
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

482

 

 

  
Abstract—Software metric is a measure of some property of a 

piece of software or its specification. The aim of this paper is to 
present an application of evolutionary decision trees in software 
engineering in order to classify the software modules that have or 
have not one or more reported defects. For this some metrics are used 
for detecting the class of modules with defects or without defects. 

 
Keywords—Evolutionary decision trees, decision trees, software 

metrics.  
  

I. INTRODUCTION 
OFTWARE engineering describes the collection of 
techniques that apply an engineering approach to the 

construction and support of software products. 
 Software engineering activities include managing, costing, 

planning, modeling, analyzing, specifying, designing, 
implementing, testing and maintaining software products. 
Whereas computer science provides the theoretical 
foundations for building software, software engineering 
focuses on implementing software in a controlled and 
scientific way [1]. 

Software metrics is a term that embraces many activities, all 
of which involve some degree of software measurement [1] 
such as: cost and effort estimation, productivity, measures and 
models, data collection, quality models and measures, 
reliability models, performance evaluation and models, 
structural and complexity metrics, capability-maturity 
assessment, management by metrics, evaluation of methods 
and tools.  

The paper present an application of evolutionary decision 
trees in software engineering for reporting modules with 
defects. In order to o this 5 different lines of code measure, 3 
McCabe metrics, 4 base Halstead measures, a branch count 
are used. Identified modules that have one or more defects can 
be re-designed or tested and maintained more cautiously and 
any other special care can be devoted to these modules. 

The rest of this paper is organized as follows. Section 2 
briefly discusses the software metrics used in this paper. 
Section 3 introduces a brief description of decision trees. 
Section 4 contains the experimental evaluation of this method. 
Section 5 gives some conclusions and suggestion for future 
work on this direction.  
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II. SOFTWARE METRICS  
In order to frame our contribution in the proper context we 

begin with a review of the concept of software metrics and 
introduction on the related work. 

Software metrics is a term that embraces many activities, all 
of which involve some degree of software measurement [1] 
such as: cost and effort estimation, productivity, measures and 
models, data collection, quality models and measures, 
reliability models, performance evaluation and models, 
structural and complexity metrics, capability-maturity 
assessment, management by metrics, evaluation of methods 
and tools.  

In this section, the software metrics problem is presented. A 
classification of software metrics is presented. The most used 
software metrics are analyzed.   

The product software metrics deal with the characteristics 
of source code for a software project. Product software 
metrics are subdivided in: Size Metrics, Complexity Metrics, 
Halstead’s Software Metrics. 

A. Size Metrics 
Size Metrics are represented by a number of metrics attempt 

to quantify software “size”.  
For a software application is easy to measure the number of 

lines of codes for quantify software size. We discuss here a 
little bit about some aspects of software size [1].  Each 
product of software development is a physical entity. In this 
acceptation, it can be described in terms of its size. Ideally, the 
idea was to define a set of attributes for software size 
analogous to human height and weight. Each attribute 
captures a key aspect of software size. Fenton [1] suggest the 
following software size aspects:  
1) length: physical size of the product  
2) functionality: functions supplied by the product to the 

user  
3) complexity  
4) problem complexity: the complexity of the underlying 

problem  
5) algorithmic complexity: efficiency of the algorithm  
6) structural complexity: algorithm structure   
7) cognitive complexity: understandability of software  

The most commonly used measure for the length of a code 
source of a program is the number of lines of code (LOC) [1]. 
The abbreviation NCLOC is used to represent a non-
commented source line of code. NCLOC is also sometimes 
referred to as effective lines of code (ELOC). NCLOC is 
therefore a measure of the uncommented length. 

The commented length is also a valid measure, depending 
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on whether or not line documentation is considered to be a 
part of programming effort. The abbreviation CLOC is used to 
represent a commented source line of code [1] 

By measuring NCLOC and CLOC separately we can 
define: 

 
( ) CLOCNCLOCLOClengthtotal +=                 (1) 

 
It is useful to separate comment lines and other lines 

(NCLOC). KLOC is used to denote thousands of lines of 
code. 

Generally, is better to address how the followings are 
handled:  
1) blank lines  
2) comment lines (CLOC)  
3) data declarations or other commands   
4) lines that contains several separate instructions 
5) lines programs generated by a tool    

The entity CLOC/LOC is then a measure of the density of 
comments in a program.  

The purpose of software is to provide certain functionality 
for solving some specific problems or to perform certain tasks. 
Efficient design provides the functionality with lower 
implementation effort and fewer LOCs. Therefore, using LOC 
data to measure software productivity is like using the weight 
of an airplane to measure its speed and capability. In addition 
to the level of languages issue, LOC data do not reflect no 
coding work such as the creation of requirements, 
specifications, and user manuals. The LOC results are so 
misleading in productivity studies that Jones states "using 
lines of code for productivity studies involving multiple 
languages and full life cycle activities should be viewed as 
professional malpractice" [3],[4],[5],[6],[7],[8],[9]. 

For each metrics program is better to establish exactly what 
enter the LOC. Because the confusion existing according with 
the types of lines of code that are counting in LOC, could be a 
variation until 500%). LOC has the disadvantage that could be 
calculated exactly only in a very advanced phase of project. 
Programming Languages have different expressiveness that 
this metric depend a lot the language used [10]. A source line 
of code (SLOC) is a term used in the most of software metrics 
program. 

B. Complexity Metrics  
The cyclomatic complexity metrics [11] are described 

below. For any given computer program, its control flow 
graph, G, could be draw. Each node of G corresponds to block 
of sequential code and each arc corresponds to a branch of 
decision in program. The cyclomatic complexity of such a 
graph can be computed by a simple formula from graph 
theory, as: 

 
2)( −−= neGv                                  (2) 

 
where 

♦ e is the number of edges 

♦ n is the number of nodes . 
McCabe [11] proposed that  )(Gν  could be used as a 

measure of program complexity. 
Halstead metric are described below. Halstead [12] 

proposed a unified set of metrics that apply to several aspects 
of programs, as well as to the overall software production 
effort. 

Some of this product metrics are: program vocabulary 
metrics (n), program length metrics (N), program volume 
metrics (V). 

According to Halstead [12] computer programs can be 
visualized as a sequences of tokens, each token being 
classified as either an operator or operand. 

He has defined the program vocabulary (n), of a program 
as: 

 

21 nnn +=                                        (3) 
 

where: 
♦ 1n  is the number of unique operators in the 

program; 
♦ 2n  is the number of unique operands in the 

program; 
♦  n is the total numbers of unique tokens from 

which the program has been constructed [12]. 
Program length (N) is the count of the total number of 

operators and operands in the program  
 

21 NNN +=                                         (4) 
 

where: 
♦ 1N  is the total number of operators in the 

program; 
♦ 2N  is the total number of operands in the 

program 
N represents a clearly measure of the program’s size. 

Halstead considers 'N  an estimated value for N calculated 
with the formula presented below: 

 

222121
' loglog nnnnN +=                              (5) 

 
Program Volume (V) is a measurement of program size. V 

is the measure of the storage volume required to represent the 
program. 

 
nNV 2log⋅=                                      (6) 

 
Between LOC, N and V there is a linearly related.  
 

III. DECISION TREES 
Inductive inference is the process of moving from concrete 

examples to general models, where the goal is to learn how to 
classify objects by analyzing a set of instances (already solved 
cases) whose classes are known. Instances are typically 
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represented as attribute-value vectors. Learning input consists 
of a set of such vectors, each belonging to a known class, and 
the output consists of a mapping from attribute values to 
classes. This mapping should accurately classify both the 
given instances and other unseen instances.  

Decision tree learning, used in data mining and machine 
learning, uses a decision tree as a predictive model which 
maps observations about an item to conclusions about the 
item's target value. More descriptive names for such tree 
models are classification trees or regression trees. In these tree 
structures, leaves represent classifications and branches 
represent conjunctions of features that lead to those 
classifications. 

In decision theory and decision analysis, a decision tree is a 
graph or model of decisions and their possible consequences, 
including chance event outcomes, resource costs, and utility. 
It can be used to create a plan to reach a goal. Decision trees 
are constructed in order to help with making decisions. A 
decision tree is a special form of tree structure. Another use of 
trees is as a descriptive means for calculating conditional 
probabilities. 

Decision trees [12] is formalism for expressing such 
mappings and consists of tests or attribute nodes linked to two 
or more sub-trees and leafs or decision nodes labeled with a 
class which means the decision. A test node computes some 
outcome based on the attribute values of an instance, where 
each possible outcome is associated with one of the sub-trees. 
An instance is classified by starting at the root node of the 
tree. If this node is a test, the outcome for the instance is 
determined and the process continues using the appropriate 
sub-tree. When a leaf is eventually encountered, its label gives 
the predicted class of the instance. 

Evolutionary algorithms are adaptive heuristic search 
methods which may be used to solve all kinds of complex 
search and optimization problems. They are based on the 
evolutionary ideas of natural selection and genetic processes 
of biological organisms. Evolutionary algorithms are able to 
evolve solutions to real-world problems, if they have been 
suitably encoded. They are often capable of finding optimal 
solutions even in the most complex of search spaces or at least 
they offer significant benefits over other search and 
optimization techniques. 

The traditional decision trees' induction methods contain 
several disadvantages. In this paper the power of evolutionary 
algorithms to induct the decision trees is used. Evolutionary 
decision support model that evolves decision trees in a multi-
population genetic algorithm SAEDT: self-adapting 
evolutionary decision trees [13] is used.   

Many experiments have shown the advantages of such 
approach over the traditional heuristic approach for building 
decision trees, which include better generalization, higher 
accuracy, possibility of more than one solution, efficient 
approach to missing and noisy data, etc. 

In SAEDT algorithm [13] individuals are presented like 
directly as decision trees. All intermediate solutions are 
feasible, no information is lost because of conversion between 

internal representation and the decision tree, and the fitness  
 

TABLE I 
CLASSIFICATION TREE MODEL 

Classification Tasks Number of 
classification task 

Training observation  1904 
Test Observations 205 
Predictors 21 
Classes 2 

Majority Class False – Module has no 
defects 

% misclassified if 
Majority Class is used 
as Predicted Class 

 
14 % 

 
function can be straightforward. The decision trees may be 
seen as a kind of simple computer programs (with attribute 
nodes being conditional clauses and decision nodes being 
assignments) genetic operators similar to those used in genetic 
programming where individuals are computer program trees. 

For the selection purposes a slightly modified linear ranking 
selection was used. The ranking of an individual decision tree 
within a population is based on the local fitness function. 

Crossover works on two selected individuals as an 
exchange of two randomly selected sub-trees. In order to 
determine paths by finding a decision through the tree, a 
randomly selected training object is used. An attribute node is 
randomly selected on a path in the first tree and an attribute is 
randomly selected on a path in the second tree. The sub-tree 
from a selected attribute node in the first tree is replaced with 
the sub-tree from a selected attribute node in the second tree 
and in this manner an offspring is created which is put into a 
new population. 

Mutation consists of several parts: 1) one randomly selected 
attribute node is replaced with an attribute, randomly chosen 
from the set of all attributes; 2) a test in a randomly selected 
attribute node is changed, i.e. the split constant is mutated; 3) 
a randomly selected decision (leaf) node is replaced by an 
attribute node; 4) a randomly selected attribute node is 
replaced by a decision node. 

With the combination of presented crossover, which works 
as a constructive operator towards local optimums, and 
mutation, which works as a destructive operator in order to 
keep the needed genetic diversity, the searching for the 
solution tends to be directed toward the global optimal 
solution, which is the most appropriate decision tree regarding 
our specific needs. As the evolution repeats, more qualitative 
solutions are obtained regarding the chosen fitness function. 
The evolution stops when an optimal or at least an acceptable 
solution is found or if the fitness score of the best individual 
does not change for a predefined number of generations. 

IV. DETECTING MODULE DEFECTS USING DECISION TREES 
In order to test decision trees in predicting potentially 

modules that contain defects a real dataset are used the dataset 
[14] contains 2109 software modules. A set of 21 attributes, 
containing various software complexity measures and metrics 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

485

 

 

have been used for each software module.  
The paper analyzed the decision trees build with this 

software metrics.  
The 21 attributes are described in the theoretical chapter of 

the paper. These attributes are: 
 

1. loc - number of McCabe's line count of code 
2. v(g)- number of McCabe "cyclomatic complexity" 
3. ev(g) - number of McCabe "essential complexity" 
4. iv(g) - number of McCabe "design complexity" 
5. n - number of Halstead total operators + operands 
6. v - Halstead "volume" 
7. l - Halstead "program length" 
8. d - Halstead "difficulty" 
9. i - Halstead "intelligence" 
10. e - Halstead "effort" 
11. b - Halstead  
12. t - Halstead's time estimator 
13. lOCode - Halstead's line count 
14. lOComment - Halstead's count of lines of comments 
15. lOBlank - Halstead's count of blank lines 
16. lOCodeAndComment – Number of code e comment  
17. uniq_Op - number of unique operators 
18. uniq_Opnd – number of unique operands 
19. total_Op - total operators 
20. total_Opnd - total operands 
21. branchCount of the flow graph 
 

From all 2099 modules 2089 have been randomly selected 
for the training set, and the remaining 529 modules has been 
selected for the testing set. Several decision trees have been 
induced for predicting modules with defects. The results of 
classification using induced decision tree is presented below:  

 
TABLE II 

TREE INFORMATION 

Tree Information Number  

  
Number of Nodes  74 
Leaf Nodes 38 
Levels 20 
 %  Misclassified  

 On Training Data  
%  Misclassified 
 On Test  Data  

10.92 % 
17.56 % 

 
Confusion Matrix for training data is listed below for 

training and validation: 
 
          TABLE III 

TRAINING DATA CONFUSION MATRIX  

 
True class       

Predicted 
Class  
False 

Predicted 
Class 
False 

Total 

FALSE 1607 4 1611 
TRUE 204 89 293 
TOTAL 1811 93 1904 

 
Confusion Matrix for test data is listed below for training 

and validation. 

TABLE IV 
TEST DATA CONFUSION MATRIX  

 
True class       

Predicted 
Class  
False 

Predicted 
Class 
False 

Total 

FALSE 166 6 172 
TRUE 30 3 33 
TOTAL 196 9 205 

 
The accuracy of test data is 83.44 %. The accuracy of 

training data is 89.08 %. 
The decision rules are:  

Rule0  Problems = FALSE 
Rule1 IF loComment >= 22 
 THEN Problems = TRUE 
Rule2 IF loComment < 22 
 AND uniq_op >= 29 
 THEN Problems = TRUE 
Rule3 IF Loc >= 286 
 THEN Problems = TRUE 

   
Rule4 IF Loblank >= 35 
 THEN Problems = TRUE 
Rule5 IF unq_oper >= 60 
 THEN Problems = TRUE 
Rule6 IF v(g) >= 19 
 THEN Problems = FALSE 
Rule7 IF b >= 0.74 
 THEN Problems = TRUE 
Rule8 IF d >= 38.54 
 THEN Problems = TRUE 
Rule9 IF unq_oper >= 59 
 THEN Problems = TRUE 
Rule10 IF LOCEC >= 4 
 THEN Problems = FALSE 
Rule11 IF unq_oper < 24 
 THEN Problems = FALSE 
Rule12 IF d >= 27.42 
 THEN Problems = TRUE 
Rule13 IF d >= 27.12 
 THEN Problems = TRUE 
Rule14 IF uniq_op >= 21 
 THEN Problems = TRUE 
Rule15 IF v(g) >= 15 
 THEN Problems = TRUE 
Rule16 IF loCode >= 4 
 THEN Problems = FALSE 
Rule17 IF i >= 32.63 
 AND n < 176 
 THEN Problems = FALSE 
Rule18 IF tot_op >= 197 
 THEN Problems = TRUE 
Rule19 IF n >= 176 
 THEN Problems = TRUE 
Rule20 IF loCode < 4 
 THEN Problems = FALSE 
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Rule21 IF Loblank >= 1 
 THEN Problems = FALSE 
Rule22 IF Loblank >= 16 
 THEN Problems = TRUE 
Rule23 IF uniq_op >= 22 
 THEN Problems = TRUE 
Rule24 IF n < 10 
 THEN Problems = FALSE 
   
Rule25 IF Loc < 39 
 AND Loc >= 7 
 THEN Problems = FALSE 
   
Rule26 IF loCode >= 86 
 THEN Problems = TRUE 
   
Rule27 IF tot_oper >= 68 
 THEN Problems = TRUE 
   
Rule28 IF loComment >= 16 
 THEN Problems = TRUE 
Rule29 IF Loc >= 59 
 THEN Problems = FALSE 

 

The term Problems is false if module has defects and is true 
if the module has not defects. 

V. CONCLUSION AND FUTURE WORK  
In this paper some results with software metrics used for 

detecting if a software module has or not has defects are 
presented. The proposed approach is considered to be useful 
in order to detecting defects in other data set. The decision 
rules are useful for develop new rules in software defect 
identification. 

The future work will be to use another software metrics for 
detecting defects and for quality evaluation of a software 
metrics using decision trees. 

The application of the rules to another data set can classify 
the module.  

Decision trees are very powerful tools for classifying the 
software module using software metric. We develop new 
algorithm in order to classify using some new metrics. 
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