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Existence and exponential stability of almost
periodic solution for Cohen-Grossberg SICNNs
with impulses

Meng Hu and Lili Wang

Abstract—In this paper, based on the estimation of the Cauchy ma-
trix of linear impulsive differential equations, by using Banach fixed
point theorem and Gronwall-Bellman’s inequality, some sufficient
conditions are obtained for the existence and exponential stability
of almost periodic solution for Cohen-Grossberg shunting inhibitory
cellular neural networks (SICNNs) with continuously distributed
delays and impulses. An example is given to illustrate the main
results.
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I. INTRODUCTION

N recent years, considerable attention has been paid to

study the dynamics of artificial neural networks because
of their potential applications in the areas as signal and
image processing, pattern recognition, parallel computations
and optimization problems.

One of the most popular models in the literature of artificial
neural network is the following shunting inhibitory cellular
neural networks (SICNNs) with delays:

Tii(t) = —aii(t)z;(t)
- Y CH@)fij(zm )z (t)
CHIEN, (i,7)
+Li;(t),t > 0,
Il](t) = @ij(t)at € [_Tv 0]7

i=12....,n,5=1,2...;m,

where C;;(t) denotes the cell at the (4, j) position of the lattice
at the ¢; the r-neighborhood N,.(,j) of Cj;(t) is

N, (i,§) = {C*(t) : max(|k —i|,|l — j|) <71 <k <n,
1 <1< m},

x;;(t) is the activity of the cell Cj;(t); L;;(t) is the external
inputs to C;(t); a;;(t) > 0 represents the passive decay rate
of the cell activity; ijl (t) > 0 is the connection or coupling
strength of postsynaptic activity of the cell transmitted to the
cell C;; the activity functions f;;(-) are continuous functions
representing the output or firing rate of the cell C*!(t), ¢;;(t)
are the initial functions.

Since Bouzerdout and Pinter in [1-3] described SICNNSs as
a new cellular neural networks, SICNNs have been extensively
applied in psychophysics, speech, perception, robotics, adap-
tive pattern recognition, vision, and image processing. It is
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well known that studies on neural dynamic systems not only
involve a discussion of stability properties, but also involve
many dynamic behaviors such as periodic oscillatory behavior,
almost periodic oscillatory properties, chaos and bifurcation.
In applications, if the various constituent components of the
temporally nonuniform environment is with incommensurable
(nonintegral multiples) periods, then one has to consider the
environment to be almost periodic since there is no a priori
reason to expect the existence of periodic solutions. If we
consider the effects of the environmental factors, the assump-
tion of almost periodicity is more realistic, more important and
more general. Recently, a lot of sufficient conditions have been
given for almost periodic oscillation of SICNNs with constant
time delays or time-varying delays in the literature, see [4-10]
and the references cited therein.

On the other hand, impulsive effects widely exist in many
dynamical systems involving such areas as population dynam-
ics, automatic control, neural networks and so on. For example,
in implementation of electronic networks in which state is
subject to instantaneous perturbations and experiences abrupt
change at certain moments, which may be caused by switching
phenomenon, frequency change or other sudden noise, that is,
does exhibit impulsive effects. For significance of impulsive
effects, one can see [11-18].

Let R = (—o00,00), RT = [0,00), @ C R, & # 0 and
B={{n}eR:m < 741, k € Z, kgrfoom = foo}
denote the set of all sequences that are unbounded and strictly
increasing.

To the best of our knowledge, the almost periodic oscillatory
behavior is seldom considered for Cohen-Grossberg SICNNs
with continuously distributed delays and impulses, which is
described by the following integro-differential equations:

S0 = =i o) |y 3y )
+ Z C,;q]l (t)w” ( f0+oo kij (S) X
CI'e Ny (4,5)
zgi(t — S)d5> ij(t) — Iz'j(t)} :
t# 7k, k € Z,

Azii( ) = Qe (Tk) + Vijk,
i=1,2,....n, j=1,2,....m k€Z,

M

where a;;(x;;(t)) and b;;(x;;(t)) represent an amplification
function at time ¢ and an appropriately behaved function at
time ¢, respectively; w;; € C(R,R™) denote the normal and

534



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:5, No:4, 2011

the delayed activation functions; {7} € B, with the constants
Ak e R, Yijk eR keZ,i=1,2,...,n, j=1,2,...,m.

Let ¢y € R. Introduce the following notation:

PC(ty) is the space of all functions ¢ : [—o0,t] —
having points of discontinuity at 61,6, ... € (—oo,tp) of the
first kind and left continuous at these points.

For J C R, PC(J,R) is the space of all piecewise
continuous functions from J to R with points of discontinuity
of the first kind 7%, at which it is left continuous.

Let z(t) = az(t to, o),z = (z11, - I
zo = (o115 Zoijr "+ s Zomn) L. The system (1) is supple-
mented with initial values problem given by

$(t0 + O, to,I’o) = X0-

The rest of this paper is organized as follows: In Section
2, we will introduce some necessary notations, definitions
and lemmas which will be used in the paper. In Section 3,
some sufficient conditions are derived ensuring the existence
and exponential stability of the almost periodic solution. An
example is given to illustrate the effectiveness of our results
in section 4.

II. PRELIMINARIES

In this section, we shall first recall some basic definitions,
lemmas which will be used in what follows.

Definition 2.1([19]) Let z(¢) € C(R,R) be continuous in
t. z(t) is said to be almost periodic in the sense of Bohr on
R, if for any € > 0, the set T'(z,¢) = {7: |z(t+7) —z(t)| <
€,Vt € R} is relatively dense, i.e., for any € > 0, it is possible
to find a real number [ = I(¢) > 0, for any interval with length
l(€), there exists a number 7 = 7(¢) in this interval such that
lx(t+71) —x(t)| <e VEtER.

Definition 2.2([20]) A sequence x : Z — R is called an
almost periodic sequence if the e- translation set of x:

T{e,z} :={r7€Z:|x(n+71)—=x(n)| <e forallncZ}

is a relatively dense set in Z for all € > 0, that is, for any given
€ > 0, there exists an integer [ > 0 such that each discrete
interval of length [ contains a integer 7 = 7(€) € T'{¢, x} such
that

|z(n+7) —x(n)| <e forallneZ,

7 is called the e- translation number of xz(n).

Definition 2.3([21]) The set of sequences {7} }, 7] = Tj;—
Tk kyj € Z, {7} € B is said to be uniformly almost periodic
if for arbitrary € > 0 there exists a relatively dense set of
e-almost periods common for any sequences.

Definition 2.4([21]) The function z(¢) € PC(R,R) is said
to be almost periodic, if the following hold:
(a) The set of sequences {T]z}, T]g = Tt

Z,{7} € B is uniformly almost periodic.
(b) For any € > 0 there exists a real number § > 0 such
that if the points ¢ and ¢ belong to one and the same
interval of continuity of x(¢) and satisfy the inequality
[t —t"| <o, then |z(t) —z(t")] <e.
(¢) For any € > 0 there exists a relatively dense set 7" such
that if 7 € T, then |z(t + 7) — z(t)] < e for all t € R

- Tkykvj €

satisfying the condition |t — 7| > €, k € Z.
The elements of 7" are called e-almost periods.
Throughout this paper, we assume that

(Hy) ai(-) € C(R,R*) and there exist positive constants a;
and Q5 such that 0 < a;; < CLﬁ(') < ayj and a;; <
aet=12,....n, j=12,....m
The set of sequences {Tg}, T]z =Tht;— Tk k €Z,j €L,
{7t} € B is uniformly almost periodic and there exists
6 > 0 such that ]iIelgT,i =0>0.

(Hy)

(H3) The sequence {ajr} is almost periodic and % -1<
i < ;;j e2 -1, ke Z i=12..n j=

1,2,...,m

The sequence {v;jr} is almost periodic and v =
sup [y, k€ Z,i=1,2,...,n, j=1,2,...,m

keZ

E

bii(}) € Cl(R R) and b;;(0) = 0. There exist positive

constants by ;, b bu and Ly such that 0 < b}; < bj;(t) < E;j,
,m, andforu v € R,

i =1,2,...,n, 5 = 1,2,.
max |bij(u)fb,~j(v)| SLb\uva

1<i<n,1<j<m

The functions Cl-gjl(t), I;;(t) are almost periodic in
the sense of Bohr and |I;;(¢)] < oo, t € R, i =
1,2,....,n, j=1,2,....m

The functions w;; are almost periodic in the sense of
Bohr and w;;(0) =0, =1,2,...,n, j =1,2,...,m
There exist positive constant L,, such that for u, v €

i (w) — wii (V)] < Llu — v).
R 1<z<I'rIL12%)<(]<m ‘wu (’LL) Wij (1))| - Lw|u U‘

The delay kernels k;; € C(IR,R) and there exist positive
constants k;; such that

“+o0
/ kij(s)|ds < kij, i=1,2,...,
0

Now, we shall transform system (1) and state some nota-
tions, which will be used in later sections.

From (H;), the antiderivative of 1/a;;(x;;) exists. We
choose an antiderivative h;;(x;;) of 1/a;;(x;;) that satisfies
h,J(O) = 0. ObVlOUSly, (d/dmu)hw(xu) = 1/CLU(ZIZU) By
a;j(z;;) > 0, we obtain that h;;(z;;) is strictly monotone
increasing about z;;. In view of derivative theorem for in-
verse function, the inverse function h;; Yaiy) of hij(zyy) is
differentiable and (d/dz;;)h;; Hayy) = a,-j(h” (zij)). By
(Hs), composition function b”(hml( z)) is differentiable. De-
note w;j(t) = hij(xi;(t)). It is easy to see that uj;(t) =
x};(t)/ai(wi(t)) and ;5(t) = lfl(uw( ))- Substltutmg these
equalities into system (1), we get

(Hy)

(Hs)

(Hs)

(H7)

(Hg)

wi;(t) = —bij(hy;' (ui()))

- X Cf]jl(t)wij< o " kg ()%
C9'eN,(4,5)

Pyt (¢ =) ds 5 sy )
+IZ]( )7 t 7é Tk

Auu( Tk) = hzy((l + auk)h 1(uu (%)) + ’Yijk) - uij(Tk)
= 13 (uij (Tk)),

where t =1,2,...,n, j=1,2,...,m, k € Z.

Ifug;(t) £ O0forallt € R, i =1,2, ...
from the definitions of h;;(z) and hi_j1

7n’ j: 1727"'7m?
(2), using Lagrange

n, j=12,...,m

@
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mean-value theorem, we have

rij(uij(Th))
= hig (14 aiji)hi (wij (7)) + vijn) — wij (1)
(U i) hi! (uig (7)) + i)
(L age)ha (i () + i
X [(1+ aiji)hiz! (wig(7h) + Yigh] — wij (7h)

B (14 agjr)hi;((1 +Oz”k)h
(1 +aijk)hij
% htjl(ulj(Tk))

i (k) + i)
(uw (%)) + Yijk

i (Ti) — wij (k)

wij (Ti)
hij (1 + azyk)h (uw (T8)) + %jk)V
ik
(1+ cigr)h; (i (76)) + vijw
(1 + aijr)aij (mijn) Yijk
= — g () + —7—
aij (&ij) ! aij(&ijk)
= ijruij(Th) + Vijk,
where
1
ai; (& S ETTIEY
o) = e
(14 aigr) by (i (7h)) + Yij

= (0t oy () + )

aij(hi;' (Gigr)) = (hi;") (Gijw)
Dy Cus(m)) @

u;5(Tk)

hi; (ngk) &jr is between 0 and (1 +

ai; (Mijk)

in which n;;, =

ozljk)h l(uu(rk))—l—fy”k, 75k is between 0 and h (ui]-(*rk)),
and
(1 + agjic)aij (i)
! aij(&ijr)
Yijk
Vijk = — 44— (6)
’ aij(fijk)
where it =1,2,...,n, j=1,2,...,m, k € Z.

Then system (2) can be rewritten as
ui;(t) = —eij(uiz(t))ui;(t)
1 +oo
- X cy (t)wij(fo kij(s)x

CI'eN(4,5)
(e = ) ds ) s 0) ™
+I”( ), t# Tk
Auii( ) = pijrti(Tr) + Vijk,
i=1,2,....m, j=1,2,....m, k€ Z,

where eij(ui]( )) = b”(h
i=1,2 . .m =1,2,.. m
System (1) has an almost periodic solution which is globally
exponentially stable if and only if system (7) has an almost
periodic solution which is globally exponentially stable.

bij (his' (uiz (1)) .
Let Eij(t) = eij(u;(t)) = ——imm 1 =

1,2,....n, 5=1,2,....m

Y (1)) Juiy(t) for all t € R,

Together with the system (7) we consider the linear system

{u;j( ) = _EU( )uU(t)? t# Tk (8)
Aul] (T ) ;L%]kuij(Tk)v k S Z?

where te R, i=1,2,...,n, 7=1,2,...,m
Now let us consider the equations

i —Eij(t)uij(t)7 Th—1 <t < Tk, {Tk} eB

and their solutions

i (t) = g (s) exp{ - / t Eyi(o) da}

formy_ 1 <s<t<m,i=1,2,....,n, 7=1,2,....m
Then, recall [22], the Cauchy matrix of the linear system
(8) is

ex { wa dO’},Tk_1<S<t<T]¢;

k+1
H (1+N2]l)cxp{ f E'L] dO’}
l=m

Tm—1 <8< Ty < Tk <t < Ty,

W,jj (t7 S) =

and the solutions of system (8) are in the form

u;j(tto; uij(to)) = Wij(t, to)uiz(to), to € R,
i=1,2,...n, j=1,2,....m

Lemma 2.1 If the conditions (H;) —
following condition:

(HQ), (H5) and the

(H) w;(t) € PC(R,R) is almost periodic function satisfying

0 < M < inf |u;;(t)| < sup|uqi(t)] < N,
tER teR

where M, N are positive constants, ¢ = 1,2,...,n, j =
1,2,....m
hold. Then E;;(t) = eij(uij(t)) is almost periodic, i =
1,2,....n, j=1,2,.
Proof From the deﬁnltlon of e;(ui;(t)), Eij(t)
bij (h (uij ()

eij(uij(t)) = —uwmn b= L2..n g =

1,2,...
Case [: dE"I(t) de"éz;‘ &) — 0, then Ey;(t) = C;, where
Ci;j 1s a constant, ¢ = 1,2,...,n, j =1,2,....m

Hence EZJ( ) € C’(R ]R) is almost periodic, i =

1,2,..

Case I‘dE"l<t) de”éu” (t)) 7& 0 then Ezy (t) depends on
ug(t ) and EZ]( j € PCR,R),i=1,2,...,n, j =
1,2,.

We now check the three conditions given in Definition 2.4.

(a) With (Hy), it is trivially satisfied.

(b) For any € > 0, if ¢ and t” belong to one and the same
interval of continuity E;;(t) (¢’ and ¢ also belong to one
and the same interval of continuity u;;(t)), by condition
(b) of Definition 2.4, there exists a positive numbers J;;,
such that |[¢' — | < ¢; implies |u;;(¢) — ui;(t")] <

MPe ;1.2 ... ,m. We take § =

2Lbaij N’ 5 10y ]:1727
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min  {d;;}, when [t'—t"| < §,for1 <i<n,1<
1<L<71 ,1<5<m

i (ui () by (ki (ui (1))
Uij () Usij (t")
_ | ()b (i (wig (1)) — wig (")bij (bt (uij (7)) ‘
i (¢ )uij ()
_ iy (8")big (P (i (8))) = wag (8)biz (hi (uiz ()]
< e
N g ()i (i (uig (1)) — i ()i (A (uis (1))
M?
- Ly hiy (wig ()i (8) — wig (£)]
< e
N bij (hij* (uig (")) = bij (hi;' (ui ("))
+ e
Lyaij Nug;(t') — iz (¢7)]
<
< M2
LbNIh Huig (1) = i (g (1))
M?2
Lyt Nlug (') — ui; (t7)]
< M2
LbamN|“U —ug(t")]
]WQ
2Lya;; N
= sz i (t') = ui(¢7)] <,
so condition (b) of Definition 2.4 is satisfied.
(¢) LetPij:MiVﬁH i=1,2,...,n, j=1,2,....m
It is obvious that ﬁ < 1. For any ¢ > 0,

with the almost periodicity of w;;(t), by Definition
2.4, there exists a relatively dense set 7' such that if

T € T, thenlu;;(t + 7) — wi;(t)] < 72%%;,},” for

M2 ke zZ,

all t € R Satisfying |t - Tk‘ > m,

i=1,2,...,m, j=1,2,....m
Then for all ¢ € R satisfying the condition |t — 74| > € >

M*=e :
m, we obtain

|Eiy(t+ 1) — Eij ()]

bij(hi' (uis(t + 7)) bij(hij' (uis(1))) ‘
ugj(t+17) u;5(t)

i ()b (hy (i (t +7)))
wij(t)ui(t + )

~ui(t+ 7)bi(hi; (uig (1)) ‘

) i (it + 1)
WWU(t)bij(hUl(uzg (t+1))
—ug;(t + 7)bi; (hij (uiz(t+ 1))l

1 1
o i (4 7)bi (R (ui (t + 7))

_um (t + T)blj (h 1(’&” (t)))‘
LyaijNlu; (t + ) —u;5(t)]
M2

IN

IN
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N|bu( Hui(t+7))) = bij (b (ui; (1)))]
M2
< Loty Nluij(t +7) — i (¢)]
< Ve
(uig(t+7)) —
M2
LbalJN|uZJ (t+7) — g (t)]
M2
L@ Nuij (t + 1) — ui ()]
+ e
2Lba
= M;] luii(t+ 1) —
<€,

hig (uig (1))

LyN|h;!
" .

;i (t)]

< £
where : = 1,2,...,n, j =1,2,...
(¢) of Definition 2.4 is satisfied.
From Definition 2.4, E;;(t) € PC(R,R) is almost periodic,
i=1,2,...,n, 7=1,2,...,m. This completes the proof. ®
Now from [21], we have
Lemma 2.2 If the conditions (H;) — (H7) and (H) hold,
then for each € > 0, there exist €1, 0 < €; < ¢, relatively
dense sets T of real numbers and @) of whole numbers, such
that the following relations are fulfilled:
(a) |Eij(t+7)—Ej(t)<e, teR, 7eT,|t—m| >¢
keZ,i=1,2,....,n, 5=1,2,...,m;
(b) [CH(t+7)—CH () <e teR TET, |t—7|>e
keZ,i=1,2,....n, j=1,2,...,m;

,m, hence the condition

(¢) |Lij(t+71)—Lijt) <e, teR 7€, |t—T >¢€
kCZ,i=1,2....n, j=1,2,...,m

(d) |wij(t+71)—wij(t)) <e, teR, TeT,|t—T >¢
keZ,i=1,2....n j=1,2,...,m

(6) |aij(k+q) - aijk| <€ q € Q k € Z, i
1,2,....n, j=1,2,...,m;
(f) Mijtkra) — vigel < e
1,2,....n, j=1,2,....m;
(g) |l —7l<e, qeQ,7eT, kel
Lemma 2.3 If the conditions (H;) — (H4) and (H) hold,
then the sequences {y;;x} and {v;;} is almost periodic, k €
Z,i=1,2,....,n, j=1,2,....m
Proof: For convenience, let

qg € Q, k € Z, i

2a;; N (@ij + 2a;;) (@ij + a;;)N
Fij = max 2 02 ) 2 172 )
gij]V[ gijM
27 (EijNQ +QijN2 +6ijM2)
Q?j]\/f2 ’
20 Nv(@ij + a;;) @ N>(@i; + ay;)
L;; = max B , p ,
a? M3 o M2
@ij Ny + a;; Ny + aija;; M?
Q?jMz ’
where ¢ = 1,2,...,n, 7 = 1,2,....m, F =
{Fi;}, L = max  {L;;} and H =

1<z<n 1<] <m
max{F L}.

For any € > 0, since u;;(t) € PC(R,R) is almost periodic
function, by Definition 2.4, there exists 6 > 0 such that if
the points ¢t and ¢ belong to one and the same interval of

1<i<n, 1<j<m
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continuity of u”( ) and satlsfy the inequality |t —t" | < &, then
|ui;(t ) wi; (t )\ <gg7i=12,...,m, j=12,....m

With the left continuousness of 7y, take numbers €, 77, < 7y
such that 7/, and 7 belong to one and the same interval of
continuity of u;;(t), and 0 < €9 < 7, — 74, < min{é, &, =5},
1i=1,2,...,n, j=1,2,....,m, k € Z.

From Lemma 2.2, for ¢ < ﬁ, because the sequences
{(rl}, k€ Z,j € Z, {r} € B is uniformly almost periodic,
for ¢ € @ (without loss of generality, assuming ¢ > 0), let
T = ]icren;{r,g}, implying 7 € T and 7, + 7 < Tj44, Where
the sets 7" and () are determined in Lemma 2.2 such that
0< =T =Thpg—Tu—7 < € < min{ﬁ,&% .
Then 74 + 7 and 7Ty4q, 7, + 7 and 7, + 7 belong to one
and the same interval of continuity of wu;;(t), respectively,
i1=12,....,n, j=1,2,...,m, k € Z.

By (H) and Lemma 2.2, we have

Wi (Thtq) — i (T1)|
)

|
< i (1) = wig (e + 7)) + |wij (Te +7) = wij(Thq)]
< i (75) = wig ()| + iz (7) — wij (7 + 7))
+uij (Tk + 7) — wij (Thtq)|
< i (73,) = wig ()| + [wig (7y, + 7) = wig (7))
Fluij (7, + 7) = wij (76 + 7))
+|uz‘j(7k+ 7) = Uij (Thtq)|
= ©
4H 12H 4H  4H 6H
where ¢ = 1,2,. nj712 .,m, k€.
Let Gy = (1 + a”k)h (U”(Tk)) + Yijk, then Gyjp, =
xl](Tk:) = h (uZ](Tk ), M < [hij(Gijr)| = |“2J(7'1:_)| <
N, |Gijr| = |h (uu(Tk NI < aU|uU(Tk )| < ayN, i =

1,2,....n, j=1,2,....m, k € Z. Then

|Gij(k+q) - Gijk‘
= [[(1+ Oéij(k+q))h;1(uij(T(k+q))) + Yij(h+o)]
[(1 + azgk)h (ulj () + ij] |
< ’} zjl(UzJ(T(kJrq))) hul(u” (T’“))’
Hawjrohiy (Wi (Tierg))) — aigeh (wig ()|

+Vij (k) — Viskl

< a”|u” T(ktq)) — Wij (Tk |+ |a7J(k+f1)h23 (i (T(ktq)))
lJ(k+Q)}ij UU Tk )’
e (hg iy (i (k) — igihi (i (1)
+Yij(ktq) — Vigkl
< 245w (T(rtq)) — i (Ti)]
R (e (7)) (rrq) — il + ij(etq) — Yigk]
< 205 |wij (T(rq)) — wij (Th)]
+aij i (7)ot otq) — gl + [Vijhra) — Vigkl
< 205 |wij (T(hrq)) — wij (Ti)| + @i N ijhrq) — il

+1Vij(krq) — Vigkls (10)

where t =1,2,...,n, j=1,2,...,m, k € Z.

By (3), (4) and (10), we obtain

laij (&ijerq)) — @ij(Gign)l
Gijtera)  Gigk

hij(Gijk+q))  hij(Gijr)

_ [hii(Gist)Gijrra) — Gigihig (Gijiira)|
|hw ij( k+q))h (Gijk)’
< 1Pi(Gisn)Gijhrg) = hij(Gignra) Gisrra)|
- M?2
|hij (Gijera) Gigkra) — Gkl (Gijira)|
+ e

IN

1
272 Giitkra)l |hij (Gitkrq)) — ij(Gig)|

1
+W|hij(Gij(k+q))HGij(k+q) = Gijil

ijk+a) — Gkl + N|Gijktq) — Gl

< e
(EU + QZJ)
< (W|Gij(k+q) — Gijil
2a;(@i; + a;; )N
< g T uij (T(k 1)) = wiz(Tr)]
aij (EU + QZJ)N2
gtk ik
(@i + a;; )N
e i) — ik (I

,7,]

and

laij (Mij(k+q)) — @iz (Miji)l
h ]l(ul.] (Th+4q)) B h gl(uzy (Tx))
“U(Tk+q) i (7)
o |h (i (Tt q) )i (Th) — wij (Tk+q)h 1(“11 (Tk))|
a |wij (Th+q) i (i)
- |zt (i (Thr )i (k) = hizt (wig (Tt q) i (i q) |

- M?
|hi_jl(uij(7k+q))uij(7k+q) Wi (Thtq) i 1(“Z](7—k))|
+ 2
i7" (Wi (T i (Thq) — i ()|
< L
< e
(i (T q) || iy (i (T q)) — P (i (7)) |
+ 2
2a;; N
< =gz i (Terq) = wig (i), (12)
where t =1,2,...,n, j=1,2,...,m, k € Z.

Finally, with (5), (6) and (9) — (12), for each ¢ € Q,

1ij(krq) — M|
_ ((1 + Qi) i (Mij(k+q) 3
Ajj (fz‘j(lc+q))
7( (1 + oviji)aij(mige) 1)
aij(&ijk)

a2 ‘1 + Qg k+q)HaU (i (k)i (i)
a;;

| /\
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— a5 (&ij(ktq)) @i (Mijik) |
Lo s o) ~ ]
a;
| (15 ) ) @i (€)= @ig (Mij(tq)) @i (Eijirra))|
ija;;

N | (5 k) ) @ig (Eietra)) — @i (Eij(etq)) @i (Mg )|
Qi Gy

—2
ij | Qi (rq) — %‘k|
+ 2
Qi]‘

|aij (€ishra)) — @i (Eigie) | + |aig (i erg) — aig(mign)|

Q5

+azzj‘0‘ij(k+q) — i
Q?j
< ZEZ-J-N(E,-]- + 2Qij)
szjMz
+5ij(%‘N2 +a;N? +a; M?)
gfj]%?
(@ij +a;;)N
W\%j(kﬂ) - ’Yijk\
a;;
He € €

oS om _
< Ssm e TP e

i (T(hrq)) — wij (Th)]

Qij(k+q) — Yigh

€,

and

Yij(k+a)  Yigk
aij(&ijera)  aij(&ijr)
[Yisk+a)@ii Eigk) = Yignais Eijorra))|

|aij (€ij(hra))ais (Giji) |

Vij(htq) — Vijk =

IN

1
— Pty @5 (§ik) = Vi) (i kra) |
a

1
+ ikt @ (G tra)) = Visk i (G|
a;
@i (Eijera) — @i (i) | + @ighvijoera) — vigil
2

[}

IN

2a;;N~(ai; + a;;)
a3. M2
a;;
@i N*v(@i; + a;)
Q%M2
(ﬁijN'y + QijN’y + EijgijMQ)
+ a3. M2
ag;
5e € €

< HegtHag tHag =

IN

|wij (T(ktq)) — wij (Tk)]

|aij(k-+q) - aijk|

|'7ij(k+q) - %‘jk|

€,

where @ = 1,2,...,n, j = 1,2,...,m, k € Z. Since
@ is relatively dense set of whole numbers, hence the se-
quences {y;;r} and {v;;,} is almost periodic, k € Z,
i =1,2,...,n, j = 1,2,...,m. This completes the proof.
|

Lemma 2.4([21]) Let {7} € B and the condition (Hs)
hold. Then for I > 0O there exists a positive integer A such
that on each interval of length I, we have no more than A

elements of the sequence {7}, i.e.,
i(s,t) < A(t—s)+ A,

where i(s,t) is the number of the points 7 in the interval
(s,t).

Lemma 2.5 If the conditions (H;) — (H3), (Hs), (H) and
the following condition:

(Ho) oij = a;;bi; — 2A > 0, where constant A is
determined in Lemma 2.4, i = 1,2,....,n, j =
1,2,...,m.

hold, then:

(¢) For the Cauchy matrix W;;(t, s) of system (8), there exist
positive numbers o;; and 3;; such that

efﬁij (t—s) S WZ](t,S) < 62A6*aij(t*5)’

where §;; = @b, t > s, t,s€R, i =1,2,...,n, j=
1,2,...,m.

(#i) Forany e >0,t>s,t,s €ER, [t —Tx| > ¢, |s —Tk| > €,
k € Z there exists a relatively dense set 7" of the function
E;;(t) and a positive constant T' such that for 7 € T it
follows that

(Wij(t+7,5+7) — Wij(t,s)| < eDe™ = =9
t>s,t,seR 1=1,2,...,n, 7=1,2,...,m.

Proof: Because the proof of the second part of this lemma
is similar to Lemma 3 in [23], hence we will only prove the
first part of the lemma.

From the definition of F;;(t), using Lagrange mean-value
theorem, one gets

Ei(t) = bij (hig' (uig (1)) _ bl (0)hig" (i (1))
! uij (t) wij (1)
= b;(0ij)aij (pij),

where o; is between 0 and h;jl(uij (t)), pij is between 0 and
ui;(t),i=1,2,...,n, j=1,2,...,m.

Thus

=
a;;bi; < Eij(t) = b;(0i)ais(pij) < @ijhi; = Bij,
i=1,2,...n, j=1,2,...,m. (13

Since the sequence {f;;,} is almost periodic, then it is
bounded. From (H3) and (5) it follows that 1 < 1+ p;j5 < €2
fori=1,2,...,n, j=1,2,...,m, k €Z.

With the presentation of W;;(t,s), the last inequality and
(13) it follows that

efﬁij (t—s) < Wij(t’s) < (1 + Iul,jk)i(sﬂt)e_ﬁijégj (t—s)
< (1 + Mijk)A(t*SJJrAe—Eijb;j (t—s)
62A€(2A*£ijﬁéj)(t*5)

— 62A6704ij (tfs)’

where t > s, t, s € R,k € Z,i = 1,2,...,n, j =
1,2,...,m. This completes the proof. |
For convenience, we introduce the notation:

f= ilelﬂg\f(t)l, f=mf[f{)].
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III. MAIN RESULTS Then, it follows Lemma 2.5 that
bet W) T(s)d
M= . 0, ye24 ol = 1<icnaZj<m | reh /_oo il s)iy(s) ds
o 1§i§g}}%j§m Bij  1—e i [’ W
oA A + > Wit ) vigi
K= max Lize + 767 — 0 Tt
1<idniZiem \og; | 1—eou < { [/ W 9l d
24 < max sup i (t, 8)||1;(s)| ds
r= max {e [ Z CglL kzjffj}} 1<i<n1<5<m ek | oo Y
1<i<n, 1<j<m Qi | .
| S + 3 Wt lvind |}
A et %0 et ¢
: oo <  max {sup [/ e e (t_s)fij ds
where ©;; = flan{ - X Chiwy; (fo kij(o) x tsismisy=m Lter | /-0
t€ C9'EN (4,j
) o )
hz’j (pa(t —0)) df7> hij (pij (1) + Iz‘j(t)}- T<t
T 24 24
Theorem 3.1 Assumi(that (Hy) — (Hy) and. (H) h01§. If < A I;e n Ve, A _x as)
M > 0, r < 1and = < 1, then there exists a unique 1<i<n,1<j<m Qi 1—e @i

nonzero almost periodic solution of (1).
Proof: Set X = {p(t) € PCR,R") : pt) =
(011(8), -+, 01 (t)s - oo @nm ()T, where ¢;;(t) is a almost rK K
<o — < = .
periodic function satisfying 0 < M < 2%1]&|<,01](15)| < lel < e = woll + lleoll < 1—r +K 1—r

suplpi(t) < N = £, i=1,2,...,n, j =1,2,...,m
teR

Then for arbitrary ¢ € X*, from (14) and (15) we have

Now we prove that ® is self-mapping from X* to X*.
Firstly, we shall show that for arbitrary ¢ € X*, then ¢ €

X*. In fact
lell =, max _ (sup s (1)),
@9 — ol

} with the norm

then (X, | - ||) is a Banach space.
Define an operator ® on X by =

(‘I‘(p)(t) = ((q)ll(p)(t)v s (q)ijW)(t)v ] (q)nm(p)(t))Tv te Ra

where

sup
1<idnizj<m | ren

[ wesa]- ¥ e

CI'e Ny (4,5)

xwij( /0 T (@R (s - a))do) «

B4y (1) h;;wz-j(s))} s }
gl t
/ W'LJ t S |: Z C” (S) X < max {Sup |:/ 62A6704ij (t—s) x
CI'e Ny (3,5) 1<i<n,1<j<m | teRr oo
—+oo
_ _ —gl - _ _
wy ( [ waomg outs - a))da) B (o(s) { ) C?jkamauuwﬂav:juson d}}
0 CONEN, (i,5)
.. .. .. 2A
+I’LJ(S):| ds + Z Wii (¢, Te)Vijk, < max € Z C’qlL k ol
k<t 1<i<n,1<i<m | g ol )
i=1,2,...,n, j=1,2,...,m. (14) X COTENT(i.7)
,
=rllel < 7 (16)
T

Set X* be a subset of X defined by

rK Moreover, we get
X ={peX:lly— el <7
sup |(@i52) (1)]

gl
©0 = (9011, -» P0ij» > Ponm) " = SUP{‘/ Wi;(t, s { Z Ci (s) x

ter CaEN (i)

where

and
t s ([ Rl s o) o ) (5
_ 0
Poij = / Wij(t, s)1i;(s) ds + Z Wi (t, ) Vijk,
- k<t +IZ](S):| ds + Z Wij(tka)Vijk }
i=1,2...m, j=1,2,....m “~
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1
Sl kuazjwu] x

CQ'GNr(z,j)

wwu} LK

rK

<
- 1-

and

S+ K=

inf |(®i;9)(1)]

-l Ww“ﬂ

()

B (o () + T (s } ds+ 3 Wt 7w

a{ /. WM[
sl

A\

h;jl(QOij(S)) + Iij(s)} ds

t
inf

ter | J_oo
teR,kEZ {

Y

— sup

v

>  min
1<i,j<n

i=1,2,...,

Now, we shall prove that ®¢ is almost periodic. In fact, let
T €T, q € Q, where the sets T" and () are determined in

¢
inf { /
ter | J_

{ 61 ’762A

Z ijl(s) X

CI'eN(4,5)

SMoals =) do ) x

|

<t

Z Cigjl(s) X

C9'eNr (4,5)

(apgl(s —0)) da) X
Z Wij(t, Tk)ljij)c

T<t
Z Wi (b, T ) Vijik

<t }

e Pult=9g, ds} = sup ||
- keZ

|

Wij (t, S)@i]‘ ds}

62A

1—e i

J = =M
Bij 1_670‘“} 7

Lemma 2.3. By Lemma 2.5, we have

[(@ij0)(t+T7) — (Dizp) (L)

t+7
‘ Wij(t—kT,s){— > C(s) %
- C9'eN,(i,5)

wij(/0+oo kij (o)t (og(s — U))dtf) X

hit (i (

/;Wij(t,s){ >

o[

+fij(8)}

s))+[z7(s)] ds + Z Wi (t 4+ T, T ) Vi

T<t+T
gl
Gy (s) x
C9'eNr(4,5)

ki (0)h5 (ouls — o)) da) W (o ()

dS — Z Wij(t,Tk)l/ijk

Tk<t

=N (17)

n, j=1,2,...,m. (18)

t
S/ ‘Wij(t+T7S+T)—Wij(t7S)‘

- e[

CI'e Ny (i,5)

hij' (pai(s + 7 = 0)) d0> hij' (s + 7))

t
+1i(s+7) ds+/ |Wi;(t,s)

“+o00o
- > C%‘l(5+7)wij(/ kij(o) x
C9'ENr(4,5) 0
h;jl(gogl(s +7—0)) da) hfjl(%]‘(s +7))

+ Y Oy (/O+OO kij (o) x

CI'EN (i,5)

bt (ols — o)) da) B (o (5)

+Izj(8+7') ( ) ds

+ D Wit + 7, Therg) = Wi (£, 70) [V (et |
<t

> Wi (8 7 Vi) — Vil
Tk<t

<Ce i=12,...,n j=12...,m, (19)

where

1

C = max{

 Jax (2TC5; Luwki;

Y Co1ENe (1)
- e?A +oT'T;
+kaij€2A)ﬁ?jN + 704-- Y
ij
- C Ly ki
S
4 0ol eNy (i,)

’YF €2A }

+1—e*a% * 1—e i

It follows from (16) — (19) that ®p € X*.
For arbitrary ¢ € X*, ¢» € X*, we can get

[®e — @v|
_ gl
B 1<Z<I£11)<(‘]<m { igg / VV” (t, 8){ Z Cij (s)

C9' €N (i,5)

g ([ " ks s — o) o)1 oy s s
—/_; W,-]-(t,s){— > Cfis) x

C9'e Ny (i,7)

wu( / " ks 0 (s — o) i) »

o]l

—gl= = _o
Cii Lukija;;
1<z<nl<]<m{aij|: Z EA

————— C9EN, (i))

IN
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g (1) — i (t
x 19573?%@{?2%‘“"”( )~ ¥l )|}

= rlle —vl <llg =l (20)
Then from (20), it follows that ® is a contraction operator
in X*. So, ® has exactly a unique nonzero fixed point ¢* in
X* such that ®p* = ¢*. It is easy to verify that ¢* satisfies
(7). Thus, system (1) has exactly one nonzero almost periodic
solution. This completes the proof. |

Theorem 3.2 Assume that the conditions in Theorem 3.1
hold. If » < A, then the unique nonzero almost periodic
solution of (1) is exponentially stable.

Proof: Let z(t) be arbitrary solution of (7) with the
initial condition xz(ty + 0,%9, o) xo, and y(t)
(11 (8)y - yij(t), - Ymn (t))T be the unique almost peri-
odic solution of (7) with the initial condition y(tg+0, tg,yo) =
yo. Then from (14), we have

z(t) —y(t)
= W(t, to)(®o — o)
+ W(t,s){f > C(s) x
to C9'EN,(i,5)

i ([ o5 s — ) ) o) s
> Cf}l(s)wzj(/om kij(o) %

C9I'e Ny (i,5)

hii (ygi(s — 0)) do) hiit (i (s)) da} ds.

+

21
It follows from Lemma 2.5, (20) and (21) that

[l =yl

< eAem M) ||z — yo|
- O o
P > ij whijdij
YL cate Ny (i)

/ e M) || (s) — y(s)||ds

to
< e M) ||z — yo|

B t
r / 9 x(s) — y(s) | ds,

to

that is
< ez — ol

+r/t A2 (s) — y(s)|ds.

|z — ylle™

By Gronwall-Bellman’s Lemma, we have
lz = yll < e** |z — yollet V1)
So, the almost periodic solution y(t) is exponentially stable

since 7 — A < 0. Thus the unique almost periodic solution of
(1) is exponentially stable. This completes the proof. |

IV. AN EXAMPLE

Consider the following CGSICNNS:
l
0 = =ty (0) bty 0) + cu )
C9'e Ny (i,7)

s (3 bt - 5)ds 1)

—IiJ-(t)], t 4T
1_gt—1et

Azii( e ) = Qie®ij(Th) + 55—

i=1,2,...,n, j=1,2,...,m, k € Z,
where
(aiy) | 3+sinu 3 +cosu
/2X2 71 3 _ginu 3 —cosu |’
(b)) _ 0.5¢*u  etu
13/2%2 = | 1 5ety 2etu |
0.5 1.5
(Cij)axz = { 15 05 } ’
(I;) | 045+ 0.05sint 0.45 — 0.05sint
49/2x2 71 045 4 0.05cost 0.45 — 0.05cost |’
1 et . .
C‘-}ZJ:372‘U|7 Kz(t):e ta 7’7]:1727

and (H2) holds with A = 2. Obviously,
a =4, a;; =2, i,j=1,2 by, =b); = 05",
by = by = et by = by = L5e?, byy = by = 2¢",
EcgleNl(i,j)éiﬂl = ECQ'ENl(i,j)égé = ECQ'ENl(i,j)égi
= Ncoten i) Con = 4, Ly = 2% L, = 3%

Ly =Tly=1I =y =05 I, =1,=1y =1Iy

2
=04,1 < ajp < % —1, k€ Z, 011 = ay by, — 24

=e' - 4,012 = melm — 24 =2¢" - 4, an = Q21b/21
—2A =3¢ — 4, a9 = agobhy — 2A = 4e* — 4,
_ —
Bi1 = ar1byy = 2e*, Bi2 = Grabyy = de?,
-/ -/
Bo1 = G21by; = 6, Bap = Gaobyy = 8e™.

By a direct calculation, we get

. 2
B, O =04 = 7,
o YA R
T T8t T_ehact 3068 0
0.5¢* 1 2
K = = <1
430 TS <

then % <landr < oyj,i,j=1,2.

Now, we can see that all conditions are hold, according
to Theorem 3.1 and Theorem 3.2, system (22) has one unique
nonzero almost periodic solution which is exponentially stable.
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