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Abstract—The article deals with experimental and numerical 

investigation of axi-symmetric subsonic air to air ejector with 
diffuser adapted for boundary layer suction. The diffuser, which is 
placed behind the mixing chamber of the ejector, has high divergence 
angle and therefore low efficiency. To increase the efficiency, the 
diffuser is equipped with slot enabling boundary layer suction. The 
effect of boundary layer suction on flow in ejector, static pressure 
distribution on the mixing chamber wall and characteristic were 
measured and studied numerically. Both diffuser and ejector 
efficiency were evaluated. The diffuser efficiency was increased, 
however, the efficiency of ejector itself remained low. 
 

Keywords—Air ejector, boundary layer suction, CFD, diffuser.  

I. INTRODUCTION 
HE article deals with experimental and numerical 
investigation into the flow in an air ejector with diffuser 

with boundary layer suction. Ejectors are used for many 
purposes, but the process is basically the same in every case: a 
high-pressure fluid (the primary stream) transfers part of its 
energy to a low pressure fluid (the secondary stream) and the 
resulting mixture is discharged at a pressure that lies between 
the driving pressure and the suction pressure. By the time that 
Keenan, Neumann and Lustwerk [1] performed the first 
comprehensive study of mixing, two cases of mixing were 
distinguished: the constant pressure mixing and the constant 
area mixing. However, nobody has yet established a definite 
link between the performance of constant area and constant 
pressure ejectors, as stated Sun and Eames [2]. Many studies 
deal with optimization of some separated parameters of ejector 
or with intensification of the mixing process, as they are in a 
review carried out by Porter and Squyers [3] and published in 
1976.  

The diffusers often play an essential role in many 
applications; therefore many researchers were concerned in 
diffuser design, as it was summarized by Japikse and Baines in 
work [4]. The efficiency of diffusers with high enlargement 
can be improved by boundary layer suction. For example, 
Furuya, Sato and Kushida [5] published a detailed, 
quantitative investigation of the simple conical diffuser with 
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inlet suction similar to the one shown in Fig. 1. They found 
that the diffuser effectiveness could be improved substantially, 
especially at large divergence angles, with the use of fairly 
modest suction levels of 2-5%. These authors found, by 
experimentation and detailed measurement, that the optimum 
rate of suction corresponded roughly to the condition where 
the initial boundary layer thickness was decreased to zero by 
the suction through a single slit. Their results for diffuser with 
divergence angle of 40°, inlet diameter of 80 (mm) and 
enlargement ratio of 3.52 are in Fig. 10. 

Boundary layer suction is also applied while using Griffith 
diffuser, where the suction causes a sudden deceleration in the 
fluid near the wall to a low velocity level which is maintained 
constant through the diverging section. Authors Yang, Hudson 
and Nelson [6] measured diffuser effectiveness, after 
correcting for the suction flow, in the range of 90-95% for 
conical and annular diffusers. 

Another approach was used by Rockwell [7], who applied 
perforated walls for boundary layer suction, but these results 
were not so excellent. By contrast to the techniques described 
above, the suction rates were quite high and the flow stability 
was limited.  

If the diffuser is a part of an ejector, the boundary layer 
suction can be performed by ejector itself. For example, Earl 
in work [8] used described arrangement while a supersonic 
ejector was investigated, but boundary layer suction did not 
bring any improvement. Firstly, the diffuser with low 
divergence angle of 6° was used. Secondly, the sucked fluid 
was returned into the suction chamber in front of the ejector. 
Thus, the energy, which was obtained by the fluid in the 
mixing chamber before the suction, was dissipated.  

Nowadays commercial CFD software is used by a large 
number of researchers. One of the first works using 
commercial CFD software to compute the flow in an ejector 
was work of Riffat, Gan and Smith [9], who took into account 
incompressible fluid and turbulence model k-ε. Also software 
Fluent is widely used to compute flow both in supersonic and 
subsonic ejectors. E.g. Rusly, Lu Aye and Charters [10] used 
Fluent and segregated solver to compute flow in a supersonic 
ejector. Model realizable k-ε seemed to be the most suitable 
for axi-symmetric mixing problems according the results in 
work of Dvorak [11]. Others researchers uses different 
turbulence models, e. g. Bartosiewicz, Aidoun, Desevaux and 
Mercadier used turbulence model SST k-ω to simulate the 
flow in supersonic ejectors in work [12]. Simak [13] studied 
numerically flow in two-dimensional supersonic ejector by 
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several turbulence models and found out that turbulence 
model k-ω is sufficient to capture all important information 
about the flow.  

The effect of boundary layer suction in the inlet of diffuser 
with divergence angle of 40° on flow in ejector was measured 
by Dvorak in work [14]. Flow in ejector and diffuser with 
suction slot opening of 0, 0.5, 1, 2, 3 and 4 (mm) was 
investigated. Both diffuser and ejector efficiency were 
evaluated. It was found out that boundary layer suction can 
improve efficiency of the diffuser and thereby of the whole 
ejector significantly. The suction ratio was dependent on the 
regime of the ejector, i.e. on the ejection ratio. The diffuser 
efficiency increases for higher suction ratio and remains 
almost constant if it is greater than 0.06. Therefore, the suction 
is inefficient for low backpressures and high ejection ratios of 
the ejector. The effect of suction slot opening was investigated 
too. It was found out that narrower slot of 0.5 (mm) is 
preferable to wider slot even the suction ratio is decreased for 
narrower slot. Higher suction ratio and more efficient suction 
cannot be obtained for this configuration of the ejector, 
because the recovery nozzles are too small and suction flow 
rate is consequently limited.  

When diffuser with divergence angle of 40° was used, the 
process of flow deceleration was not finished in the diffuser 
outlet. Generally, it was significant for cases with low 
efficiency of the diffuser, probably because of flow separation. 
Therefore, the pressure recovery of the diffuser was evaluated 

further behind the diffuser exit. Static pressure distributions on 
the mixing chamber wall were measured and it seems that 
sucked fluid which is returned to the mixing chamber does not 
enhance the mixing. 

The contemporary work is focused on numerical modeling 
to obtain more detailed view into the problem. Agreement 
between experimental and numerical date is discussed too. 

II. METHODS 

A. Experimental Investigation 
On the base of knowledge obtained in works [5] and [8], a 

diffuser with enlargement angle of 40° equipped with 
adjustable slot for boundary layer suction was designed, as it 
is shown in Fig. 1. The diffuser was manufactured by turning 
from silone. As was proved by work [8], the sucked fluid 
should be brought back in to the mixing chamber and 
accelerated into the direction of the main flow. Firstly, to use 
energy obtained by sucked gas, and secondly, to enhance 
mixing process in its beginning. The problem is a proper 
design of such system, because we get several unknown 
constructive parameters. In our case, a system applying 4 
nozzles with diameter of 5 mm inclined by angle of 15° to 
ejector axis was chosen. This inlet part of the mixing chamber 
including recovery nozzles were manufactured by rapid 
prototyping, its dimensions are also visible in Fig. 1.  

 

 
Fig. 1 Dimensions of ejector parts and positions of static pressure taps of the experimental air ejector with diffuser with an adjustable suction 

slot for boundary layer suction in the inlet of the diffuser. 
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Fig. 2 Experimental arrangement: 1 - compressor, 2 - air dryer, 3 - tank, 4 - filter, 5 - reduction valve,     6 - rotameter, 7 - Coriolis mass flow 
meter, 8 - stilling chamber, 9 - stilling riddles, 10 - measuring of primary stagnation pressure p01, 11 - measuring of primary mass flow rate,    
12 – primary flow supply tube, 13 – holder of primary nozzle, 14 – primary nozzle, 15 - secondary nozzle, 16 - mixing chamber with static 

pressure taps, 17 – diffuser with suction slot, 18 – suction tube, 19 – velocity probe, 20 - outflow pipe, 21 - measuring of total mass flow rate, 
22 - suction ejector, 23 - control valve, 24 – chocking, 25 - base, 26 – pneumatic measuring. 

 
The experimental arrangement is shown and described in 

Fig. 2. We used primary nozzle with diameter of 19.2 (mm) 
and mixing chamber of diameter D = 40 (mm), i.e. the inlet 
area ratio of nozzles is μ = A1/A2 = 0.3. The length of the 
mixing chamber was 9D = 360 (mm), the diffuser has 
divergence angle of 40° and enlargement ratio μD = A4/A3 = 
3.15.  

Three mass flow rates were measured: Primary mass flow 
rate m1 was measured with a nozzle, mass flow rate behind 
the ejector m4 was measured by an orifice and suction mass 
flow rate m3 - m4 was measured by velocity probe, which was 
situated in the suction tube and calibrated by a rotameter, see 
Fig. 2. The primary air was supplied by a compressor and it 
had overpressure p01 - p02 = 1 (kPa), while secondary air was 
sucked directly from the laboratory and secondary stagnation 
pressure was equal to atmospheric pressure. For pressure 
measuring, we used pressure sensors Druck LP 1000 with 
range 100, 500, 1000 and 2000 (Pa). These low pressure 
sensors with high accuracy 0.25% are slow, so only mean 
value of pressures were measured. 

B. Numerical Investigation  
For numerical calculation we used commercial software 

Ansys - Fluent 14. Turbulence model realizable k-ε with 
enhanced wall treatment was used for numerical 
computations. This turbulence model is suitable for axi-
symmetric problems and proved the best convergence for this 
kind of problem. The model was three-dimensional and had 
the same geometry as it is presented in the Fig. 1. Flow in the 
suction tube between the suction slot and the recovery nozzles, 

primary nozzle, primary flow supply tube with the inlet from 
the stilling chamber and a short part of the outflow pipe were 
simulated too, see Fig. 2. 

The grid size was 1.24 million of hexahedral cells. The fluid 
was air considered as ideal gas. Pressure inlets were used for 
definition of inlet boundary conditions, pressure outlet was 
used at the ejector exit. Values of temperatures and pressures 
on boundaries were taken from experiment. Model with slot 
opening of 1 (mm) was investigated numerically and 
compared with experiments.  

C. Evaluation of Efficiency 
For evaluation of ejector efficiency, we used equations 
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where T0 is stagnation temperature, p0 stagnation pressure, p 
static pressure, m mass flow rate, κ ratio of specific heats, 1 
denotes conditions of primary air, 2 of the secondary air and 4 
condition behind the diffuser. The first term in (1) is for 
compressible fluid and the second one for incompressible. 
Both terms can be used, because the Mach number is lower 
than 0.15 and stagnation temperatures are equal: T01 = T02. As 
we can see from (1), the kinetic energy behind the ejector is 
considered as a loss. Similarly we used these two equations to 
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There are contours of axial velocity in the diffuser part of 
the ejector in Fig. 12. Again the same three different regimes 
as in Fig. 10 and 11 are presented. There are the end of the 
mixing chamber, the diffuser, the suction slot with suction 
chamber, and short entrance part of the exit tube visible in Fig. 
12.  

A flow separation in the diffuser is visible and marked in 
the figure. It seems that the separation occurs further 
downstream the diffuser for higher mixing pressure, but the 
dependency is indistinctive. The flow separation is longer and 
the flow reattaches back to the wall further downstream for 
higher mixing pressure. The point of reattachment is also 
marked in the figure. 

IV. CONCLUSION 
The effect of boundary layer suction in the inlet of diffuser 

with divergence angle of 40° on flow in ejector was 
investigated experimentally and numerically. Both diffuser 
and ejector efficiency were evaluated. It was found out that 
boundary layer suction can improve efficiency of the diffuser 
and thereby of the whole ejector significantly. The suction 
ratio is dependent on the regime of the ejector, i.e. on the 
ejection ratio. The diffuser efficiency increases for higher 
suction ratio and remains almost constant if it is greater than 
0.06. Therefore, the suction is inefficient for low 
backpressures and high ejection ratios of the ejector.  

Static pressure distributions on the mixing chamber wall 
were measured and evaluated numerically and it seems that 
sucked fluid which is returned to the mixing chamber 
enhances the mixing only for regimes with high back 
pressures and mixing pressures. 

The numerical modeling brought more detailed view into 
the problem. Nevertheless, the agreement between the 
experimental and numerical investigations had substantial 
limits. We used turbulence model Realizable k-e, which 
described satisfactorily the inlet part of the ejector, flow in 
nozzles and mixing processes. Also the prediction of suction 
ratio agreed well with measuring. Precision of numerical 
computation is poor while describing flow in the diffuser 
especially for regimes of ejector with high ejection ratios and 
low back pressure. 

In the next work we will focus on optimization of the 
ejector configuration that can yield higher ejector efficiency. It 
seems that bigger recovery nozzles would be beneficial. Also 
replacement of the suction slot further downstream the 
diffuser can solve the problem with low pressure difference of 
high ejection ratio regimes. The improvement of agreement 
between the numerical and experimental data will be crucial 
for next research. 
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