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Abstract—In this paper, the stability analysis of a GA-Based 

adaptive fuzzy sliding model controller for a nonlinear system is 
discussed. First, a nonlinear plant is well-approximated and described 
with a reference model and a fuzzy model, both involving FLC rules. 
Then, FLC rules and the consequent parameter are decided on via an 
Evolved Bat Algorithm (EBA). After this, we guarantee a new 
tracking performance inequality for the control system. The tracking 
problem is characterized to solve an eigenvalue problem (EVP). Next, 
an adaptive fuzzy sliding model controller (AFSMC) is proposed to 
stabilize the system so as to achieve good control performance. 
Lyapunov’s direct method can be used to ensure the stability of the 
nonlinear system. It is shown that the stability analysis can reduce 
nonlinear systems into a linear matrix inequality (LMI) problem. 
Finally, a numerical simulation is provided to demonstrate the control 
methodology. 
 

Keywords—Adaptive fuzzy sliding mode control, Lyapunov 
direct method, swarm intelligence, evolved bat algorithm.  

I. INTRODUCTION 
N recent years, adaptive fuzzy control system designs have 
attracted a lot ofattentionand have shown promising as a way 

to approach nonlinear control problems [7], [11], [15], [32]. 
The fundamental idea of adaptive fuzzy controlsystems is that 
one first constructs fuzzy models to describe the input/output 
behavior of the controlled system, based on the universal 
approximation theorem [32], [33] after which, these fuzzy 
models are used to design a controller. Adaptive laws are 
devised afterwards to adjust the parameters of the fuzzy 
models. A lot of effort has already gone into improving the 
robustness of adaptive fuzzy system, including studies on the 
design of the adaptive fuzzy sliding mode controller (AFSMC) 
[17], [25], [26], [31], [37] and on the integration of the sliding 
mode controller to improve the fuzzy rule base [10], [20]-[22], 
[29], [34], [35]. 

In addition to the above, deciding on the fuzzy rules and the 
initial values of the parameter vector values for the AFSMC is 
very important. A genetic algorithm is usually used as an 
optimization technique in the self-learning or training strategy 
for decidingon the fuzzy control rules and the initial values of 
the parameter vector [2], [3], [9], [14], [16], [18]. Using this 
type of GA-based AFSMC improves the immediate response, 
stability androbustness of the control system. 

The design of the ∞H  fuzzy controller has attracted a lot of 

 
P.-W. Tsai, C.-Y. Chen, and C.-W. Chen (Corresponding author) are with 

Department of Maritime Information and Technology, National Kaohsiung 
Marine University, Kaohsiung 80543, Taiwan (phone: +886-7-8100888#5310; 
fax: +886-7-571-7301; e-mail: peri.tsai@gmail.com, cychen613@gmail.com, 
chengwu@mail.nkmu.edu.tw).  

interest [19], [28], [36]. Fuzzy controlschemes have already 
been developed to guarantee the ∞H  tracking performance— 
that is, the induced 2L -norm. Both the lumped matching error 
and the external disturbances to the tracking error must be equal 
to or less than the prescribed value. Generally, the Lyapunov 
stability criterion for the ∞H  fuzzy controller can be 
characterized in terms of solving a linear matrix inequality 
(LMI) or an eigenvalue problem (EVP) [1], [5], [17]. 

Let us consider an n th-order single-input/single-out (SISO) 
system. The order of the motion equation forits sliding motion 
is usually equal to 1−n , which makes it difficult to use 
conventional AFSMC to derive the entire system states so as to 
achieve ∞H tracking performance [2], [19], [28], [36]. In order 
to consider the ∞H  tracking performance throughout the 
entire system states, we need to develop a new Lyapunov 
stability criterion for the proposed control strategy. It will be 
shown that the proposed controller (based on the Lyapunov 
theory) [22], [30], can guarantee good ∞H tracking 
performance throughout the entire system states. 

This study focuses on designing a robust tracking control for 
a class of nonlinear uncertain system involving plant 
uncertainties and external disturbances. To achieve this task, 

∞H  tracking control is incorporated into the AFSMC. The 
proposed design is called the ∞H  AFSMC. The nonlinear 
system is described via fuzzy models.A genetic algorithm is 
used to find thefuzzy rules and the initial values of the 
parameter vector which the model is based on.The AFSMC is 
integrated with the ∞H  tracking control technique to design 
the control law. Based on the Lyapunov theory [22], [30], it will 
be shown that the proposed controller can guarantee good ∞H  
tracking performance throughout the entire system states. In 
order to solve the control problem more efficiently itis 
characterized in terms of an eigenvalue problem (EVP) [1], [8], 
[24], [31]. In other words, the Lyapunov stability condition is 
transformed into the form of a certain linear matrix inequality 
(LMI) problem.One can then efficiently obtain the parameters 
of the controller by using convex optimization techniques to 
solve either the EVP or the LMI problem. 

II. REFERENCE MODELING FOR A NONLINEAR SYSTEM 

A. Problem Formulation 
Consider an nth-order nonlinear system given in (1): 
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where [ ] nT

nn Rxxxxx ∈= − ,,,, 121 "  is the state vector of the 
system; Ru ∈  is the control signal; f and g are smooth 
nonlinear functions; d denotes the external disturbance d(t), 
which is unknown but is usually bounded. The states 

[ ]T
nn xxxxx ,,,, 121 −= "  are assumed to be available. 

B. GA-Based ∞H  AFSMC for Nonlinear Systems 
Consider the square MIMO system (a system with the same 

number of inputs and outputs) with p inputs and p outputs. 
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where pnnnm +++= "21 , and mRx ∈  are assumed to be 

available. 
Differentiating pyyy ,,, 21 "  with respect to time for 

pnnn ,,, 21 "  times, respectively, until the inputs appear, one 

obtains an input/output form of (2), such as: 
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(2) can then be represented as: 
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Assumption 1: G(x) is bounded away from singularity, i.e.,

( )xG 1−  exists and has a bounded norm over a compact set 
mR∈ζ . Specifically, ( )( ) ζσ ∈∀>≥ xbxGp  ,01 , where 

( )( )xGpσ  
 represents the smallest singular value of matrix G(x). 

If the control goal is for the plant output y to track reference 
trajectories 

prr yy ,,
1
" , then the reference control inputs 

prr ,,1 "  can be defined as the following reference model: 
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are chosen such that all the polynomials 
 

01
2

)2(
1

)1(

1011
2

)2(1
1

)1(1
1

1

1

1

1

pp
n

np
n

np
n

n
n

n
n

n

p

p

p

p

p αααα

αααα

+++++

+++++

−
−

−
−

−
−

−
−

A…AAA

#
A…AAA

   

 (7) 

 
are Hurwitz, and where A  here denotes the complex Laplace 
variable. 

If ( ) ( )xgxf iji ,  are known and Assumption1 is satisfied, then 

the control law (for all ζ∈x ) can be defined as 
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The linearized systems then become 

 
( ) ( )

( )

( ) ( )

( ) ( )
( )

( ) ( )
0)()()()(

0)()()()(

01

11

1

110111

1

1

1

111 11

11

11

1

1

1

=−+−++−+−

=−+−++−+−

−−

−

−−

−

prpprp

n

p

n

rnp

n

pr

n

rr

nn

rn

n

r

n

yyyyyyyy

yyyyyyyy

pp

pp

pp

p

p

p

ααα

ααα

��"

#

��"   (9) 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:5, 2014

836

 

 

Define prpr yyeyye
p

−=−= ,,11 1
" , then we can obtain 

the following error equations: 
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It is clear that 

pee ,,1 "  will approach zero if 
ijα is chosen 

such that all polynomials like (7) are Hurwitz.The control 
objective can be achieved by a control law designed as follows: 

 

djeqjj uuu ,, +=                                (11) 
 
where

eqju ,
has equivalent control and defines

dju ,
 as 
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If ( ) ( )xgxf iji , are known, we can then design the FLC (13) 

to approximate
eqju ,  
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where m is the sum of the fuzzy rules;

kjθ , i.e.
maxθθ ≤kj

, 

indicates the adjustable consequent parameters of the FLC; and 
( ) ( ) ( ) ( )[ ]T

m SRSRSRSR ,,, 21 "=  is the vector of fuzzy basis 
function [33],which is defined as 
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where mk ,,1"=  and ni ,,1"=  with 

kμ  represent the degree 
of membership. The 

iS in
kμ  can be chosen by 
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Given the approximation property of the fuzzy system, an 

uncertain and nonlinear plant can be well-approximated and 
described via the fuzzy model involving FLC rules to achieve 
the control object. 
Assumption 3: For pRx ⊂∈ζ , there exists adjustable 

parameter vectors [ ]T
mjjjj θθθθ ,,, 21 "= , for pj ,,2,1 "= , 

such that the fuzzy system ( ) ( )SRSu T
jjeqj θθ =,,

 can 

approximate the continuous function 
ju  with accuracy 

maxε  

over the set pR⊂ζ , that is, 
jθ∃  such that 

 

( ) ( ) max,, ,sup εθ ≤− SuSu eqjjeqj
, ζ∈∀S    (16) 

 
Let 

jθ̂  denote the estimate of 
jθ  at time t. Because of this, 

we cannow define the estimated control output ( )jeqj Su θ̂,ˆ , with 
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and decide on the initial values of the consequent parameter 
vector 

jθ̂  based on the genetic algorithm. 

First, if we define the parameter error vector at time t by
jjj θθθ ˆ~

−=  , then 
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According to Assumption 3, we can define the modeling 

error jε  as 
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where maxεε ≤j . 

We can say that 
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Substituting (12) and (20) into (11), we can then obtain the 

error dynamic equation in (21): 
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and so, we can now define the augmented error as 
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is a SPR (strictly positive real) transfer function, and ( )AiN and

( )AiD  are coprime. 
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would directly affect the tracking error. In order to achieve the 
control objective, the following ∞H  tracking performance 
related to the tracking error vector ime should be requested as 
(26) [2], [19], [28], [36]: 
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for all [ ]TLi ,02∈ω , [ )∞∈∀ ,0T ,where iQ  and iP  are 
symmetrically positive definite weighting matrices, and where 

10 << iρ  is a prescribed attenuation level. 
Besides, 
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It is seen that if the system starts with the initial conditions
( ) 00 =ime , ( ) 00~

=iθ , then the ∞H  tracking performance of 
(26) becomes (28). 
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That is, the 
2L -gain form 

iω  to 
ime  must be equal to or less 

than the prescribed value of iρ  [19], [28], [36]. Thus, the 
following result can be obtained: 
Theorem 1: Consider the nonlinear uncertain system 
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.Suppose that the unknown control input eqju ,  which is 

approximated by ( )jeqj Su θ̂,ˆ ,
 as (17), iS is given by (29), iQ isa 

symmetric positive definite weighting matrix, and 10 << iρ  
is the design constant that serves as an attenuation level. 

Let 0>= T
ii KK  be the solution of the following LMI: 
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III. EVOLVED BAT ALGORITHM FOR FINDING STABLE SYSTEM 
PARAMETERS 

The Evolved Bat Algorithm (EBA) [27] is a newly 
developed swarm intelligence algorithm inspired by bat 
echolocation in the natural world. The computational speed of 
the EBA is fast because its structure is designed with simple 
and light computations. Unlike other swarm intelligence 
algorithms (e.g., Particle Swarm Optimization (PSO) [4], 
Artificial Bee Colony (ABC) optimization [12], [13], or Cat 
Swarm Optimization [5] [6], there is only one major variable 
which should be determined before using EBA, i.e., the 
medium for spreading sound waves. The chosen medium 
determines the step size of the movement of the artificial agent 
in the solution space. In general, the step size has a direct 
influence on the search result. In this paper, the chosen medium 
is air, based on the natural environment where bats live.The 
distance between the sound wave source and the target, which 
bounds the wave back, is defined by (30):` 

 

( ) ( ) ( ) ( ) TTkmTmD Δ=Δ⋅=Δ⋅= 17.0.sec.sec2
34.0.sec.sec2

340
  

(30) 

 
where D  denotes the distance andit is known that the sound 
wave travels 340 meter-per-second in the air. 

In our experiments, we use a random number in the range of 
[-1, 1] to denote TΔ . The negative part of TΔ  comes from 
the moving direction in the coordinate. TΔ is given with a 
negative value when the transmission direction of the sound 
wave is opposite to the axis of the coordinate. The movement of 
the bat in EBA is defined by (31): 

 
Dxx t

i
t
i += −1

          (31) 
 
where ix   indicates the coordinate of the ith artificial agent; and   
is the iteration number. 

In addition, if a bat moves into the random walk process, its 
location will be updated by(32): 

 
( )t

ibest
t
i xxx R −⋅= β , ∈β [0, 1]                 (32) 

 
where β  is a random number; bestx  indicates the coordinate of 
the near best solution found so far overall artificial agents; and 

Rt
ix  represents the new coordinates of the artificial agent after 

the operation of the random walk process.The operation of 
EBA contains the following 4 steps: 
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Step 1. Initialization: the artificial agents are spread throughout 
the solution space by randomly assigning the 
coordinates to them. 

Step 2. Movement: the artificial agents are moved by (30)-(31). 
A random number is generated and then it is checked 
whether it is greater than the fixed pulse emission rate. If 
the result is positive, the artificial agent is moved using 
the random walk process, as defined by (32). 

Step 3. Evaluation: the fitness of the artificial agents is 
calculated by the user defined fitness function and 
updated to the stored near best solution. 

Step 4. Termination: the termination conditions are checked to 
decide whether to go back to step 2 or terminate the 
program and output the near best solution. 

IV. OUR PROPOSED IDEA 
Theorem 1 states the stability of a T-S fuzzy controller 

system and the stabilization can be achieved by finding a 
common symmetric positive definite matrix P for r subsystems. 
Hence, the stability analysis is converted to the problem of 
solving eigen values using the interior-point method associated 
with LMI techniques. The stability condition can be reduced to 
that of linear system when ݎ ൌ 1. In this paper, we propose the 
concept of utilizing swarm intelligence method to find the 
common symmetric positive definite matrix P, which satisfies 
the LMI stability conditions, instead of using the conventional 
methods. 

To employ EBA solving problems of optimization, a fitness 
function should be defined at the first beginning. The fitness 
function is the mathematic representation of the evaluation 
condition for the target problem. In our design, we’re going to 
use EBA to find a common P matrix, which satisfies the 
condition listed in (34): 

 

( ) ( ) 0<−+− lii
T

lii KBAPPKBA      (34) 
 
where ܲ ൌ ்ܲ ൐ 0 and ݅, ݈ ൌ 1,2, … ,  According to Hsiao et.ݎ
al.’s report [10], The equilibrium point of a closed-loop fuzzy 
system is asymptotically stable in the large, if there exists a 
common positive definite matrix P, which satisfies (34).The 
objective of our proposed method is to choose the proper 
common matrix P for the T-S fuzzy controller system which 
satisfies the stability condition listed in (34). The Duffing 
equation can describe a mechanical system with a hardening 
spring and can display rich nonlinear phenomena such as chaos 
and bifurcation. As a result, in recent years, the Duffing 
equation has become a test-bed for various advanced nonlinear 
and/or adaptive control techniques [23]. 

For the purpose of fulfilling the stability conditions of the 
theorem, EBA is employed to find the feasible P matrix. Each 
particle contains a symmetric positive definite matrix. The 
fitness function we design for this application is listed in (35): 

 
ܨ ൌ α ൈ β          (35) 

 
whereܨdenotes the fitness value, and ൈ stands for the AND 

operation in Boolean logic; α and β come from (36) and (37). 
 

α ൌ ൜1,  ifሺܣ௜ െ ௟ሻ்ܲܭ௜ܤ ൅ ܲሺܣ௜ െ ௟ሻܭ௜ܤ ൏ 0
0,  otherwise                                                 

         (36) 

β ൌ ൜ 1, ܲ ൌ ்ܲ ൐ 0
0,  otherwise                 (37) 

V. CONCLUSION 

The stability analysis of a GA-Based ∞H  adaptive fuzzy 
sliding model controller for a nonlinear system is discussed in 
this study. We first tracked the reference trajectory for an 
uncertain and nonlinear plant, and made sure that it 
waswell-approximated and described via the fuzzy model 
adopting FLC rules. Then, we decided on the initial values of 
the consequent parameter vector jθ̂  via a genetic algorithm. 

After this, we guaranteed a new ∞H  tracking performance 
inequality for the control system and the ∞H  tracking problem 
was characterized in terms of a linear matrix inequality (LMI) 
or an eigenvalue problem (EVP). It could then be efficiently 
solved by using convex optimization techniques. Next, an 
adaptive fuzzy sliding model controller was proposed to 
stabilize the system; good ∞H  control performance was 
achieved at the same time. A stability criterion was also derived 
from Lyapunov’s direct method to ensure the stability of the 
nonlinear system. It wasalso shown that the stability analysis of 
nonlinear systems could be reduced into LMI problems. 
Finally,concept of using EBA to find the common P matrix, 
which satisfies the stability criteria of the nonlinear system, is 
presented in this paper. Based on this criterion, the fuzzy 
controller design, with the LMI technique, can be used to 
stabilize the proposed fuzzy systems. 
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