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Existence of Solution for Four-Point Boundary
Value Problems of Second-Order Impulsive
Differential Equations ()

Li Ge
Abstract—In this paper, we study the existence of solution of Let PC[J,R] = {z : J — R|z(t) is continuous at
the four-point boundary value problem for second-ordefedéhtial ¢ # t;, and left continuous at = ¢, and w(tﬁ) exists for
equations with impulses by using leray-Schauder theory: k = 1,2,..,m}, and PCI[J R] = {z € PC[J,R)|lz'(¢)
2" (t) = f(t, x(t),2'(t), te€[0,1], t#£ts, k=1,2,..,m IS continuous at # t, and z/(t;),a’(t;) exists fork =
Ax(ty) = Ix(x(tr)), k=1,2,..,m 1,2,..,m}. It is easy to prove tha’C[J, R] is a Banach
Az (te) = Ti(x(tr), o' (t)), k=1,2,..,m space with norni|z|| pc = sup,e; |=(t)|, PC'[J, R] is also

) = max{|lz] po, | #'| pc .
where0 < ¢ < < 0, af(1 — ) + (1 —a)(1—fn) £ 0, f ¢ We also use the spade [0, 1], and denote the norm ib' [0, 1]

C[J x R*,R), Iy € C[R,R], T € C[R*,R], J =[0,1]. We also by || - [l1.

give a corresponding example to demonstrate our results. For z € PC![J, R], by virtue of the mean value theorem
Keywords—impulsive differential equations, impulsive integral- ([5]) we know that the left derivation: (#;) exists and
differential equation, boundary value problems x’ () = 2'(t;,). In (E) and what follows, it is understood
thatm(tk) = 2/(t;). So, forz € PC'[J,R], we have
' € PC[J, R].
I. INTRODUCTION Let Jo = [0,t1], J1 = (ti.to)es Jnoy =

He theory of impulsive differential equations is emergingtm—1,tml, Jm = (tm, 1], J' = J \ {t1,t2,.. tm}, A map
T as an important area of investigation since it is much € PC'[J, RN C?[J', R] is called a solution of BVP(E) if
richer than the corresponding theory of concerning eqoatiot satisfies all equations of (E).
without impulses. Recently, some existence results cancer Throughout this paper, we assume thak § < 7 < 1.
ing the boundary value problems of impulsive differentidfurthermore, for convenience sake, we et o{(1 — 3) +
equations have been obtained ([1-3]). However, there dfe— @)(1 — 7).
few papers about multi-point boundary value problems of
differential equations with impulses. Recently, Sun [4vsd Il. PRELIMINARY LEMMAS
the existence of solutions for the three-point boundaryeal Lemma 2.1 ([3]) H c PC'[J, R] is a relatively compact
problem for second-order differential equations with insgs: set if and only if bothz(¢) and/(¢) are uniformly bounded

() = f(halt),a' (1)), te 0] t £t k=1,2_.m on J and equicontinuous on everk,(k = 1,2,...,m) for any

Ax(ty) = Iy(a(te)),  k=12...m rett
Az (ty) = Ii(x(te), o' (t)), k=1,2,..,m Lemma 2.2 ([3]) If = € PC'[J, R] N C2[J', R] satisfies
z(0) =0, (1) = az(n). 2 = f(t,z(t),2' (1), t #tr, k=1,2,..,m, then
Our work was motivated by the work of Sun[4]. In the ,

paper, we study the existence of solution for BVP(E). "y = 20 / "(s))d
Consider the following second order impulsive differehtia ®) TO)+ | s, w(s) 2(s))ds

equations + Z (@' () — ' (te)), Yted, (1)
a(t) = f(t,x(t), 2 (1), t € [0,1], t # t, k=1,2,..,m O<tr<t
Ax(ty) = If(‘L. te), k=1,2,..,m .
Az (tg) = L (x(tr), ' (t)), k=1,2,..,m z(t) = z(0) +x'(0)t—|—/ (t — s)f(s,x(s),2'(s))ds
z(0) = ax(§), z(1) = Bx(n), 0

(E) + ) — x(ty))
wheref € C[J x R*,R], J =[0,1], 0 <t; <ty <--- < 0<%:<t
tm < 1, I, € C[R,R], I, € C[R X R R] AJ‘(tk) =
2(6) — 2(t;) = alty +0) — a(ty — 0), Aa'(ty) = 2 (i + T @) 2t~ te), Vi€ ()
/ 0<tp<t

0) — ' (ty, — 0).

Li Ge is with the Department of Mathematics, Fuyang Nomallegy, Lemma 2_'3 let x E.PCl [J, RN C2[.J’7R} is a solution
Fuyang, 230062 Anhui, P.R.China, Email: gl3381874@suma.c of BVP(E), if and only ifz € PC![J, R] is a solution of the
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following impulsive integral-differential equations:

+/ f(s,z(s),2'(s))ds
+ Z Ik tk) x tk))

0<trp<t

2 (t)
(3
2t) = 2(0)+2'(0)+ /0 (E— ) f(s,2(s), 2 ())ds
+ > Telat), o' (tr))(t — t)

0<tp<t

+ Y In(x(ty))

0<tp<t

(4)

£
alt = o) [ (€= 9)f(s.as).a/(5)ds

L
A 0

o / (0= 8) (s, (), (s))ds

fozg/o (1=35)f(s,2z(s),2'(s))ds
a(l=p5n) Y Iu(x(tx))

0<ty <€

+afB€ Z Ik tk)_alek

0<tr<n

+a(l—pn) Y (€- tk)Tk(x( k)

0<tr<E
+afé Z

—ti) I (x
0<tr<n

—0452(1 - tk)Tk(x(tk’)»x/(tk))} .
k=1

(tr))
(tx), @' ()

©)

1 € ,

| {aw = 1) [ (€= ) fsa(0).0'(:)s

+o—a) | "= )7 (s, 2(s), 2/ (s))ds
0

—(- a)/o (1= ) (s, 2(s), 2/ (5))ds
—a(1-8) Y Iu(e(te)

0<trp<§

B —a) Y I(x(tr))

0<tr<n

—(1=0a) > I(x(t))
k=1
—a(1=0) > (& —te)Tk(x(tr),

o' (tr))
0<tp<§
+B(L—a) Y (n—ti)k(a(t), @' (1))
0<tk<17

—(1-« Z (1 — ti)Te(x(ty), ' (t)) ] . (6)
k=1

Proof If z(t) is a solution of BVP(E), then

z(t) = z(0)+2'(0)t +/0 (t —s)f(s,z(s),2'(s))ds

+ Z 5 —x(tr))
0<tp<t

+ 0 @) =2 (k) (E—tr), VEE .
0<tp<t

In view of z(0) = ax(§), (1) = Bz(n), we easily obtain
(5) and (6). The combination of (1), (2), (5) and (6), yields
(3) and (4).

On the other hand, assume that PC[J, R] is a solution
of Egs (3) and (4). It is clear that(0) = axz(¢), z(1) =
Bx(n), Ax(ty) = Irx(x(tx)). By performing differentiation of

(4) twice, we get
t
+ [ fsats)a o

+ Y Tela(tn), 2/ (1),

0<trp<t

/(1)

)ds
t# t,
and

a(t) = f(t,x(t), 2" (1), t# L,

which imply x € C%[J’, R] and Az’ (t1,) = I1.(z(ty),
Thereforex € PCY[J, R] N C?[.J’,
BVP(E).

OperatorA : PC1[J, R] — PC*[J, R] is defined as follows:

(Az)(t)

l’/(tk)).

R] and z is a solution of

z(0) + 2/ (0)t + /0 (t —s)f(s,2(s),2'(s))ds
+ ) Lu(a(t)

0<tp<t

+Z]k

0<trp<t

(te))(t = t&),Vt € J. (7)

wherez(0) andz’(0) are defined by (5) and (6) respectively.

Lemma 2.4 OperatorA is a completely continuous one
mapping PC[J, R] into PC'[J, R].
Proof By (3), we get

(Ax) (t) O)t—}—/0 f(s,z(s),2'(s))ds
£ Tt

0<tp<t
wherez’(0) is defined by (6).

From (7) and (8), it is easy to see thdtis continuous
operator fromPC*[J, R] into PC'[J, R]. Let S be a bounded
set of PC![J, R], then A(S) c PC'[J,R] is bounded and
the elements ofA(S) and their derivatives are all uniformly
bounded on/ and equicontinuous on eadh(k = 1,2,...,m).
Therefore,A(S) is a relatively compact set aPC'[J, R] by
Lemma 2.1. So, operatot is completely continuous.

®)

Lemma 2.5 ([6]) Let X be a real normed linear space
andT : X — X be a compact operator. Suppose that
Use(o,1) 21 is @ bounded set, wher@, = {z € X|z
AT'z}, then the equatior = ATz has at least a solution
when )\ = 1.
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I1l. EXISTENCE RESULTS FORBVP(E) That is

In this section, we will prove existence results for BVP(E)
in following cases:

(i)a>1,3>1, n>1,andA > 0. |2’ (#)] < "
(i) a>1,8>1, Bn>1,andA <O.
(i) a>1, 8>1, fn <1, thenA < 0.

13
a8 1) / (€ — )|/ (s, 2(s), 2'(5))|ds

iVyo<a<l, g>1, fn>1,thenA <0.

WMo<ax<l, g>1, 0n<l1,andA <O0.
viio<ax<l, g>1, fn<1,andA > 0.
(vi) 0<a<1,0<8<1,thenA > 0.

+6a-1) [ (0= 9)\f (s, 2(s). 2’ (5))ds

+<a—1>/0 (1 - 5)\f(s, (), 2'(5))|ds
ta(f-1) 3 [etn)]

0<trp<¢
Theorem 3.1 Let f : [0,1] x R* — R be a continuous +ha—1) 3 [Tu(x(te))]

function, I, € C[R, R], I € C[R x R, R]. Assume that O<tngn

(A1) There exist functiong, ¢, r in L*[0,1], such that for m

all (z,y) € R?, t € [0,1] Ha— 1) [(x(tr))

[f(tzy) < p(O)]e] +q@)lyl + (). 9) +a(B—1) Y (& —tr)|Tr(x(t), 2/ (11))]

0<tp <€

(Ay) There exist constants < 8, < 1, M; > 0 satisfying +Ba—1) > (0= ti)[Te(a(ts), 2 (t))]

|Ix(x)] < M), for anyVz € R, and 0<tr<n

7 +la—1) > (1 —t)[Te(x(tr), 2" (tx))]
Ilm‘z‘+|y|_m7|w‘ T |y| Or, k=1,2,..,m. (10) . k=1 )
+ [ 1) @)lds + 30 Mulatn). o)
0

(As3) There exist constants, 3, &, n satisfying (i). 0<t) <t

Then BVP(E) has at least one solution RC'[J, R] N 1 3
C2[J', R] provided that N G 1)/ |f(s,2(s), 2" (s))|ds
S A +0n(a—=1) | [f(s,2(s),2'(s))|ds
||P||1+||Q||1+kz_12ﬁk < et +2a-2) (11) /
N (a—1) / |f(s,2(s),2'(s))|ds
Proof We will verify that the set of all possible solution
of the family of equations: ol - 0<§<5|Ik( w(te))]
2 = Af(a(t), ' (1), tAt k=12 m +oa=1) > [k(a(t)]
Az(ty) = Mg (z(tr)), k=1,2,..,m Tg<tk<"
AL (tp) = Mg (a(ty), 2 (t5), k=1,2,.m - i
) g - Ha=D) Mul(te)
A —
is priori bounded inPC'[J, R] N C?[J’,R] by a constant +ag(B-1) Y [Tr(z(te), o' (tr))|
independent of\ € (0, 1). 0<ty <&
If z € PC! [J R] N 0%]’ R), W.m (0) = ax(¢),z(1) = +Bna—1) > [Th(x(te), 2 (t))]
Bx(n), from z(t )+ fo $)ds + 30y, <o (2 (tr)), 0<tr<n
we have m
(@ =1) > [Tr(z(te), ' (1))
1 m k=1
] < L)+ [ o O+ M @2) +A/ oo
From (3) and (6), we get +A Y [Th(z(te), tk))@
0<tp<t
' : + , 1 !
)+/ flsow(s),a (s))ds+ Y Tn(a(te), 2’ (1)) < % Qﬁn(a—l)/ |f(s,2(s),2"(s))|ds
0 0<tp<t 0
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+(208 - 8- 1) [T(a(tr)] Hence
= 2 —1
m k_l [2'(t)] < % {lphlwl +llgllaf’] + Il
+26n(a — 1) Z [T (2(te), 2/ (¢ ))q .
+> (B + &) (|z] + |2])
< Qﬁn 2m(a —1) {/ |f(s,x( s))|ds k=1
+Z |7k($(tk)7x'(fk))|} k=1
k=1 2577( - 1)
m = — I\QI\1+Zﬁk+€ )| 2]
+M ZMk (13) k=1
Ao 26n(o — 1)
L \|p\|1+2(6k+s) || 4+ M
By (9), set|plly + llgllx + 33, 28, = My, then exists . =t
£ > 0, such that That is
QD [1p]ls + Spe, (B + )]
1 A ' lpc < A — Izl pc
me < [ — My, Ve < eo. 1—M[|\Q|\1+Zm: (B +¢)]
4°26n(af + 20— 2) ML, A k=1 (1)

From (10), we know exists ah/ () for anye defined above By (5), (12) and (13), we get
such that|z| + |2'| > M(e), [Tr(x(tr), 2’ (tr))] < (Br +

3
)(|z|+|z’|). Now, we assume tha&t’(¢)| is unbounded, that is 1 -1 "(s))|d
there exists soma € (0, 1) such thatz’| > maxz{M(e), MY}, 0] < {ag(ﬂn )/ 175, 2(s), o (5))]ds

where
+an [ 165,29,/ (9) s
2Bn(a —1) 20 — 5
My, = %Hrﬂl—k < ZMk +a§/ |f(s,2(s),2'(s))|ds
0
Ma = (1 M (Ul +Z B+ o] M. +a(ﬁn—1)0<§<f\1k(w(tk))|
2apu+2ag+2ap—20=py- sz My +ape D Tk(x(te)]
Mg = SBnaEra=D) ' ptesn
1 — PR |l + 225 (Br + €))]
Y 2ﬁn(a§\+a—1) gl + >, (Br + &) Mao +04§Z (L ((tr))
o= T 2m(agra—n) m 3 ' =
1 A [llpllx + Zk:1(ﬂk +e)] +af(Bn —1) Z \Tk(x(tk),ml(fk))l
M = 2, where feise
b +aBén Z [T (z(te), 2 (tr))]
20n(a +a—1) e
= [1-——=———(Ipl
¢ N A e ' ) +OZfZ|Ik tk))q
+ Y Be+ Nl = L (lall
Pt 2577 {/ | £ (s, z( s))|ds
+ Z(ﬁk +€))](Mas + Mua),
k=1 +Z|7k($(tk)7xl(tk))|
20n(a€ +a— 1) M o ZMHZMk
b = 1-*[” pll
£+ o) - 2210y, < ZoPent 2aln - 2on / £ (s, 2(s), ' () lds
k=1
+Z(ﬂk+€)] +Z|7k($(tk)7ﬂf'(fk))|}
k=1 k=1
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+2aﬁn+2a£+2aﬁ72a7[5nfﬁiMk

A k=1
2 -1 m
< LD > (5 + 9|l
k=1
26n(af +a —1)
e ||+Zﬁk+a 1|
2a0n + 2a€ + 208 — 200 — ﬂn 5
+
A
> M. (15)
k=1
That is
28n(agta—1) m
~ A + 2 = +e
lzlpe < o llalls + 55 (Be + )]

1 2nlestaz ), 4SS (B + )]
2’| pc + Mas. (16)

The combination of (14) and (16), yields
1 2tectedlg|ly + Y5i, (B + )]

1 — Palabraz ), 4 S (5 4¢))
+M437

lzllpc < k-

zdn(a 1) m
B el (Br+e)]
wherek = | — m(a DS :1(ﬂk+€)] lz|| pc +M42]
Hence C
llz||pc < E(M43 + Myy).
20n(a€ +a—1) L
c = [1- f(pb + ;(@s +¢€))]
20n(a — 1 “
1= 220 S ),
k=1
20n(aé + «
a4 - Wf—[pb £ (o)
k=1
2677

ZﬂkJrE

It lead to ||z||pc < M for any X € (0,1), a contradiction.
It is now immediate from (14), thdlx’|| p¢ is also bounded,

so is||2'|| pc:- This completes the proof.

By using the same method as the proof of Theorem 3.1,
can show that the following Theorem 3.2 - Theorem 3.7 ho

Theorem 3.2 Let f:

BVP(E) has at least one solution inPC![J, Rl N C?[J’, R)
provided that

—A
2(afén +apé+a—af —1)

Iplls + gl + 26k <
k=1

Theorem 3.3 Let f:

)

[0,1] x R? — R be a continuous
function, I, € C[R, R], I € C[R x R, R]. Assume that the
conditions(A4;) and (Az) of Theorem 3.1 are satisfied and
(A4) There exist constants, 3, &, n satisfying (ii). Then

:[0,1] x R> — R be a continuous
function, I, € C[R, R], I € C[R x R, R]. Assume that the

conditions(A4;) and(Az) of Theorem 3.1 are satisfied and
(A5) There exist constants, 3, &, n satisfying (iii).

Then BVP(E) has at least one solution in PC[J, R] N
C?J’, R) provided that

m —A
+ + 20 < ———.
ok + el + 3226 < gz,

Theorem 3.4 Let f:[0,1] x R?2 — R be a continuous
function, I, € C[R, R], I} € C[R x R, R]. Assume that the
conditions(4;) and (A2) of Theorem 3.1 are satisfied and
(Ag) There exist constants, 5, &, n satisfying (iv).

Then BVP(E) has at least one solution in PC'[J, R] N
C?[J', R)] provided that

—A
2(afén + Bn + B — afn — af)

m
Ipll+llall +) 26k <

k=1

Theorem 35 Let f : [0,1] x R? — R be a continuous
function, I, € C[R, R], I}, € C[R x R, R]. Assume that the
conditions(A4;) and (Az) of Theorem 3.1 are satisfied and
(A7) There exist constants, 3, &, n satisfying (v).

Then BVP(E) has at least one solution in PC[J, R] N
C?[J’, R] provided that

m —A
2 .
Il +llalh + 3200 < 55 e

Theorem 3.6 Let f : [0,1] x R? — R be a continuous
function, I, € C[R, R], I} € C[R x R, R]. Assume that the
conditions(4;) and (A2) of Theorem 3.1 are satisfied and
(Ag) There exist constants, 3, &, n satisfying (vi).

Then BVP(E) has at least one solution in PC'[J, R] N
C?[J’, R) provided that

A

m
28 < ———.
Ipll + gl +; B eEr1—a)

Theorem 3.7 Let f : [0,1] x R?2 — R be a continuous
function, I, € C[R, R], I} € C[R x R, R]. Assume that the
conditions(A4;) and(Az) of Theorem 3.1 are satisfied and
(Ag) There exist constants, (3, &, n satisfying (vii).

Then BVP(E) has at least one solution RC[J, R] N
| provided that

m A
Il + il + 32265 < e —a

Remark In cases (iv) and (vi), the special cases= 0
have discussed by Sun [4].
Example Consider the BVP:

()1 m+28x +2In(1+¢%), t # L
Az(3) = cos” z(3); ’
Ac'(h) = ghelo(h) — /(1) =

2(0) = 3x(3), : ()_235(%)

Wheref € C[J x R*,R], I, € C[R, R], I € C[R? R).
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Note thatm =1, t; = 3, a = 3.

Furthermore
1 1
< — 21In(1 + ¢2
|f(t,z,y)] < 240IUCI + 228|y|+ n(l+1t%),
L] = |cos® x| <1,

- 1

Therefore
(a—D@B-1) 1 3 _ 1
28n(af +2a—2) 577" 228’
79 1
26) = —— < —.
Ipllx + llgll + 261 1560 < &7

Hence from Theorem 3.1, there exises a solutione

PC[J,R]NC?[J',R] to (E'), where(J' = [0, 2)U(3,1))).

(1

(2

(3]
[4]

(5]
(6]

’ 2

REFERENCES

Z. M. He and J. S. Yu, Periodic boundary value problem fastfi
order impulsive functional differential equations. ApMath. Comput.,
138(2002)205-217.

D. J. Guo, Multiple positive solutions of boundary valpeoblems for
first order nonlinear impulsive intergro-differential egjons in a Banach
space. Appl. Math. Comput143(2003)233-249.

D. J. Guo, J. X. Sun, Z. L. LiuFunctional methods of nonlinear ordinary
differential equation. Jinan: shangdong Sci and Tech Press, 2005.

Y. Sun and D. M. Zhu, Existence theorems for a second athtrele-point
boundary value problem with impulses, Appl. Math. J. Chingsiiv. Ser.
B., 20(2005)165-174.

D. J. Guo, J. X. SunQrdinary differential equation in abstract space.
Jinan: shangdong Sci and Tech Press, 2005.

Y. C. Zhao, Nonlinear analysis with applications. Beijing: Higher Edu-
cation Press, 1989.

793



