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Existence of Solution of Nonlinear Second Order
Neutral Stochastic Differential Inclusions with

Infinite Delay
Yong Li

Abstract—The paper is concerned with the existence of solution
of nonlinear second order neutral stochastic differential inclusions
with infinite delay in a Hilbert Space. Sufficient conditions for the
existence are obtained by using a fixed point theorem for condensing
maps.
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I. INTRODUCTION

LET K be a separable Hilbert space, let (Ω,F,Ft, P )
be a complete probability space furnished with a

complete family of right continuous increasing σ algebras
{Ft} satisfying Ft ⊂ F for t ≥ 0. Suppose w(t) is a given
K-valued , Ft adapted Brownian motion with a finite trace
nuclear covariance operator Q ≥ 0. We are interested in
the existence of solution of nonlinear second order stochastic
differential inclusions with infinite delay⎧⎨

⎩
d[x′(t)− g(t, xt)] ∈ Ax(t)dt+ F (t, xt)dw(t),

t ∈ J = [0, b],
x0 = φ ∈ Bh, x

′(0) = η, t ∈ J0 = (−∞, 0],
(1)

where φ is F0 measurable and A is the infinitesimal generator
of a strongly continuous cosine family {C(t), t ∈ R}, the
state x(·) takes values in Hilbert space H with the norm | · |,
F : J ×Bh → 2L(K,H) is a bounded closed, convex-valued
mulivalued map, g : J × Bh → H is continuous, the
histories xt : (−∞, 0] → H , xt(θ) = x(t + θ), θ ≤ 0
belong to the space Bh. For σ1, σ2 ∈ L(K,H), define
� σ1, σ2 	= tr(σ1Qσ∗

2), where σ∗
2 is the adjoint of the

operator σ2, Q ∈ L+
n (K). L(K,H) furnished with the scalar

product � ·, · 	 is a pre-Hilbert space. The completion of
L(K,H) with respect to the topology induced by the norm
‖ · ‖2, where ‖ σ ‖22= � σ, σ 	2, is a Hilbert space.

At first, we present the abstract phase space Bh. Assume
that h : (−∞, 0] → (0,+∞) is continuous function with l =∫ 0

−∞ h(s)ds < +∞. Define

Bh = {ϕ : (−∞, 0] → H : for any a > 0, (E|ϕ(θ)|p) 1
p

is a bounded and measurable function on [−a, 0]

and
∫ 0

−∞
h(s) sup

s≤θ≤0
(E|ϕ(θ)|p) 1

p ds < +∞}.
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If Bh is endowed with the norm

||φ||Bh
=

∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|p) 1

p ds, ∀φ ∈ Bh,

then (Bh, ||.||Bh
) is a Banach space.

Stochastic differential equations have received much
attention in many areas of science including finance,
engineering and social science. The problems of existence
of functional differential equations and inclusions have been
extensively studied, for example [1 -4]. M.Benchohra, and S.K
Ntouyas [5,6] discussed the nonlocal cauchy problems and
impulsive multivalued semilinear neutral functional differential
and integrodifferential inclusions in Banach Spaces. In [6,
7], Balasubbramaniam discussed the existence of solutions of
functional stochastic differential inclusions with the help of
some fixed-point theorems. Since many systems arising from
realistic models heavily depend on histories (i.e., there is the
effect of infinite delay on state equations) [8], there is a real
need to discuss partial functional differential systems with
infinite delay. So in the present paper, we will concentrate on
the case with infinite delay and establish sufficient conditions
for the existence of systems(1) by relying on a fixed-point
theorem for condensing maps due to Martelli [9].

II. PRELIMINARIES

LetJ1 = (−∞, b] and C(J1, H) is the space of all
continuous H-valued stochastic processes {ξ(t) : t ∈ J1}.

Let (E, ‖ · ‖) be a Banach space. A multivalued map J :
E → 2E is convex (closed)-valued,if J(x) is convex(closed)
for all x ∈ E. J is bounded on bounded set if J(B) =
∪x∈BJ(x) is bounded in E for any bounded set B of E; i.e,

sup
x∈B

sup{‖y‖ ∈ J(x)} < ∞.

J is called upper semicontinuous (Usc) on E, if for each
x∗ ∈ E, the set J(x∗) is nonempty, closed subset of E, and
if for each open set B of E containing J(x∗), there exists an
open neighborhood V of x∗ such that J(V ) ⊆ B.

J is said to be completely continuous if J(B) is relatively
compact, for every bounded subset B ⊆ E.

If the multivalued map J is completely continuous with
nonempty compact values, then J is Usc if and only if J has
a closed graph(i.e.,xn = x∗, yn = y∗, yn ∈ Jxn imply y∗ ∈
Jx∗).
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Let BCC(E) denote the set of all the set of all nonempty,
bounded ,closed and convex subsets of E. For more detail
on multivalued maps see the books of Deimling [10], Hu and
Papageorgiou [11].

An upper semicontinuous map H : E → E is said to be
condensing if for any subset B ⊆ E with α(B) �= 0, we
have α(H(B)) < α(B), where α denotes the Kuratowski
measure of noncompactness. It is easy to see that s completely
continuous multivalued map is a condensing map.

We say that a family {C(t) : t ∈ R} of operators in B(E)
is a strongly continuous cosine family if

(i) C(0) = I (I is the identity operator in E),
(ii) C(t+ s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R,
(iii) the map t �−→ C(t)x is strongly continuous for each

x ∈ E.
The strongly continuous sine family {S(t) : t ∈ R},

associated to the given strongly continuous cosine family
{C(t) : t ∈ R}, is defined by

S(t)x =

∫ t

0

C(s)xds, x ∈ E, t ∈ R.

The infinitesimal generator A : E → E of a cosine family
{C(t) : t ∈ R} is defined by

Ax =
d2

dt2
C(t)x|t=0.

For more details on strongly continuous cosine and sine
families, we refer the reader to the books of Goldstein [12]
and to the papers of Fattorini [13,14] and Travis and Webb
[15,16].

The key tool in our approach is following fixed-point
theorem.

Theorem 1(Martelli [9]). Let E be a Banach space and
N : E → BCC(E) a condensing map. If the set

Ω = {x ∈ E : λx ∈ Nx, for some λ > 1}
is bounded, then N has s fixed point.

III. MAIN RESULT

In the following, we shall apply Theorem 1 to study the
existence of solution of system(1).

Definition 1. A function x : (−∞, b] → H is called a
mild solution of system(1) if the following holds: φ be F0

measurable H-valued stochastic processes x0 = φ ∈ Bh on
(−∞, 0] and the integral equation⎧⎪⎪⎨

⎪⎪⎩

x(t) = C(t)φ(0) + S(t)[η − g(0, φ)]
+
∫ t

0
C(t− s)g(s, xs)ds

+
∫ t

0
S(t− s)f(s)dw(s), for a.e. t ∈ J,

x0 = φ ∈ Bh, t ∈ J0.

(2)

is satisfied, where

f ∈ SF,x = {f ∈ L2(J,H) : f(t) ∈ F (t, xt), for a.e t ∈ J}.
To investigate the existence of solution of system (1), we

use the following hypotheses:
(H1) A is the infinitesimal generator of a strongly

continuous and bounded cosine family {C(t) : t ∈ J}.

Assume that C(t) is compact and there exists constant M1 > 0
such that M1 = sup{|C(t)| : t ∈ J}.

(H2) There exists constants c1 ≥ 0 and c2 ≥ 0 such that

E|g(t, u)|p ≤ c1 ‖ u ‖pBh
+c2, t ∈ J, u ∈ Bh.

(H3) F : J × Bh → BCC(H); (t, φ) → F (t, φ) is
measurable with respect to t for each φ ∈ Bh, Usc with
respect to φ for each t ∈ J , and for each fixed φ ∈ Bh, the
set

SF,φ = {f ∈ L2(J,H) : f(t) ∈ F (t, φ), for a.e t ∈ J}
is nonempty.

(H4) The operator G with values (G(x))(t) = g(t, xt), t ∈
J , G is completely continuous in C(J,H) and for any
bounded set V ⊆ C(J,H), the set {t → g(t, xt) : x ∈ V } is
equicontinuous in C(J,H).

(H5) E ‖ F (t, φ) ‖p2= sup{E ‖ v ‖p2: v ∈ F (t, φ)} ≤
p(t)ψ(‖ φ ‖pBh

), t ∈ J , p ∈ L2(J,R+), φ ∈ Bh, and ψ :
[0,+∞) → (0,+∞) is a continuous nondecreasing function,
and the following inequality holds:∫ b

0

m̄(s)ds <

∫ +∞

N

1

1 + g(s) + ψ(g(s))
ds,

where

m̄(t) = max{4p−1b
p
2−1Mp

1 c1, 4
p−1b

p
2−1Mp

1 c2,

4p−1b
3p
2 −1Mp

1 p(t)}

g(s) = (ls
1
p + ||φ||Bh

)p, l =

∫ 0

−∞
h(s)ds < +∞,

N = 4p−1Mp
1E|φ(0)|p + 8p−1Mp

1 b
p(E|η|p

+c1||φ||pBh
+ c2).

Lemma 1(Lasota and Opial[17]). Let I be a compact real
interval and E be a Banach space. Let F be a multivalued
map satisfying (H3) and let Γ be a linear continuous mapping
from L2(I, E) → C(I, E). Then the operator

Γ ◦ SF : C(I, E) → BCC(C(I, E)),

x → (Γ ◦ SF )(x) = Γ(SF,x))

is a closed graph operator in C(I, E)× C(I, E).
C(J1, H) is the space of all continuous H-valued stochastic

processes {ξ(t) : t ∈ J1}. Now we consider the space Bb, let
Bb = {x : x ∈ C((−∞, b], H), x0 = φ ∈ Bh} , Let ‖ · ‖ be
a seminorm in Bb defined by

‖ x ‖b=‖ x0 ‖Bh
+ sup

s∈[0,b]

(E|x(s)|p) 1
p , x ∈ Bb.

Lemma 2. Suppose x ∈ Bb, then for t ∈ J , xt ∈ Bh,
Moreover

lE
1
p |x(t)|p ≤‖ xt ‖Bh

≤ l sup
s∈[0,t]

(E|x(s)|p) 1
p+ ‖ x0 ‖Bh

,

where l =
∫ 0

−∞ h(s)ds < +∞.
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Proof: For any t ∈ [0, a], we have

‖ xt ‖Bh
=

∫ 0

−∞
h(s) sup

θ∈[s,0]

E
1
p |xt(θ)|pds

=

∫ −t

−∞
h(s) sup

θ∈[s,0]

E
1
p |xt(θ)|pds

+

∫ 0

−t

h(s) sup
θ∈[s,0]

E
1
p |xt(θ)|pds

=

∫ −t

−∞
h(s) sup

θ1∈[t+s,t]

E
1
p |x(θ1)|pds

+

∫ 0

−t

h(s) sup
θ1∈[t+s,t]

E
1
p |x(θ1)|pds

≤
∫ −t

−∞
h(s)[ sup

θ1∈[t+s,0]

E
1
p |x(θ1)|p

+ sup
θ1∈[0,t]

E
1
p |x(θ1)|p]ds

+

∫ 0

−t

h(s) sup
θ1∈[0,t]

E
1
p |x(θ1)|pds

=

∫ −t

−∞
h(s) sup

θ1∈[t+s,0]

E
1
p |x(θ1)|pds

+

∫ 0

−∞
h(s)ds× sup

θ1∈[0,t]

E
1
p |x(θ1)|p

≤
∫ −t

−∞
h(s) sup

θ1∈[s,0]

E
1
p |x(θ1)|pds

+l sup
θ1∈[0,t]

E
1
p |x(θ1)|p

≤
∫ 0

−∞
h(s) sup

θ1∈[s,0]

E
1
p |x(θ1)|pds

+l sup
s∈[0,t]

E
1
p |x(s)|p

=

∫ 0

−∞
h(s) sup

θ1∈[s,0]

E
1
p |x0(θ1)|pds

+l sup
s∈[0,t]

E
1
p |x(s)|p

= l sup
s∈[0,t]

E
1
p |x(s)|p+ ‖ x0 ‖Bh

.

Since φ ∈ Bh, then xt ∈ Bh. Moreover

‖ xt ‖Bh
=

∫ 0

−∞
h(s) sup

θ∈[s,0]

E
1
p |xt(θ)|pds

≥ E
1
p |xt(0)|p

∫ 0

−∞
h(s)ds = lE

1
p |x(t)|p.

The proof is complete.

Now, consider the mutivalued map L : Bb → 2Bb defined
by Lx the set of ρ ∈ Bb such that

ρ(t) =

⎧⎨
⎩

φ(t), t ∈ (−∞, 0],
C(t)φ(0) + S(t)[η − g(0, φ)] +

∫ t

0
C(t− s)g(s, xs)ds

+
∫ t

0
S(t− s)f(s)dw(s), t ∈ J, (3)

where f ∈ SF,x.

We shall show that the operator L has fixed points,which
are then a solution of system (1). For φ ∈ Bh, we define φ̄
by

φ̄(t) =

{
φ(t), −∞ < t ≤ 0
C(t)φ(0), 0 ≤ t ≤ b

then φ̄ ∈ Bb. Set

x(t) = y(t) + φ̄(t), −∞ < t ≤ b.

It is clear to see that x satisfies (2) if and only if y satisfies
y0 = 0 and

y(t) = S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys + φ̄s)ds

+

∫ t

0

S(t− s)f(s)dw(s), t ∈ J.

Let B0
b = {y ∈ Bb : y0 = 0 ∈ Bh}. For any y ∈ B0

b ,

‖ y ‖b=‖ y0 ‖Bh
+ sup

s∈[0,b]

E
1
p |y(s)|p = sup

s∈[0,b]

E
1
p |y(s)|p.

Thus (B0
b , ‖ · ‖b) is a Banach space. Set Bq = {y ∈ B0

b :
‖ y ‖b≤ q} for some q ≥ 0, then Bq ⊆ B0

b is uniformly
bounded, for any y ∈ Bq , from Lemma 2, we have

‖ yt + φ̄t ‖Bh
≤ ‖ yt ‖Bh

+ ‖ φ̄t ‖Bh

≤ l sup
0≤s≤t

E
1
p |y(s)|p + ||y0||Bh

+l sup
0≤s≤t

E
1
p |φ̄(s)|p+ ‖ φ̄0 ‖Bh

≤ lq+ ‖ φ ‖Bh
+l sup

0≤s≤t
|C(s)|E 1

p |φ(0)|p

≤ l(q +M1E
1
p |φ(0)|p)+ ‖ φ ‖Bh

= q′.

Define the multivalued map L1 : B0
b → 2B

0
b defined by L1y

the set of ρ̄ ∈ B0
b such that

ρ̄(t) =

⎧⎨
⎩

0, t ∈ (−∞, 0],
S(t)[η − g(0, φ)] +

∫ t

0
C(t− s)g(s, ys + φ̄s)ds

+
∫ t

0
S(t− s)f(s)dw(s), t ∈ J. (4)

Lemma 3. If the hypotheses (H1) − (H5) satisfied, then
L1 : B0

b → 2B
0
b is a completely continuous multivalued map,

Usc with a convex closed value.
Proof. We divide the proof into several steps.
Step 1. L1y is convex for each y ∈ B0

b .
In fact, if ρ̄1, ρ̄2 belong to L1y, then there exit f1, f2 ∈ SF,y

such that for each t ∈ J we have

ρ̄i(t) = S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys + φ̄s)ds

+

∫ t

0

S(t− s)fi(s)dw(s), t ∈ J, i = 1, 2.

Let λ ∈ [0, 1], we have

(λρ̄1 + (1− λ)ρ̄2)(t)

= S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys + φ̄s)ds

+

∫ t

0

S(t− s)(λf1(s) + (1− λ)f2(s))dw(s).
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Since SF,y is convex, we have λρ̄1 + (1− λ)ρ̄2 ∈ L1y.
Step 2. L1 maps bounded set into bounded set in B0

b .
Indeed, it is enough to show that there exists a positive constant
Λ such that for each ρ̄ ∈ L1y, y ∈ Bq = {y ∈ B0

b :‖ y ‖b≤ q}
one has ‖ ρ̄ ‖b≤ Λ. If ρ̄ ∈ L1y, then there exist f ∈ SF,y ,
such that for each t ∈ J ,

ρ̄(t) = S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys + φ̄s)ds

+

∫ t

0

S(t− s)f(s)dw(s), t ∈ J.

By (H1)− (H4) we have for t ∈ J ,

E|ρ(t)|p

= E|S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, ys + φ̄s)ds

+

∫ t

0

S(t− s)f(s)dw(s)|p

≤ 3p−1E|S(t)[η − g(0, φ)]|p

+3p−1E|
∫ t

0

C(t− s)g(s, ys + φ̄s)ds|p

+3p−1E||
∫ t

0

S(t− s)f(s)dw(s)||p2
≤ 3p−1Mp

1 b
p(2p−1E|η|p + 2p−1E|g(0, φ)|p)

+3p−1bp−1

∫ t

0

E|C(t− s)g(s, ys + φ̄s)|pds

+3p−1E{
∫ t

0

[|S(t− s)|p||f(s)||p2]
2
p ds} p

2

≤ 3p−1Mp
1 b

p(2p−1E|η|p + 2p−1(c1||φ||pBh
+ c2))

+3p−1bp−1Mp
1

∫ t

0

(c1||ys + φ̄s||pBh
+ c2)ds

+3p−1(M1b)
p{
∫ t

0

[E||f(s)||p2]
2
p ds} p

2

≤ 3p−1Mp
1 b

p(2p−1E|η|p + 2p−1(c1||φ||pBh
+ c2))

+3p−1bp−1Mp
1

∫ t

0

(c1q
′p + c2)ds

+3p−1(M1b)
p sup
x∈[0,q′]

ψ(xp){
∫ t

0

(p(s))
2
p ds} p

2

≤ 3p−1Mp
1 b

p(2p−1E|η|p + 2p−1(c1||φ||pBh
+ c2))

+3p−1bpMp
1 (c1q

′p + c2)

+3p−1(M1b)
p sup
x∈[0,q′]

ψ(xp)t
p
2−1

∫ t

0

p(s)ds

≤ 3p−1Mp
1 b

p(2p−1E|η|p + 2p−1(c1||φ||pBh
+ c2))

+3p−1bpMp
1 (c1q

′p + c2)

+3p−1(M1b)
p sup
x∈[0,q′]

ψ(xp)b
p
2−1

∫ b

0

p(s)ds

= Λp.

then for each ρ̄ ∈ L1(Bq), we have

‖ ρ̄ ‖b≤ Λ.

Step 3. L1 maps bounded sets into equicontinuous sets of
B0

b . Let 0 < t1 < t2 ≤ b, for each y ∈ Bq = {y ∈ B0
b : ‖

y ‖b≤ q} and ρ̄ ∈ L1y, there exists f ∈ SF,y such that (4).
Thus

E|ρ̄(t2)− ρ̄(t1)|p
= E|(S(t2)− S(t1))[η − g(0, φ)]

+

∫ t1

0

[C(t2 − s)− C(t1 − s)]g(s, ys + φ̄s)ds

+

∫ t2

t1

C(t2 − s)g(s, ys + φ̄s)ds

+

∫ t1

0

[S(t2 − s)− S(t1 − s)]f(s)dw(s)

+

∫ t2

t1

S(t2 − s)f(s)dw(s)|p

≤ 5p−1E|[S(t2)− S(t1)][η − g(0, φ)]|p

+5p−1E|
∫ t1

0

[C(t2 − s)− C(t1 − s)]g(s, ys + φ̄s)ds|p

+5p−1E|
∫ t2

t1

C(t2 − s)g(s, ys + φ̄s)ds|p

+5p−1E||
∫ t1

0

[S(t2 − s)− S(t1 − s)]f(s)dw(s)||p2

+5p−1E||
∫ t2

t1

S(t2 − s)f(s)dw(s)||p2
≤ 5p−1|S(t2)− S(t1)|p(2p−1E|η|p

+2p−1c1||φ||pBh
+ 2p−1c2)

+5p−1bp−1

∫ t1

0

|C(t2 − s)− C(t1 − s)|p

E|g(s, ys + φ̄s)|pds
+5p−1(t2 − t1)

p−1

∫ t2

t1

|C(t2 − s)|pE|g(s, ys + φ̄s)|pds

+5p−1E{
∫ t1

0

[|S(t2 − s)− S(t1 − s)|p||f(s)||p2]
2
p ds} p

2

+5p−1E{
∫ t2

t1

[|S(t2 − s)|p||f(s)||p2]
2
p ds} p

2

≤ 5p−1|S(t2)− S(t1)|p(2p−1E|η|p
+2p−1c1||φ||pBh

+ 2p−1c2)

+5p−1bp−1

∫ t1

0

|C(t2 − s)− C(t1 − s)|p

(c1||ys + φ̄s||pBh
+ c2)ds

+5p−1(t2 − t1)
p−1

∫ t2

t1

|C(t2 − s)|p

(c1||ys + φ̄s||pBh
+ c2)ds

+5p−1{
∫ t1

0

[|S(t2 − s)− S(t1 − s)|pE||f(s)||p2]
2
p ds} p

2

+5p−1{
∫ t1

t2

[|S(t2 − s)|pE||f(s)||p2]
2
p ds} p

2

≤ 5p−1|S(t2)− S(t1)|p(2p−1E|η|p
+2p−1c1||φ||pBh

+ 2p−1c2)

+5p−1bp−1

∫ t1

0

|C(t2 − s)− C(t1 − s)|p
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(c1||ys + φ̄s||pBh
+ c2)ds

+5p−1(t2 − t1)
p−1

∫ t2

t1

|C(t2 − s)|p

(c1||ys + φ̄s||pBh
+ c2)ds

+5p−1b
p
2−1

∫ t1

0

|S(t2 − s)− S(t1 − s)|pE||f(s)||p2ds

+5p−1(t2 − t1)
p
2−1

∫ t1

t2

|S(t2 − s)|pE||f(s)||p2ds

The right-hand side of inequality above is independent of y ∈
Bq and tends to zero as t2 → t1. Thus the set {L1y : y ∈ Bq}
is equicontinuous. (Note that we considered here only the case
0 < t1 < t2 ≤ b, since the other case t1 < t2 ≤ 0 or
t1 ≤ 0 ≤ t2 ≤ b are very simple). As a consequence of the
Ascoli-Arzela theorem, it suffice to show that L1 maps Bq

into a precompact set in H . Let 0 < t ≤ b be fixed and let ε
be a real number satisfying 0 < ε < t. For y ∈ Bq we define

ρ̄ε(t) = S(t)[η − g(0, φ)] +

∫ t−ε

0

C(t− s)g(s, ys + φ̄s)ds

+

∫ t−ε

0

S(t− s)f(s)dw(s), t ∈ J.

since C(t) and S(t) is compact operators, the set Hε(t) =
{ρ̄ε(t) : ρ̄ε ∈ L1y} is precompact in H for every ε, 0 < ε < t.
Moreover, for every ρ̄ ∈ L1y, we have

E|ρ̄ε(t)− ρ̄(t)|p

≤ 2p−1E|
∫ t

t−ε

C(t− s)g(s, ys + φ̄s)ds|p

+2p−1E||
∫ t

t−ε

S(t− s)f(s)dw(s)||p2

≤ 2p−1εp−1

∫ t

t−ε

E|C(t− s)g(s, ys + φ̄s)|pds

+2p−1E{
∫ t

t−ε

[|S(t− s)|p||f(s)||p2]
2
p ds} p

2

≤ 2p−1εp−1

∫ t

t−ε

|C(t− s)|pE|g(s, ys + φ̄s)|pds

+2p−1{
∫ t

t−ε

[|S(t− s)|pE||f(s)||p2]
2
p ds} p

2

≤ 2p−1εp−1

∫ t

t−ε

|C(t− s)|pE|g(s, ys + φ̄s)|pds

+2p−1ε
p
2−1{

∫ t

t−ε

|S(t− s)|pE||f(s)||p2ds.

Therefore there are precompact sets arbitrarily close to the set
{ρ̄(t) : ρ̄ ∈ L1y}. So the set {ρ̄(t) : ρ̄ ∈ L1Bq} is precompact
in H . Hence, the operator L1 is completely continuous.

Step 4. L1 has a closed graph.
Let y(n) → y∗, ρ̄n ∈ L1y

(n) and ρn → ρ̄∗. We shall prove
that ρ̄∗ ∈ L1y

∗. Indeed, ρ̄n ∈ L1y
(n) means that there exists

fn ∈ SF,y(n) , such that

ρ̄n(t)

= S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, y(n)s + φ̄s)ds

+

∫ t

0

S(t− s)fn(s)dw(s), t ∈ J.

We must prove that there exists f∗ ∈ SF,y∗ such that

ρ̄∗(t)

= S(t)[η − g(0, φ)] +

∫ t

0

C(t− s)g(s, y∗ + φ̄s)ds

+

∫ t

0

S(t− s)f∗(s)dw(s), t ∈ J.

since g is continuous, for t ∈ J ,

‖ {ρ̄n(t)− S(t)[η − g(0, φ)]

−
∫ t

0

C(t− s)g(s, y(n)s + φ̄s)ds} − {ρ̄∗(t)

−S(t)[η − g(0, φ)]−
∫ t

0

C(t− s)g(s, y∗s + φ̄s)ds} ‖
−→ 0, as n −→ ∞.

Consider the linear continuous operator

Γ : Lp(J,H) −→ C(J,H),

f −→ Γ(f)(t) =

∫ t

0

S(t− s)f(s)dw(s).

From Lemma 1, it follows that Γ ◦ SF is a closed graph.
Moreover, we have

ρ̄n(t)− S(t)[η − g(0, φ)]

−
∫ t

0

C(t− s)g(s, y(n)s + φ̄s)ds ∈ Γ(SF,y(n)).

Since y(n) −→ y∗, it follows from Lemma 1 that

ρ̄∗(t)− S(t)[η − g(0, φ)]−
∫ t

0

C(t− s)g(s, y∗s + φ̄s)ds

=

∫ t

0

S(t− s)f∗(s)dw(s).

for some f∗ ∈ SF,y∗ .
Therefore L1 is a completely continuous multivalued map,

Usc with convex closed values.

Now, in order to apply Theorem 1, we introduce a parameter
λ > 1 and consider the following auxiliary problems:⎧⎪⎪⎨
⎪⎪⎩

x(t) = C(t)φ(0) + 1
λS(t)[η − g(0, φ)]

+ 1
λ

∫ t

0
C(t− s)g(s, xs)ds

+ 1
λ

∫ t

0
S(t− s)f(s)dw(s), for a.e t ∈ J,

x(t) = φ(t), t ∈ (−∞, 0], (5)

where f ∈ SF,x.
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Lemma 4. If hypotheses (H1) − (H5) are satisfied. Let
x(t) be a mild solution of system (5), then there exists a priori
bounds R > 0, such that ‖ xt ‖≤ R, t ∈ J , where R depends
only on b and the function ψ(·) and p(·).

Proof. From the system (5), we have

E|x(t)|p
≤ 4p−1E|C(t)φ(0)|p + 4p−1E|S(t)[η − g(0, φ)]|p

+4p−1E|
∫ t

0

C(t− s)g(s, xs)ds|p

+4p−1E||
∫ t

0

S(t− s)f(s)dw(s)||p2
≤ 4p−1|C(t)|pE|φ(0)|p

+4p−1|S(t)|p{2p−1(E|η|p + E|g(0, φ)|p)}
+4p−1bp−1

∫ t

0

|C(t− s)|pE|g(s, xs)|pds

+4p−1{
∫ t

0

[|S(t− s)|pE||f(S)||p2]
2
p ds} p

2

≤ 4p−1Mp
1E|φ(0)|p + 8p−1Mp

1 b
p(E|η|p

+c1||φ||pBh
+ c2)

+4p−1bp−1Mp
1

∫ t

0

(c1||xs||pBh
+ c2)ds

+4p−1b
p
2−1

∫ t

0

|S(t− s)|pE||f(s)||p2ds
≤ 4p−1Mp

1E|φ(0)|p + 8p−1Mp
1 b

p(E|η|p
+c1||φ||pBh

+ c2)

+4p−1bp−1Mp
1

∫ t

0

(c1||xs||pBh
+ c2)ds

+4p−1b
p
2−1Mp

1 b
p

∫ t

0

p(s)ψ(||xs||pBh
)ds

= N + 4p−1bp−1Mp
1

∫ t

0

(c1||xs||pBh
+ c2)ds

+4p−1b
p
2−1Mp

1 b
p

∫ t

0

p(s)ψ(||xs||pBh
)ds,

Where

N = 4p−1Mp
1E|φ(0)|p + 8p−1Mp

1 b
p(E|η|p

+c1||φ||pBh
+ c2).

Thus from Lemma 2, it follows

||xt||Bh
≤ l sup

s∈[0,t]

[E|x(s)|p] 1p + ||x0||Bh

≤ l[N + 4p−1bp−1Mp
1

∫ t

0

(c1||xs||pBh
+ c2)ds

+4p−1b
p
2−1Mp

1 b
p

∫ t

0

p(s)ψ(||xs||pBh
)ds]

1
p

+||φ||Bh
.

Let μ(t) = sup{||xs||Bh
: 0 ≤ s ≤ t}, then the function μ(t)

is nondecreasing in J, and we have

μ(t) ≤ l[4p−1b
p
2−1Mp

1

∫ t

0

(c1μ
p(s) + c2)ds

+4p−1Mp
1 b

3p
2 −1

∫ t

0

p(s)ψ(μp(s))ds+N ]
1
p

+||φ||Bh
.

Let α(t) = 4p−1b
p
2−1Mp

1

∫ t

0
(c1μ

p(s) + c2)ds +

4p−1Mp
1 b

3p
2 −1

∫ t

0
p(s)ψ(μp(s))ds+N , so we have

α(0) = N, μ(t) ≤ l(α(t))
1
p + ||φ||Bh

, t ∈ J,

and

α′(t) = 4p−1b
p
2−1Mp

1 (c1μ
p(t) + c2)

+4p−1b
3p
2 −1Mp

1 p(t)ψ(μ
p(t))

≤ 4p−1b
p
2−1Mp

1 (c1(l(α(t))
1
p + ||φ||Bh

)p + c2)

+4p−1b
3p
2 −1Mp

1 p(t)ψ(l((α(t))
1
p + ||φ||Bh

)p)

≤ m̄(t)(1 + (l(α(t))
1
p + ||φ||Bh

)p

+ψ((l(α(t))
1
p + ||φ||Bh

)p))

Where

m̄(t) = max{4p−1b
p
2−1Mp

1 c1, 4
p−1b

p
2−1Mp

1 c2,

4p−1b
3p
2 −1Mp

1 p(t)}.

This implies

α′(t)
1 + g(α(t)) + ψ(g(α(t)))

≤ m̄(t),

and ∫ t

0

α′(s)
1 + g(α(s)) + ψ(g(α(s)))

ds ≤
∫ t

0

m̄(s)ds,

That is
∫ α(t)

α(0)

1

1 + g(s) + ψ(g(s))
ds ≤

∫ t

0

m̄(s)ds

<

∫ +∞

N

1

1 + g(s) + ψ(g(s))
ds.

Where α(0) = N, g(s) = (ls
1
p + ||φ||Bh

)p. This inequality
implies there is a constant k̄ such that α(t) ≤ k̄ for every
t ∈ [0, b], hence

||xt||Bh
≤ μ(t) ≤ l[α(t)]

1
p + ||φ||Bh

≤ lk̄
1
p + ||φ||Bh

.

This shows that exist constant R = lk̄
1
p + ||φ||Bh

> 0, such
that ||xt||Bh

≤ R.

Theorem 2 Assume that hypotheses (H1)−(H5) hold, then
system (1) has at least one mild solution on J1.
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Proof Let Ω = {y ∈ B0
b : λy ∈ L1y, for some λ > 1}.

Then for any y ∈ Ω, we have

y(t) =
1

λ
S(t)[η − g(0, φ)]

+
1

λ

∫ t

0

C(t− s)g(s, ys + φ̄s)ds

+
1

λ

∫ t

0

S(t− s)f(s)dw(s),

which implies the function x = y + φ̄ is a mild solution
of system (5), for which we have proved in Lemma 4 that
||xt||Bh

≤ R, t ∈ J , and hence from Lemma 2

||y||b = ||y0||Bh
+ sup

s∈[0,b]

E
1
p |y(s)|p

= sup
s∈[0,b]

E
1
p |y(s)|p

≤ sup
s∈[0,b]

E
1
p |x(s)|p + sup

s∈[0,b]

E
1
p |φ̄(s)|p

≤ sup{l−1||xs||Bh
: s ∈ [0, b]}

+ sup
s∈[0,b]

E
1
p |C(t)φ(0)|p

≤ l−1R+M1E
1
p |φ(0)|p,

which implies Ω is bounded on J.
Hence, it follows from Lemma 4 and Theorem 1 that the

operator L1 has a fixed point y∗ ∈ B0
b . Let x(t) = y∗(t)+φ̄(t),

t ∈ (−∞, b]. Then x is a fixed point of the operator L which
is a mild solution of problem (1).
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