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Abstract—The objective of this study is to examine the 

performance of three well-known multiobjective evolutionary 
algorithms for solving optimization problems. The first algorithm is 
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the 
second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-
2), and the third one is the Multiobjective Evolutionary Algorithms 
based on decomposition (MOEA/D). The examined multiobjective 
algorithms are analyzed and tested on the ZDT set of test functions 
by three performance metrics. The results indicate that the NSGA-II 
performs better than the other two algorithms based on three 
performance metrics. 
 

Keywords—MOEAs, Multiobjective optimization, ZDT test 
functions, performance metrics. 

I. INTRODUCTION 

VOLUTIONARY algorithms (EAs) have been widely 
used in various optimization problems with considerable 

success. Over the last years many EAs for solving the 
multiobjective problem have been proposed [1].  

A main characteristic of multiobjective EAs (MOEAs) is 
their ability to find a number of candidate solutions [2] in a 
single run. Moreover, the MOEAs have been proven to be able 
to solve complex multiobjective optimization problems 
(MOPs) when traditional mathematical approaches fail to do 
so [1]. 

The majority of MOEAs use the concept of Pareto 
optimality conditions [26]-[29]. In particular, in MOPs, it is 
usually impossible to find one optimal solution [3]. Instead, 
the MOEAs are fabricated to locate a set of near optimum 
points known as the Pareto optimal set. If a point belongs to 
the Pareto optimal set, it means that it is not possible to find a 
feasible candidate solution that improves one criterion without 
worsening one of the remaining criteria.  

A MOP can be described as: 
 

Min	f x = f1 x , …, fm x ,	s.t.	x= x1, …, xn  ∈ D⊂Rn   (1) 
 
Formally, the Pareto efficiency can be defined as follows: 

Definition 1. If, given a solution y, there exists another 
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solution x such that ∀ j =1, ..., m. fj x 	≤	fj y  and ∃ j∈{1, ..., m} 
such that fj x 	<	fj y  then we will say that solution x 
dominates solution y (denoted by x	≺	y). If fj x 	≤	fj y  ∀ j, we 
will say that solution x weakly dominates solution y and will 
be denoted x ≼ y. 

Definition 2. A solution x∈D is said to be Pareto efficient if 
and only if ∄	y∈D such that  y ≺ x . 
Definition 3. The real Pareto optimal set will be denoted with 
Ptrue. The image of Ptrue in the objective space is called Pareto 
front and it will be denoted by PFtrue.   

The EAs can be divided into two distinct categories (i) 
Pareto dominance based [21]-[25] and (ii) aggregation based. 
The most popular between the two categories is the one of 
Pareto dominance based.  

There are some other MOEAs that utilize aggregation-based 
approaches [4]. These techniques create scalar fitness 
functions. The scalarization of the objective function can be 
achieved by aggregating the multiple objectives with 
weighting factors.  

Aggregating techniques were very popular in the first era of 
the multiobjective evolutionary history. The main advantage 
of aggregating techniques is the simplicity in the 
implementation process of these methods. MOPs can be 
converted to single objective problems simply with the 
assistance of a weighted sum method. The second advantage 
associated with the aggregating techniques is that there is no 
need for decision making as all we have to do is to choose the 
solution that maximizes or minimizes the objective function 
depending if we are dealing with a minimization or 
maximization problem, respectively. 

Schaffer [5] proposed an alternative technique to treat 
multiple, conflicting objectives separately and to search for 
multiple non-dominated solutions concurrently in a single run. 
Schaffer [5] introduced the concept of speciation instead of 
Pareto optimality. According to this concept, the entire 
population is divided into several sub-populations (called 
speciation), and the divided sub-population is selected using a 
selection technique which considers only one objective 
function for each sub-population. In each generation, the 
selected speciation makes a new population which is divided 
into sub-populations again after mutation and crossover 
operations. Vector Evaluated Genetic Algorithm (VEGA) uses 
the concept of speciation. The main advantage of this 
approach is its simplicity. However, this approach presents 
two major weaknesses: (i) the solutions are biased towards the 
edge of the Pareto frontier, (ii) the algorithm is severely 
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affected by the objective values because selection is 
determined based on the values of the objective vector and not 
on the domination relationship. 

Finally, some algorithms use niche and sharing techniques 
to spread the searching effort uniformly over the Pareto 
optimal frontier [6]. The niche and sharing technique help the 
algorithm to avoid the genetic drift phenomenon by forcing 
the searching agents not to converge to one point from the 
beginning of the search. The main advantage of this technique 
is that it spreads the solutions uniformly across the efficient 
frontier. On the downside, the sharing technique is affected by 
the scale difference severely. Also, sharing techniques seem to 
be opposite to the philosophy of Pareto optimality and 
domination [7]. By controlling the scales of each parameter, 
this issue can be partially alleviated. 

The rest of this paper is organized as follows. In Section II, 
a description of the NSGA-II, the SPEA-2, and the MOEAs 
based on decomposition (MOEA/D) is provided. In Section 
III, we provide a description of the performance metrics. The 
experimental results are presented in Section IV, for three 
different algorithms for the Zitzler-Deb-Thiele's (ZDT) family 
of test functions with the assistance of three performance 
metrics. Section V analyses the experimental results and draws 
conclusions. 

II. PRESENTATION OF THE EXAMINED MULTIOBJECTIVE 

ALGORITHMS 

A. NSGA-II 

MOEAs are stochastic searching techniques for solving 
complex optimization problems. One of the most popular 
MOEA is the NSGA, proposed by Deb et al. [8].  

In NSGA [9], a ranking process is executed before the 
selection operation. Through the ranking process, 
nondominated solutions in the population are identified at 
each generation, and the nondominated fronts are formed. 
After that, the selection, crossover, and mutation operators are 
performed. NSGA [9] was criticized for the high 
computational complexity of nondominated sorting, the lack 
of elitism and the difficultly of achieving diversity of 
solutions. In 2002, Deb et al. [8] introduced an improved 
version of NSGA [9] known as NSGA-II [8] which not only 
addressed all the major issues of the previous version but also 
included some new features. In particular, NSGA-II uses a 
faster sorting procedure, an elitism preserving mechanism and 
a parameter-less niching operator. Fig. 1 provides the 
pseudocode of the NSGA-II.  

B. Strength Pareto EA 2 (SPEA-2) 

The Strength Pareto EA (SPEA) was introduced by Zitzler 
and Thiele [10]. SPEA uses an archive containing 
nondominated solutions previously found (the so-called 
external nondominated set). At each generation, nondominated 
individuals are copied to the external nondominated set. For 
each individual in this external set, a strength value is 
computed. The SPEA calculates the fitness of the members of 
the current population by computing the strengths of all 
external nondominated solutions that dominate it. The fitness 

assignment process of SPEA considers (i) the closeness of the 
derived solutions to the true efficient frontier and (ii) the 
distribution of the derived solutions. The SPEA is using the 
principles of Pareto dominance to make sure that the solutions 
are distributed along the entire length of the Pareto front.  

 

 

Fig. 1 Pseudo code of NSGA-II 
 
An improved version of Strength Pareto EA, the SPEA-II 

was introduced by Zitzler et al. [11]. The authors tried to 
develop a MOEA that eliminates the weaknesses of its 
predecessor (SPEA) and to incorporate most recent 
developments. In particular, the SPEA2 incorporates a new 
fitness assignment scheme which, for each solution, considers 
how many solutions it dominates and at the same time it is 
dominated by. Moreover, the SPEA2 incorporates a nearest 
neighbor estimation technique which provides more accurate 
control of the search process. Finally, the SPEA2 incorporates 
a novel archive truncation technique that assists to 
preservation of boundary solutions. 

C. MOEA Based on Decomposition (MOEA/D) 

The MOEA based on Decomposition (MOEA/D) [12] and 
the MOEA/D with Dynamical Resource Allocation 
(MOEA/D-DRA) [13] are using the decomposition principle. 

The MOEA/D [12] uses a decomposition mechanism for 
converting the problem of approximation of the Pareto front 
(PF) into a set of scalar optimization problems. 
Mathematically the m-objective problem can be represented 
with the assistance of the following relationship:  

 

Min	f x = f1 x ,  f2 x , …, fm x .              (2) 
 

where  f x  is a m-dimensional objective vector, fi x  is the i-
th objective to be minimized, and x is the vector of decision 
variables. The aforementioned minimization problem can be 
decomposed into a number of scalar optimization problems 
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with different weight vectors. For the purposes of the present 
study, we use the weighted sum and the weighted Tchebycheff 
as introduced in [12]. 

The weighted sum is written using the weight vector 
 λ= λ1, λ2, …, λm ,    as 

 

gWS x | λ)= λ1f1 x + λ2f2 x + …,+λmfm x .          (3) 
 
The weighted sum is to be minimized in its application to 

the multiobjective minimization problem.  
The weighted Tchebycheff decomposition in [12] is written 

using the weight vector λ and a reference point 
z*= z1

*,  z2
*, …, zm

*  i.e.   zi
*= min fi x  | x∈Ω} for each i = 1,..,m 

as the scalar optimization problems of the form: 
 

gTE x | λ,  z*)= mini=1,2,..,m{λ
i
 |fi x  - zi

*
} , subject to x∈Ω.  (4) 

 
Under certain mild conditions, in each Pareto optimal point 

x*, there exists a weight vector, λ such that x* is an efficient 
solution of (4). Clearly, an efficient solution of (4) is a Pareto 
efficient point of the fitness function min 
 F(x)= (f1 x , …, fm x )T. We can obtain different solutions by 
solving a number of single objective optimization problems 
with different weight vectors (Tchebycheff).  

In MOEA/D [12], all the sub problems are treated equally 
and receive about the same amount of computational effort. 
However, a more recent study [13] introduces a different 
approach where processing power in each sub problem is 
assigned based on the difficulty of each individual problem. 
This new approach is called MOEA/D with a dynamical 
resource allocation (MOEA/D-DRA). The new approach 
estimates a utility parameter πi for each sub problem i, and 
thus allows the processing power to be allocated according to 
the utility value. 

III. PERFORMANCE METRICS 

A. Hypervolume 

 Hypervolume [14], [20], also known as S metric, is an 
indicator of both the convergence and diversity of an 
approximation set. Thus, given a set S containing m points in 
n objectives, the hypervolume of S is the size of the portion of 
objective space that is dominated by at least one point in S. 
The hypervolume is estimated relative to a reference point 
which is no better than every point in S in every objective 
[14]. The greater the hypervolume of a solution is, the better 
considered the solution is. 

B. Inverted Generational Distance (IGD) 

The inverted generational distance (IGD) [15] can be 
defined as follows: 

 

IGD(P, S) =
∑| | /

| |
	  

 
where ∈ ‖ 	 ‖, ∈ , 2	 	  is 
the smallest distance of ∈  to the closest solutions in S. 

The smaller the IGD value is, the better is the performance of 
the approach. The IGD metric is able to provide a measure for 
both convergence and diversity.  

C. Epsilon Indicator (Iε) 

There are two versions of epsilon indicator; the 
multiplicative and the additive [16]. In this study, we use the 
unary additive epsilon indicator. The epsilon indicator of an 
approximation set A (Iε+) provides the minimum factor ε by 
which each point in the real front R can be added such that the 
resulting transformed approximation set is dominated by A. 
The additive epsilon indicator is a good measure of diversity, 
since it focuses on the worst case distance and reveals whether 
or not the approximation set has gaps in its trade-off solution 
set. 

IV. PRESENTATION OF THE BENCHMARK PROBLEMS AND 

EXPERIMENTAL RESULTS 

A. The Benchmark Problems 

The Zitzler-Deb-Theile (ZDT) test suite is widely used for 
evaluating algorithms solving MOPs [1], [17]-[19]. The 
following three bi-objective MOPs named ZDT1, ZDT2, 
ZDT3 were used for comparing the NSGA-II, the Strength 
Pareto EA 2 (SPEA-2) and the MOEAs based on 
decomposition (MOEA/D). The Pareto front shapes of Zitzler-
Deb-Theile (ZDT) test suite are convex, nonconvex, and 
disconnected. ZDT1, ZDT2 and ZDT3 use 30 decision 
variables [30]. 

Zitzler-Deb-Thiele’s function N.1 problem:  
 

Min= 

f1 x  = x1                                    
   f2 x  = g x h(f1 x , g x )

g x = 1 + 
9
29
∑ xi

30
i=2       

            

h f1 x , g x  =  1 - 
f1 x

g x
          

for 0 ≤xi ≤1 and 1 ≤ i ≤30           

  

 
Zitzler-Deb-Thiele’s function N.2 problem:  
 

Min= 

f1 x  = x1                                      
   f2 x  = g x h(f1 x , g x )

g x  = 1 + 
9

29
∑ xi

30
i=2      

              

h f1 x , g x  = 1 - 
f1 x

g x

2
      

for 0 ≤xi ≤1 and 1 ≤ i ≤30             

  

 
Zitzler-Deb-Thiele’s function N.3 problem 

 

Min= 

f1 x  = x1                                                                                       
   f2 x  = g x h(f1 x , g x )

g x  = 1 + 
9

29
∑ xi

30
i=2     

                                               

h f1 x , g x  = 1 - 
f1 x

g x
 - 

f1 x

g x
sin 10πf1 x

 for 0 ≤xi ≤1 and 1 ≤ i ≤30                                              

  

B. Experimental Results 

Table I presents the results of ZDT1 test function. Tables II 
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and III present the results for ZDT2 and ZDT3 problem 
respectively. Tables I-III present the mean, standard deviation 
(STD), median and interquartile range (IQR) of all the 
independent runs carried out for Hypervolume (HV) and IGD 
and Epsilon indicator respectively.  

The higher the value of HV indicator is, the better the 
computed front is. The second indicator IGD [30] examines 
the convergence and diversity of solutions across the Pareto 
front. The smaller the value of this indicator is, the better the 
distribution of the solutions is. This indicator takes a zero 
value for an ideal distribution of the solutions in the Pareto 
front. 

 
TABLE I 

MEAN, STD, MEDIAN AND IQR FOR HV, IGD AND EPSILON METRIC FOR ZDT1 

PROBLEM 

Problem: ZDT1 NSGAI-II SPEA-2 MOEA/D 

HV. Mean and Std 6.39e-015.8e-03 6.22e-015.0e-03 1.71e-011.9e-02 

HV. Median and IQR 6.39e-011.4e-02 6.20e-011.1e-02 1.76e-014.4e-02 

IGD. Mean and Std 5.47e-041.2e-04 9.95e-041.9e-04 1.38e-029.4e-04 

IGD. Median and IQR 5.33e-043.0e-04 1.02e-034.6e-04 1.33e-022.2e-03 

EPSILON. Mean and Std 2.45e-023.9e-03 5.58e-022.3e-02 5.28e-015.3e-02 
EPSILON. Median and 

IQR 
2.46e-029.5e-03 4.93e-025.6e-02 5.01e-011.2e-01 

 
TABLE II 

MEAN, STD, MEDIAN AND IQR FOR HV, IGD AND EPSILON METRIC FOR ZDT2 

PROBLEM 

Problem: ZDT2 NSGAI-II SPEA-2 MOEA/D 

HV. Mean and Std 2.97e-012.3e-03 8.28e-021.2e-01 0.00e + 000.0e+00

HV. Median and IQR 2.98e-015.5e-03 0.00e + 002.5e-01 0.00e + 000.0e+00

IGD. Mean and Std 8.02e-044.1e-05 1.51e-029.2e-03 2.89e-025.3e-03 

IGD. Median and IQR 8.18e-049.6e-05 2.10e-022.0e-02 3.27e-021.1e-02 

EPSILON. Mean and Std 7.22e-022.3e-02 7.43e-014.2e-01 1.40e + 001.5e-01

EPSILON. Median and 
IQR 

6.30e-025.4e-02 1.03e + 008.9e-01 1.47e + 003.5e-01

 
TABLE III 

MEAN, STD, MEDIAN AND IQR FOR HV, IGD AND EPSILON METRIC FOR ZDT3 

PROBLEM 

Problem: ZDT3 NSGAI-II SPEA-2 MOEA/D 

HV. Mean and Std 4.95e-011.4e-03 4.83e-012.4e-03 1.39e-012.2e-02 

HV. Median and IQR 4.95e-013.3e-03 4.81e-015.3e-03 1.52e-015.0e-02 

IGD. Mean and Std 7.72e-044.7e-05 1.22e-038.9e-05 2.01e-021.6e-03 

IGD. Median and IQR 8.04e-041.0e-04 1.25e-032.1e-04 1.97e-023.9e-03 

EPSILON. Mean and Std 4.42e-023.2e-03 7.18e-025.1e-03 7.32e-016.6e-02 
EPSILON. Median and 

IQR 
4.26e-027.5e-03 7.03e-021.2e-02 7.40e-011.6e-01 

 
Tables IV-VI use boxplots to present graphically, the 

performance of the NSGA-II, the Strength Pareto EA 2 
(SPEA-2) and the MOEAs based on decomposition 
(MOEA/D), for the three performance indicators; namely, HV, 
IGD, and Epsilon. Boxplot is a convenient way of depicting 
graphically groups of numerical data. 

 
 
 
 
 
 
 
 

TABLE IV 
BOXPLOTS FOR HV, IGD AND EPSILON METRIC FOR ZDT1 TEST PROBLEMS 

 
 

 

 
 

TABLE V 
BOXPLOTS FOR HV AND IGD METRIC FOR ZDT2 TEST PROBLEMS 

 
 

 
 

TABLE VI 
BOXPLOTS FOR HV AND IGD METRIC FOR ZDT3 TEST PROBLEMS 
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V. ANALYSIS OF THE RESULTS - CONCLUSIONS 

We applied the NSGA-II, the Strength Pareto EA 2 (SPEA-
2) and the MOEAs based on decomposition (MOEA/D) to the 
ZDT1-3 test functions using the following parameter 
specifications: 
 Coding: real encoding 
 Population size: N = 100 
 Termination condition: The algorithm stops after 100,000 

function evaluations for each test instance. 
 Number of runs for each test problem: 100 runs. 
 Crossover operator for NSGA-II and SPEA-2: Simulated 

Binary Crossover (SBX). 
 Crossover operator for MOEA/D: Differential Evolution 

Crossover (CR: 1.0 and F: 0.5) 
 Mutation operator: Polynomial Mutation (PLM), with a 

mutation distribution parameter = 20 and mutation 
probability =1/n. 

Examining the results (Tables I-III) of the first indicator, the 
Hypervolume, we observe that the NSGA-II performs better 
than the SPEA-2 and MOEA/D for all test instances. The 
NSGA-II performs better than the SPEA-2 and MOEA/D with 
regard to the IGD metric. Finally, when examining the results 
regarding the Epsilon indicator, the NSGA-II outperforms the 
SPEA-2 and MOEA/D for all test instances. 

The boxplots (Tables IV-VI) confirm the aforementioned 
findings. To conclude, from the analysis of the experimental 
results of this study, we reach the conclusion that the NSGA-II 
generates better results in terms of three different performance 
metrics compared to the SPEA-2 and MOEA/D for all 
examined test instances. 
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