

(13)

TABLE II
RESULTS OF BENDING TESTS: AVERAGE, STD AND COV OF YARN

STRENGTH.

Length group sb σmax σmax σmax nsam

nr. [cm] avr [MPa] std [MPa] CoV [%] [-]

1 0 6.367 0.525 8.24 26
2 5 5.771 0.640 11.10 29
3 10 5.848 0.484 8.28 29
4 20 5.683 0.592 10.24 27
5 30 5.508 0.586 10.64 28

The nominal strength was plotted in a double–logarithmic

scale as a function of the bending span sb. The value of

bending span for the 3PB samples was set 0.1 cm (instead

of 0), so that the strength values are visible in a double–

logarithmic plot. The individual test results are shown in plots

in Fig. 8 as circles. Each plot represents one production series,

full line connects the average values.
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Fig. 8. Bending test: realizations of individual nominal strengths

As can be observed from measured data, some strength re-

duction with increasing bending span is visible. Nevertheless,

production series embody high strength variance among them.

This fact was caused by the heterogeneity of concrete batches.

Due to this fact, it was not correct to consider the material

of the whole data set (137 specimens) as homogeneous.

Although, the statistical evaluation of the non-homogeneous

data was done and results are presented in Tab. II. The

graphical representation of results of the whole data set in

form of double–logarithmic plot is in Fig. 9.
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Fig. 9. Bending test: Mean values and std of nominal strength vs. bending
span

Due to technological limitations, it was not possible to

produce specimens with longer bending span, that would show

the further development of the size effect curve. Nevertheless,

it can be expected, that the sample strength would follow the

decreasing trend according to the classical Weibull theory.

IV. TENSILE STRENGTH OF MULTI-FILAMENT YARNS

The above described extension of Weibull theory can be

readily incorporated into theory of strength of bundles with

elastic-brittle fibers and with global load sharing [7]. The

classical model formulated by Daniels [11] describes a sit-

uation of n parallel fibers (or microbonds) with IID random

strengths, equal lengths and elastic moduli, stretched between

two clamps under global load sharing. The maximum tensile

force of the bundle Q∗

n is measured in terms of load per fiber.

Daniels [11] derived a recursive formula for computing the

cumulative density function (CDF) Gn (x) of Q∗

n depending

on the fiber CDF F (x) and number of fibers n:

Gn (x) = P (Q∗

n ≤ x) =

=
n∑

k=1

(−1)
k+1

(
n

k

)

[F (x)]
k
Gn−k

(
n x
n−k

)

,

where G1 (x) ≡ F (x) , G0 (x) ≡ 1 and
(

n

k

)

= n!
(n−k)! k!

(14)

This formula is usable only for small number of parallel

fibers (a few tens) as the computational demands and also

the round-off errors explode with increasing number of fibers.

A. Strength of Fiber Bundles
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Moreover, Daniels proved that, under broad assumptions on

F (x), the asymptotic distribution of the maximum bundle load

Q∗

n is Gaussian, i.e. with n → ∞, it tends to

lim
n→∞

Gn (x) = Φ

(
x− µ∗

γ∗

√
n

)

= Φ

(
x− µ∗

σ∗

)

(15)

where Φ (•) is the standard Gaussian cumulative density

function. The mean value µ∗ depends on fiber F (x) and

not on the number of fibers n. The standard deviation σ∗ of

bundle strength is proportional to the inverse of the square

root of n, see e.g. [7] for details. Formulas for the mean value

µ∗ and standard deviation σ∗ in the case of Weibull strength

distribution F (x) of fibers will be given in (16).

The effect of parallel coupling seems to be captured well.

The question remains what the effect of length of such a bundle

on its strength is. It has been shown in [7] that, for the

situation studied, the effect of length and parallel coupling

can be treated separately and they are independent and do not

interact. Simply, a change in the length of the fibers in the

bundle results only in the change of the scaling parameter s
of the distribution F (x) of fiber strength. This distribution

then enters formulas for the bundle strength distribution. If,

for example, we consider Weibull fibers, and, in analogy

with (8), use the association of the length dependence with

the scale parameter s (l) = s0f (l), the resulting Weibull

strength distribution can be plugged in Daniels’s formulas

for bundle strength. After a few simple manipulations [7] the

resulting mean bundle strength reads µ∗ (n, l) = µ∗ (n) f (l)
thus manifesting the decomposed effects of length and parallel

coupling. The bundle strength being a function of the amount

of material (fiber length and number of parallel fibers) is

plotted in Fig. 4. The figure compares the proposed incor-

poration of the statistical length scale lρ using fV (l) with

the classical Weibull theory that uses fW (l). It is shown that

with increasing number of fibers (or microbonds) the crossover

length lρ propagates in the size effect plots unchanged.

The Gaussian variables have the mean value µ∗ and

standard deviation σ∗ given in [11] and refined in [12],

see [7]. The formulas are rearranged here to be explicitly

dependent on the length function f (lb) (see Fig. 3) for which

there are two alternatives (the Weibull form fW and the

proposed formula fV based on extremes of random processes):

µ∗ = f (lb) µρ where

µρ = sρ

[

m
−1

m cm + 0.996n
−2

3 m(−1

m
−

1

3 ) exp

(

− 1

3m

)]

,

︸ ︷︷ ︸

µρ(m,n,s)...for length lρ

σ∗ = f (lb) σρ where

σρ = sρ

[

m−1/m
√

cm (1− cm)/
√
n
]

︸ ︷︷ ︸

σρ(m,n,s)...for length lρ

, cm = exp
(
−1
m

)

(16)

One yarn composes of several hundreds up to thousands of

single fibers with diameter measured in tens of micrometers.

The fineness of the yarn is defined by the “tex” unit (gram

per 1000 meters) and depends on the average fiber diameter,

the fibre material density and the number of fibers.

The shape of samples and the production technology was

inspired by the experiments run previously at RWTH Aachen

University [13] and other. The material selected for the ten-

sile tests was the AR-glass yarn produced by Saint Gob-

ain Vetrotex with brand name Cem-FIL Direktroving LTR

5325, 2400 tex. Six length groups were suggested with equal

distribution of their logarithms – Table III, Fig. 10 (the

longest possible specimen length was designed with regards to

the testing equipment). The most problematic part of tensile

testing was to deal with the anchoring of glass yarns into the

machine. Basically, there are two possible ways how to create

bundle supports: endings can be either directly coiled up on

a cylindrical member or poured into anchoring blocks and then

clamped. (Direct clamping of yarns is not possible, as the yarn

is made of brittle material that would crush at the support

point due to lateral compression in clamps.) Nevertheless,

both techniques shows certain deficiencies. As the used testing

machine was equipped with self–locking holders, yarn endings

were poured into 75 mm long anchoring blocks made of epoxy

resin. The total number of tested samples was 317 pieces.

TABLE III
LENGTH OF GLASS YARNS SPECIMENS

Length group nr. 1 2 3 4 5 6

Gauge length L [mm] 10 25 60 130 310 740
Number of specimens nsam 53 48 48 55 53 60∑

317

Fig. 10. Six different lengths of yarns.

Samples marked as outliers (with the relative error of max-

imal force with respect to the corresponding length group’s

average value greater then 0.35) were eliminated from the

data set. These outliers (38 samples) belonged mostly to the

first two production series, that were influenced by the still

unsettled production procedure. The number of yarn samples

used for the statistical evaluation was 279 (in each length

group was 42–48 samples).

The obtained values of strength together with the average

sample’s free length L and the number of samples used for

the statistics nsam are overviewed in Tab. IV. The effect of

decreasing average and std of the strength with the increasing

sample length can be observed. The value of CoV can be

considered as stagnating in the range close to 15 %. The

number of samples after the elimination of outliers exceeds

required 30 pieces in each length group so that the obtained

data set can be considered as a statistically representative with

a high significance.

The graph with the samples’ peak loads in a double-

logarithmic scale is in Fig. 11. The plotted points represent

B. Experimental Testing
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TABLE IV
RESULTS OF TENSILE TESTS: AVERAGE, STD AND COV OF YARN

STRENGTH.

Length group L Fmax Fmax Fmax nsam

nr. avr [mm] avr [N] std [N] CoV [%] [-]

1 9.2 824.8 126.3 15.32 42
2 23.9 795.7 121.3 15.24 45
3 58.8 737.9 122.9 16.66 48
4 128.5 693.2 101.2 14.60 48
5 308.4 625.4 81.0 12.94 48
6 738.5 498.6 78.6 15.77 48

individual experiments, their color is assigned to the produc-

tion series. Samples with relative error of strength exceeding

±0.35 as well as the whole series P01 and P02 are marked with

a cross (outliers), the border lines separating the outliers from

the accepted values are marked with dash line. The average of

each length group strength (marked with a circle ± std) defines

the size effect curve. The red color represents the modified

(reduced) data set while the light grey shows the trend of

the original complete set of samples (containing outliers). The

fact that these two curves do not notably differ from each

other confirms the claim of statistically sufficient number of

samples.

Nominal length [mm]
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en

g
th

 [
N

]

Fig. 11. Tension test: Yarn strengths vs. yarn lengths of tested sample groups
and the size-effect curve as an average±std of modified (red) and original
(grey) data set. Dash line separates the outliers.

Now, the curve can be fitted with the modified Weibull

size-effect function with the included autocorrelation length

(12). The curve–fit can be seen in Fig. 12. The parameters

lρ (autocorrelation length) defining the point of asymptotes’

intersection, the strength value c of the left asymptote and

m (the shape parameter of Weibullian distribution) governing

the slope of the right asymptote in a double-logarithmic scale

were fitted to the measured data.

V. CONCLUSION

Both of the two types of introduced experiments (bending

tests on concrete beams and tensile tests on yarns) were

focused on the observation of effect of size (resp. length)

on the specimens’ strength. Consequently, a wide range of

specimen lengths was desired with emphasis on production of

the longest possible bending span, resp. gauge length, so that

the behavior in this region could be mapped. The length groups

were suggested with equal distribution of their logarithms,
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Fig. 12. Tension test: Estimation of size effect curve parameters.

as the size effect curve is usually visualized in the double-

logarithmic scale.

A high number of samples were tested so that the obtained

results are statistically significant. The most significant effect

of the obtained data set was the strength reduction with the

length extension. For each of the length groups, an average

value of strength Fmax, its standard deviation and a coefficient

of variation were calculated.

The experimentally obtained/measured dependencies of

strength on size support the assumption of existence of corre-

lation length of a strength random field.
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