
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2532

 

 

  
Abstract—Due to new distributed database applications such as 

huge deductive database systems, the search complexity is constantly 
increasing and we need better algorithms to speedup traditional 
relational database queries. An optimal dynamic programming 
method for such high dimensional queries has the big disadvantage of 
its exponential order and thus we are interested in semi-optimal but 
faster approaches. In this work we present a multi-agent based 
mechanism to meet this demand and also compare the result with 
some commonly used query optimization algorithms. 
 

Keywords—Information retrieval systems, list fusion methods, 
document score, multi-agent systems.  

I. INTRODUCTION 
ISTRIBUTED systems can be taught of as a partnership 
among independent cooperating centralized systems. 

Upon this idea number of large scale applications has been 
investigated during past decades among which distributed 
information retrieval (DIR) systems gained more popularity 
due to its high demand. The goal of DIR is to provide a single 
search interface that provides access to the available databases 
involving resource descriptions building for each database, 
choosing which databases to search for particular information, 
and merging retrieved results into a single result list [1]-[2].  

A distributed database (DDB) is a collection of multiple, 
logically interrelated databases distributed over a computer 
network. This resource distribution improves performance, 
reliability, availability and modularity that are inherent in 
distributed systems. As with traditional centralized databases, 
distributed database systems (DDBS) must provide an 
efficient user interface that hides all of the underlying data 
distribution details of the DDB from the users. The use of a 
relational query allows the user to specify a description of the 
data that is required without having to know where the data is 
physically located [3]. 

Data retrieval from different sites in a DDB is known as 
distributed query processing (DQP). For example, the 
following query accesses data from the local database as well 
as the remote sales database. The first table (EMP) found in 

 
Manuscript received January 31, 2008. 
R. Ghaemi and H. Tabatabaee are with the CE Department, Islamic Azad 

University, Quchan branch, Iran (e-mail: rezaghaemi@scientist.com, 
hamid.tabatabaee@gmail.com).  

A. Milani Fard and M. Sadeghizadeh are with the CE Department, 
Ferdowsi University, Mashhad, Iran (e-mail: milanifard@stu-mail.um.ac.ir, 
ma_sa638@stu-mail.um.ac.ir).  

site1 and the second table (DEPT) found in site2:  
 
SELECT ename, dname 
FROM company.emp e, company.dept@sales.goods d 
WHERE e.deptno = d.deptno 
 

So a distributed query is one that selects data from 
databases located at multiple sites in a network and distributed 
processing performs computations on multiple CPUs to 
achieve a single result. Query processing is much more 
difficult in distributed environment than in centralized  
environment  because a large number of parameters affect the 
performance of distributed queries, relations may be 
fragmented and/or replicated, and considering many sites to 
access, query response time may become very high [3]. 

It is quite evident that the performance of a DDBS is 
critically dependant upon the ability of the query optimization 
algorithm to derive efficient query processing strategies. 
DDBMS query optimization algorithms attempts to reduce the 
quantity of data transferred. Minimizing the quantity of data 
transferred is a desirable optimization criterion. The 
distributed query optimization has several problems relate to 
the cost model, larger set of queries, optimization cost, and 
optimization interval. 

The goal of DQP is to execute such queries as efficiently as 
possible in order to minimize the response time that users 
must wait for answers or the time application programs are 
delayed. And to minimize the total communication costs 
associated with a query, to improved throughput via parallel 
processing, sharing of data and equipment, and modular 
expansion of data management capacity. In addition, when 
redundant data is maintained, one also achieves increased data 
reliability and improved response time. 

In this work we propose a multi-agent architecture for 
distributed query processing. The structure of the paper is as 
follows. Section II describes an overview of query 
optimization process. An investigation on related works is 
declared in Section III, our proposed approach in Section IV, 
and simulation results in V. We finally concluded the work in 
the Section VI. 

II. QUERY OPTIMIZATION PROCESS 
In a relational database all information can be found in a 

series of tables. A query therefore consists of operations on 
tables. The most common queries are Select-Project-Join 
queries. In this paper, we will focus on the join-ordering 

Evolutionary Query Optimization for 
Heterogeneous Distributed Database Systems

Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee, and Mahdi Sadeghizadeh 

D 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2533

 

 

problem since permutations of the join order have the most 
important effect on performance of relational queries [4]. The 
query optimization process shown in Fig. 1, consists of getting 
a query on n relations and generating the best Query 
Execution Plan (QEP).  

Search space 
generation

Transformation 
rules

Search 
strategy Cost model

Equivalent QEP

Input query

Best QEP
 

Fig. 1 Query optimization process 
 
For a given query, the search space can be defined as the 

set of equivalent operator trees that can be produced using 
transformation rules. The example bellow illustrates 3 
equivalent join trees, which are obtained by exploiting the 
associative property of binary operators. Join tree (c) which 
starts with a Cartesian product may have a much higher cost 
than other join trees. 
 

SELECT ENAME, RESP 
  FROM  EMP, ASG, PROJ 
  WHERE EMP.ENO=ASG.ENO 
  AND   ASG.PNO=PROJ.PNO 

 
Fig. 2 Query equivalent trees 

 
Regarding different search spaces, there would be different 

shape of the join tree. In a linear tree, at least one operand of 
each operand node is a base relation. However, a bushy tree 
might have operators whose both operands are intermediate 
operators. In a distributed environment, bushy trees are useful 
in exhibiting parallelism [4]. 

 
   (a) linear join tree                 (b) bushy join tree 

 
Fig. 3 Linear vs. bushy join tree 

Considering new large scale database applications such as 
deductive database systems and bioinformatics, it is necessary 
to be able to deal with larger size queries. The search 
complexity constantly increases and makes higher demand for 
better algorithms than our traditional relational database 
queries. 

III. RELATED WORKS 
Three most common types of algorithms for join-ordering 

optimization are deterministic, Genetic and randomized 
algorithms [5]. 

Deterministic algorithm, also known as exhaustive search 
dynamic programming algorithm, produces optimal left-deep 
processing trees with the big disadvantage of having an 
exponential running time. This means that for queries with 
more than 10-15 joins, the running time and space complexity 
explodes [5]. Due to the very large time and space complexity 
of this algorithm for plan enumeration, iterative dynamic 
programming approach was proposed which produces 
reasonable plans with reasonable running time for most 
network topologies. However, its complexity is not much 
more than classical DP algorithm. 

Genetic and randomized algorithms [6]-[7] on the other 
hand do not generally produce an optimal access plan. But in 
exchange they are superior to dynamic programming in terms 
of running time. Experiments have shown that it is possible to 
reach very similar results with both genetic and randomized 
algorithms depending on the chosen parameters. Still, the 
genetic algorithm has in some cases proved to be slightly 
superior to randomized algorithms. 

 Layers of distributed query optimization have been 
depicted in Fig. 4.  

 

Query 
Decomposition Global Schema

Data 
Localization

Fragment 
Schema

Algebraic Query on Distributed Relations

Calculus Query on Distributed 
Relations

Global 
Optimization

Statistics on 
Fragments

Fragment Query

Local 
Optimization Local Schema

Optimized Fragment Query
With Communication Operations

Input query

Control Site

Local Sites

 
Fig. 4 Distributed query optimization 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2534

 

 

There are number of Query Execution Plan for DDB such 
as: row blocking, multi-cast optimization, multi-threaded 
execution, joins with horizontal partitioning, Semi Joins, and 
Top n queries [8]-[9]-[10]. In this paper we propose a novel 
agent based QEP generator for heterogeneous distributed data 
base systems. 
 

Distributed Cost Model 
An optimizer cost model includes cost functions to predict 

the cost of operators, and formulas to evaluate the sizes of 
results. Cost functions can be expressed with respect to either 
the total time, or the response time [4]-[11]. The total time is 
the sum of all times and the response time is the elapsed time 
from the initiation to the completion of the query. The total 
time (TT) is computed as bellow, where TCPU is the time of a 
CPU instruction, TI/O the time of a disk I/O, TMSG the fixed 
time of initiating and receiving a message, and TTR the time it 
takes to transmit a data unit from one site to another.   
 
TT = TCPU * #insts + TI/O * #I/Os + TMSG * #msgs + TTR * #bytes 

 
When the response time of the query is the objective 

function of the optimizer, parallel local processing and parallel 
communications must also be considered. This response time 
(RT) is calculated as bellow: 
 
RT = TCPU * seq_#insts + TI/O * seq_#I/Os + TMSG * seq_#msgs + 
TTR * seq_#bytes 
 

Most early distributed DBMSs designed for wide area 
networks have ignored the local processing cost and 
concentrate on minimizing the communication cost. Consider 
the following example: 

 

 
TT = 2 * TMSG + TTR * (x +y) 
RT = max {TMSG + TTR * x, TMSG + TTR * y } 

 
In parallel transferring, response time is minimized by 

increasing the degree of parallel execution. This does not 
imply that the total time is also minimized. On contrary, it can 
increase the total time, for example by having more parallel 
local processing (often includes synchronization overhead) 
and transmissions. Minimizing the total time implies that the 
utilization of the resources improves, thus increasing the 
system throughput. In practice, a compromise between the 
total and response times is desired. 

 
Database Statistics 
The main factor affecting the performance is the size of the 

intermediate relations that are produced during the execution. 
When a subsequent operation is located at a different site, the 
intermediate relation must be transmitted over the network. It 
is of prime interest to estimate the size of the intermediate 
results in order to minimize the size of data transfers. The 
estimation is based on statistical information about the base 
relations and formulas to predict the cardinalities of the results 
of the relational operations. 

 
Cartesian product: The cardinality of the Cartesian 

product of R and S is )()()( ScardRcardSRcard ×=×  
 
Join: There is no general way to estimate the cardinality of 

a join without additional information. The upper bound of the 
join cardinality is the cardinality of the Cartesian product. 
Some systems, such as Distributed INGRES [12], use this 
upper bound, which is quite pessimistic. R* [13] uses this 
upper bound divided by a constant to reflect the fact that the 
join result is smaller than the Cartesian product. However, 
there is a case, which occurs frequently, where the estimation 
is simple. If relation R is equi-join with S over attribute A 
from R, and B from S, where A is a key of relation R, and B is 
a foreign key of relation S, the cardinality of the result can be 
approximated as )()( ScardSRcard BA ==  

In other words, the Cartesian product SR × contains nr * ns 
tuples; each tuple occupies sr + ss bytes. If R ∩ S = ∅, then 
R⋈S is the same as SR × . If R ∩ S is a key for R, then a 
tuple of s will join with at most one tuple from R, therefore, 
the number of tuples in R⋈S is no greater than the number of 
tuples in S. If R ∩ S in S is a foreign key in S referencing R, 
then the number of tuples in R ⋈ S is exactly the same as the 
number of tuples in s. The case for R ∩ S being a foreign key 
referencing S is symmetric. 

As discussed earlier, ordering joins is an important aspect 
of centralized query optimization. This matter in a distributed 
context is even more important since joins between fragments 
may increase the communication time. Two main approaches 
exist to order joins in fragment queries: 

1) Direct optimization of the ordering of joins (e.g. in the 
Distributed INGRES algorithm).  

2) Replacement of joins by combination of semi-joins in 
order to minimize communication costs. 

Let R and S are relations stored at different sites and query 
R⋈S be the join operator. The obvious choice is to send the 
smaller relation to the site of the larger one. 

 

 
More interesting is the case where there are more than two 

relations to join. The objective of the join ordering algorithm 
is to transmit smaller operands. Since the join operations may 
reduce or increase the size of intermediate results, estimating 
the size of joint results is mandatory, but difficult. Consider 

Site 1 

Site 2 

Site 3 

x units 

y 

R S 

if size(R) < size(S) 

if size(R) > size(S) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2535

 

 

the following query expressed in relat. alg.: 
PROJ⋈PNOEMP⋈ENOASG whose join graph is below: 

 

 
 

This query can be executed in at least 5 different ways.  
 
1. EMP ASG; EMP’=EMP⋈ASG PROJ; EMP’⋈PROJ 
2. ASG EMP; EMP’=EMP⋈ASG PROJ; EMP’⋈PROJ 
3. ASG PROJ; ASG’=ASG⋈PROJ EMP; ASG’⋈EMP 
4. PROJ ASG; PROJ’=PROJ⋈ASG EMP; PROJ’⋈EMP 
5. EMP ASG; PROJ ASG; EMP⋈PROJ⋈ASG 

 
To select one of these programs, the following sizes must 

be known or predicted: size(EMP) , size(ASG) , size(PROJ) , 
size(EMP⋈ASG), size(ASG⋈PROJ). Furthermore, if it is the 
response time that is being considered, the optimization must 
take into account the fact that transfers can be done in parallel 
with strategy 5. An alternative to enumerating all the solutions 
is to use heuristics that consider only the size of the operand 
relations by assuming, for example, that the cardinality of the 
resulting join is the product of cardinalities. In this case, 
relations are ordered by increasing sizes and the order of 
execution is given by this ordering and the join graph. For 
instance, the order (EMP, ASG, PROJ) could use strategy 1, 
while the order (PROJ, ASG, EMP) could use strategy 4. 
 

Multi Agent Systems 
Multi-agent systems (MASs) as an emerging sub-field of 

artificial intelligence concern with interaction of agents to 
solve a common problem [14]. This paradigm has become 
more and more important in many aspects of computer science 
by introducing the issues of distributed intelligence and 
interaction. They represent a new way of analyzing, 
designing, and implementing complex software systems. 

In multi-agent systems, communication is the basis for 
interactions and social organizations which enables the agents 
to cooperate and coordinate their actions. A number of 
communication languages have been developed for inter-agent 
communication, in which the most widely used ones are KIF 
(Knowledge Interchange Format) [15], KQML (Knowledge 
Query and Manipulation Language) [16], and ACL (Agent 
Communication Language) [17]. KQML uses KIF to express 
the content of a message based on the first-order logic. KIF is 
a language intended primarily to express the content part of 
KQML messages. ACL is another communication standard 
emerging in competition with KQML since 1995. Nowadays, 
XML (Extensible Markup Language) started to show its 
performance as a language to encode the messages exchanged 
between the agents, in particular in agent-based e-commerce 

to support the next generation of Internet commerce [18]. 

IV. PROPOSED SYSTEM ARCHITECTURE 
Although the problem of distributed query processing in 

heterogeneous systems has been investigated before [19], a 
good solution to practical query optimization has not been 
studies well. To meet so we proposed new multi-agent system 
architecture based on Java Agent DEelopment (JADE) 
framework [20]. JADE is a software development framework 
aimed at developing multi-agent systems and applications in 
which agents communicate using FIPA1 Agent 
Communication Language (ACL) messages and live in 
containers which may be distributed to several different 
machines. The Agent Management System (AMS) is the agent 
who exerts supervisory control over access to and use of the 
Agent Platform. Only one AMS will exist in a single platform.  

Each agent must register with an AMS in order to get a 
valid AID. The Directory Facilitator (DF) is the agent who 
provides the default yellow page service in the platform. The 
Message Transport System, also called Agent Communication 
Channel (ACC), is the software component controlling all the 
exchange of messages within the platform, including 
messages to/from remote platforms. 

JADE is capable of linking Web services and agents 
together to enable semantic web applications. A Web service 
can be published as a JADE agent service and an agent service 
can be symmetrically published as a Web service endpoint. 
Invoking a Web service is just like invoking a normal agent 
service. Web services’ clients can also search for and invoke 
agent services hosted within JADE containers.  

The Web Services Integration Gateway (WSIG) [21] uses a 
Gateway agent to control the gateway from within a JADE 
container. Interaction among agents on different platforms is 
achieved through the Agent Communication Channel. 
Whenever a JADE agent sends a message and the receiver 
lives on a different agent platform, a Message Transport 
Protocol (MTP) is used to implement lower level message 
delivery procedures [22]. Currently there are two main MTPs 
to support this inter-platform agent communication - CORBA 
IIOP-based and HTTP-based MTP.  

Considering large-scale applications over separated 
networks, agent communications has to be handled behind 
firewalls and Network Address Translators (NATs), however, 
the current JADE MTP do not allow agent communication 
through firewalls and NATs. Fortunately, the firewall/NAT 
issue can be solved by using the current JXTA implementation 
for agent communication [23].  

JXTA is a set of open protocols for P2P networking. These 
protocols enable developers to build and deploy P2P 
applications through a unified medium [24]. Obviously, JXTA 
is a suitable architecture for implementing MTP-s for JADE 
and consequently JADE agent communication within different 
networks can be facilitated by incorporating JXTA technology 
into JADE [23]. 
 
1 Foundation for Intelligent Physical Agents (http://www.fipa.org) 

AS

EMP PROJ 

Site 2 

Site 3 Site 1 

ENO 
PNO 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2536

 

 

In this work, a query is submitted by user to the Query 
Distributor Agent and then it will be distributed using the 
submitted terms in the available ontologies. Our proposed 
architecture uses different types of agents, each having its own 
characteristics. The proposed system architecture is shown in 
Fig. 5. 

 

 
 
1. Query Distributor Agent (QDA): After receiving the 

user query, the QDA sends sub-queries to responsible local 
optimizer agents. The QDA can also create search agents if 
needed. 

 
2. Local Optimizer Agents (LOAs): These agents apply a 

Genetic algorithm based sub-query optimization which will be 
discussed later, and return a result table size to the Global 
Optimizer Agent. 

3. Global Optimizer Agent (GOA): This agent has the 
responsibility to find best join order via network. To do so, 
GOA receives result table size information from LOAs and 
again using an evolutionary method finds a semi-optimal join 
order, however, this time the GA fitness function is based on 
minimizing communication rate among different sites. The 
final result would be then send to LOAs to perform operation 
and deliver result to the GOA to show them on the screen. 

 
Genetic Algorithm based Optimization 
The basic concept of the GAs were originally developed by 

Holland [25] and later revised by Goldberg [26]. Goldberg 
showed that GAs are independent of any assumption about the 
search space and are based on the mechanism of natural 
genetics. The first step to model this problem as a GA 
problem, is determining the chromosome, GA operators, and 
fitness function. 

 
 

a) Chromosome Design 
In order to encode different access plans, we considered 

ordered list scheme to represent each processing tree as an 
ordered list. For instance (((((R1⋈R5)⋈R3)⋈R2)⋈R4) is 
encoded as “15324”. This converts the join order to the well-
known traveling salesman problem (TSP). Possible query 
plans are encoded as integer strings. Each string represents the 
join order from one relation of the query to the next. This 
mechanism is also used within the PostgreSQL optimizer [27]. 
There may be other ways to encode processing trees especially 
bushy trees; however, we have used the above explained 
ordered list encoding method for implementation simplicity 
and faster run. 

 
b) GA operations 
For the crossover, one point in the selected chromosome 

would be selected along with a corresponding point in another 
chromosome and then the tails would be exchanged. Mutation 
processes causes some bits to invert and produces some new 
information. The only problem of mutation is that it may 
cause some useful information to be corrupted. Therefore we 
used elitism which means the best individual will go forward 
to the next generation without undergoing any change to keep 
the best information. 
 

c) Fitness function 
Defining fitness function is one of the most important steps 

in designing a GA-based method, which can guide the search 
toward the best solution. In our simulation we used a simple 
random cost estimator as defined bellow where random(x) 
returns an integer between 0 and x. 

 

  
⎩
⎨
⎧

×++
×>+++×

=
elseSRSRrandom

SRSRifSRSRrandom
fitness

;)()(
)()(;)()(  

 
d) Algorithm design 
After calculating the fitness function value for each parent 

chromosome the algorithm will generate N children. The 
lower a parent chromosome's fitness function value is the 
higher probability it has to contribute one or more offspring in 
the next generation. After performing operations, some 
chromosomes might not satisfy the fitness and as a result the 
algorithm discards this process and gets M (M ≤ N) children 
chromosomes. The algorithm then selects N chromosomes 
with the lower fitness value from the M + N chromosomes (M 
children and N parents) to be parent of the next generations. 
This process would repeat until a certain number of 
generations are processed, after which the best chromosome is 
chosen. Fig. 2 shows our GA based approach. 
 

Search page 

User 

GOA 

Request 

Database  
#n

Database  
#2 

Database  
#1 

QDA 

 
           LOA                   LOA               LOA                         LOA 
             #1                      #2                    #3                            #n 

. . . 

Fig. 5 Proposed system architecture 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2537

 

 

input: Relation size on different sites 
output: Semi-Optimal join orders 
 
initialize gene with a random join order 
produce N initial parent chromosomes 
mincost = d[gene.answer[0]]+d[gene.answer[1]]; 
maxcost = d[gene.answer[0]]*d[gene.answer[1]]; 
if (mincost>maxcost) 

gene.value = random(mincost-maxcost)+maxcost; 
else 

gene.value = random(maxcost-mincost)+mincost; 
while done ≠ yes do 

produce N random children chromosomes 
pass the best individual to next generation 
randomly mating 
exchange parts of chromosomes 
mutate with rate = 2/100 

 for(i=1;i<n-1;i++) 
 { 
  mincost = prev_join+d[gene.answer[i+1]]; 
  maxcost = prev_join*d[gene.answer[i+1]]; 

  if (mincost>maxcost) 
      gene.value = random(mincost-maxcost)  
                  + maxcost; 
   else 
      gene.value = random(maxcost-mincost)  
                  + mincost; 

 } 
if gene.value satisfied then done = yes 
else produce next generation chromosomes 

end while 
 

Fig 2 Our GA-based query optimization algorithm 
 

V.  RESULTS  
Experiments were done on a PC Pentium 4 CPU 2 GHz and 

1GB RAM. The evolutionary process accomplished in less 
than a second and seen in Fig. 6 (a) sample query for 20 joins 
is converged to a near optimal fitness almost after 100 
generations. Table I shows the parameters value we set for our 
implementation.  

 
TABLE I 

 PARAMETERS SETTINGS FOR GA-BASED APPROACH 
Parameter Value 

Population size 100 
Mutation probability 0.02 
Crossover probability 0.7 

Elitism probability 0.5 
Number of generations 100 

 

62000
64000
66000
68000
70000
72000
74000
76000
78000
80000
82000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Generation

Fi
tn

es
s

 
Fig. 6 Optimization of a 20-joins query in 100 generations 

 
 

There is no doubt that dynamic programming method 
always gives us optimal solution, however, since the time and 
space complexity of the GA-base optimization is much less, it 
is not a practical approach for high amount of nested joins. 
Fig. 7 shows TGA / TDP which is rate of average run time for 10 
queries, where TGA is GA based optimization average run time 
and TDP is dynamic programming based optimization average 
run time for the same query. Results as expected shows this 
rate is always less than 1 which means the GA approach has a 
less overhead in contrast with the DP method. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10

Series1

  

Fig. 7 Rate of optimization average run time for 10 queries 
 

A computational complexity analysis in Table II shows the 
superiority of the evolutionary method in comparison with the 
dynamic programming approach. The time and space 
complexity in the evolutionary method is liner with respect to 
G as the number of generations, and N as the number of 
chromosomes in the population, while it is exponential in the 
DP method which is not efficient in handling more than 10 
joins.  

 
TABLE II 

COMPUTATIONAL COMPLEXITY COMPARISON 
 Space 

Complexity 
Time 

Complexity 

Evolutionary Method O(N) O(G.N) 

Dynamic Programming O(2n) O(2n) 

V. CONCLUSION 
An evolutionary query optimization mechanism in 

distributed heterogeneous systems has boon proposed using 
multi-agent architecture and genetic algorithm approach. 
Although deterministic dynamic programming algorithm 
produces optimal left-deep processing trees, it has the big 
disadvantage of having an exponential running time. Genetic 
and randomized algorithms on the other hand do not generally 
produce an optimal access plan. But in exchange they are 
superior to dynamic programming in terms of running time. 
Our practical framework uses hybrid JADE-JXTA framework 
which allows agent communication through firewalls and 
NATs in heterogeneous networks. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:7, 2008

2538

 

 

REFERENCES   
[1] J. Callan, “Distributed information retrieval”. In Advances in 

Information Retrieval, W. B. Croft, Ed. Kluwer Academic Publishers, 
2000, pp. 127–150. 

[2] L. Si, J. Callan, “A Semisupervised Learning Method to Merge Search 
Engine Results”, ACM Transactions on Information Systems, Vol. 21, 
No. 4, October 2003, Pages 457–491. 

[3] Li, Victor O. K. “Query processing in distributed data bases”, MIT. Lab. 
for Information and Decision Systems Series/Report no.: LIDS-P ; 1107, 
1981 

[4] M. Tamer Özsu, Patrick Valduriez, “Principles of Distributed Database 
Systems, Second Edition”, Prentice Hall, ISBN 0-13-659707-6, 1999  

[5] Kristina Zelenay,“Query Optimization”, ETH Zürich, Seminar 
Algorithmen für Datenbanksysteme, June 2005 

[6] Yannis E. Ioannidis and Youngkyung Cha Kang, “Randomized 
Algorithms for Optimizing Large Join Queries” 

[7] Michael Steinbrunn, Guido Moerkotte, Alfons Kemper, “Heuristic and 
Randomized Optimization for the Join Ordering Problem”, The VLDB 
Journal - The International Journal on Very Large Data Bases, Volume 6 
,  Issue 3  (August 1997), Pages: 191-208, ISSN:1066-8888  

[8] D. Kossman, “The state of the art in distributed query processing” (ACM 
Computing Surveys, ISSN:0360-0300, 2000, Volume 32 ,  Issue 4 
 December 2000, Pages: 422 - 469 

[9] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, T. 
G. Price, “Access path selection in a relational database management 
system”, Morgan Kaufmann Series In Data Management Systems, 
Readings in database systems (3rd ed.), Pages: 141 – 152, 1998, ISBN:1-
55860-523-1 

[10] Stocker, Kossman, Braumandl, Kemper , “Integrating semi join reducers 
into state of the art query processors”, (ICDE 2001) 

[11] Stefano Ceri, Giuseppe Pelagatti, “Distributed Databases: Principles and 
Systems”, Mcgraw-Hill, ISBN-10: 0070108293, ISBN-13: 978-
0070108295, 1984 

[12] The Design and Implementation of Distributed INGRES (context) - 
Stonebraker – 1986 

[13] Patricia G. Selinger, Michel E. Adiba, “Access Path Selection in 
Distributed Database Management Systems”, ICOD 1980: 204-215 

[14] M. Wooldridge, “An Introduction to Multiagent Systems” Published in 
February 2002 by John Wiley & Sons. ISBN 0 47149691X.  

[15] M. R. Genesereth, R. E. Fikes, “Knowledge interchange format”, version 
3.0. Technical Report 92-1, Stanford University, Computer Science 
Departament, 1992 

[16] T. Finin, R. Fritzson, D. McKay, R. McEntire,”KQML as an Agent 
Communication Language”, Proceedings of the 3rd International 
Conference on Information and Knowledge Management (CIKM'94), 
ACM Press,Gaithersburg, MD, USA, editor N. Adam, B. Bhargava, Y. 
Yesha, pp 456-463, 1994 

[17] Y. Labrou, T. Finin, Y. Peng, “The current landscape of Agent 
Communication Languages”, The current landscape of Agent 
Communication Languages, Intelligent Systems, volume 14, number 2, 
March/April 1999, IEEE Computer Society, 1999 

[18] A. Korzyk, “Towards XML As A Secure Intelligent Agent 
Communication Language”, the 23rd National Information Systems 
Security Conference, Baltimore Convention Center, Baltimore, 
Maryland, SA, October 16-19, 2000 

[19] Huang, Kuan-Tsae, Davenport, Wilbur B., “Query processing in 
distributed heterogeneous databases”, MIT. Laboratory for Information 
and Decision Systems Series/Report no.: LIDS-P ;1212 ,  1981 

[20] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, “JADE Programmer’s 
Guide”, 21-August-2006. 

[21] JADE Board, “JADE WSIG Add-On Guide JADE Web Services 
Integration Gateway (WSIG) Guide”, 03-March-2005 

[22] E. Cortese, F. Quarta, G. Vitaglione, P. Vrba. “Scalability and 
Performance of the JADE Message Transport System”. Analysis of 
Suitability for Holonic Manufacturing Systems, exp, 2002. 

[23] S. Liu, P. Küngas, M. Matskin, “Agent-Based Web Service Composition 
with JADE and JXTA”, Proceedings of the 2006 International 
Conference on Semantic Web and Web Services, SWWS 2006, Las 
Vegas, Nevada, USA, June 26-29, 2006 

[24] J. D. Gradecki, “Mastering JXTA: Building Java Peer-to-Peer 
Applications”, JohnWiley&Sons,2002. 

[25] J. H. Holland, "Adaptation in natural and artificial systems", Ann Arbor, 
MI University of Michigan Press 1975. 

[26] D. E. Goldberg, "The genetic algorithms in search, optimization, and 
machine learning", New Y7ork: Addison-Wesley, 1989. 

[27] PostgreSQL 8.3.0 Documentation, Chapter 49. Genetic Query Optimizer 
http://www.postgresql.org/docs/8.3/interactive/geqo.html 

 


