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Abstract—An evolutionary computing technique for solving 

initial value problems in Ordinary Differential Equations is proposed 
in this paper. Neural network is used as a universal approximator 
while the adaptive parameters of neural networks are optimized by 
genetic algorithm. The solution is achieved on the continuous grid of 
time instead of discrete as in other numerical techniques. The 
comparison is carried out with classical numerical techniques and the 

solution is found with a uniform accuracy of 910−≈MSE .  
 
Keywords—Neural networks, Unsupervised learning, 

Evolutionary computing, Numerical methods, Fitness evaluation 
function.  

I. INTRODUCTION 
N this paper, the problem of first-order ordinary differential 
equations is considered whose general form can be written 

as 
12,),( ataBfytfy ≤≤== α  (1) 

where y  is the solution of the problem in the interval 

)2,1( aa , t  is the time and B is the operator defining initial 
condition. The ordinary differential equations (ODEs) 
problems are encountered in many practical applications such 
as physics, engineering design, fluid dynamics and other 
scientific applications. The exact solutions of ODEs are 
practically difficult due to its dynamical nature, so the need to 
approximate the solution arises. In this regard we have 
numerical algorithms like Euler, Improved Euler, Runge-
kutta, Adams Bashforth, Finite Difference, Differential 
Transform Methods etc [1], [2], [3], [4]. Some of the 
shortcomings in these traditional methods are reported in [5]. 
Artificial neural networks (ANN) have been exploited to solve 
the problems defined by ODEs to overcome the limitations of 
traditional numerical methods [6], [7]. The solution of ODEs 
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obtained by trained ANNs offer some advantages, such as, 
computational complexity does not increase with the increase 
of the number of sampling points and provides rapid 
calculation for the solution at any given input points [8]. A 
number of differential equation (DE) problems have been 
solved using ANNs but only two of them are given for 
reference. Van Millingen et.al [9] has successfully applied 
unsupervised feed forward ANN for finding the general 
solution of magnetohydrodynamic plasma equilibrium 
problem represented by ODE. Radial basis functions neural 
network were exploited to design a moving mass attitude 
control system [10] to control a vehicle with three axis 
stabilization in intra-atmospheric space.  

 In this paper the initial value differential equation problems 
has been solved by evolutionary computing technique. First 
the ODEs have been modeled by ANNs and then the unknown 
parameters of ANN are optimized by genetic algorithms 
(GAs). The results are compared by proposed method with 
some traditional numerical methods.  The proposed method 
can be efficiently applied as an alternate approach to various 
fields such as Electromagnetic, Fluid Dynamics and Control 
problems. 

The remainder of this paper is organized as follows. Section 
II describes the brief introduction to genetic algorithms; 
section III presents the proposed method. Numerical results 
and discussions are presented in section IV. Finally section V 
provides some concluding remarks on the results.  

II. BRIEF INTRODUCTION OF GENETIC ALGORITHMS 
GA is global optimization tool based on natural selection 

and genetic mechanisms. GAs incorporates parallel procedure 
[11] as well as structured strategy for randomly searching high 
aptitude points.  Generally the GA consists of three 
fundamental operators: selection, crossover and mutation. GA 
runs iteratively using its operators randomly based upon some 
fitness function. Finally it finds and decodes the solution from 
the last pool of mature strings obtained by ranking of strings, 
exchanging the portions of strings and changing some bit of 
the strings. GA works on the survival of fittest strategy.  The 
following basic terms are used in GAs. 

Chromosome or Individual: It is a set of genes. 
Chromosome or individual contains the solution represented 
in the form of genes. 
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Gene: It is a part of chromosome and contains only a part of 
solution 

Population: No of individuals present with same length of 
chromosome. 

Fitness: Fitness is the rank value assigned to an individual. 
It is based on how far or close an individual is from the 
solution. Greater the fitness value better the solution it 
contains. 

Fitness function: Fitness function is a function which 
assigns fitness value to the individual. It is problem specific. 

Crossover: The process by which the chromosomes from 
the parents exchange systematically using probabilistic 
decision. It means change occurs during reproduction. 
Therefore, the offspring exhibit some traits of the father and 
some traits of the mother. 

Mutation: The process of changing a random gene in an 
individual. How often to do mutation, how many genes to 
change, and how big a change to make are adjustable 
parameters. Suitable mutation avoids the early maturation.  

Selection: Selecting individuals for creating the next 
generation. The aim in selection is to give the fitter individuals 
a better chance to survive in the next generation. It is against 
the nature to kill all unfit genes as they may mutate to 
something handy. Therefore, in selection there is always a 
tradeoff for better individual and diversity. 

The evolutionary algorithms like GAs search the solution 
using the survival of the fittest strategy. More information 
about evolutionary algorithm can be found in [12], 
[13].Traditional flow diagram of GA set up for the 
optimization of weights in neural network is given in Fig. 1. A 
standard flow chart of genetic algorithm is given below: 

III. PROPOSED METHOD  
A mathematical model for the accurate approximation of 

the solution of ODE is revealed here. This model consists of 
two parts, in the first part neural network modeling is carried 
out  that depends upon some unknowns. These unknowns are 
optimized using evolutionary algorithm in the second part. 

As a feed forward neural network is a universal function 
approximator [14], [15]. Any network suitably trained to 
approximate a mapping satisfying some non-linear ODE will 
have an output function that will also approximate the DE 
[16]. For this following continuous mapping is employed: 
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for z and z  respectively, where φ being activation 

function normally taken as log sigmoid function,  given below 
and its characteristics curve is given in Fig. 2. 

 

 
Fig. 1 Flow chart of GA 

 
Fig. 2 Log sigmoid activation function 

1( )
1 e ttφ −=

+  (4)                   
We have to find such real values of weights ,, ii wα and 

ib for N  number of neurons in the hidden layer that 
approximate the above mapping arbitrary well. These 
unknown variables are highly correlated to each other due to 
which the training becomes difficult. These unknowns are 
randomly generated in a definite range to exploit the solution 
space. The possible candidate solutions are randomly 
generated as real values in the specified lower and upper 
bound. The population m is divided into the P  sub 

populations, each with P
m  chromosomes in order to 

increase the diversity in the solution space. The fitness 
evaluation function is defined in (5) that is the objective 
function i.e we have minimized this error function for the 
approximated solution. 
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))),(,()),((,()( 2*2* ztztBfztztfxe +=  (5) 
As 0)( →xe  with optimization, *f  will approach f i.e 

the solution of the ODE has converged. During the 
optimization the genetic operator selection takes half of the 
chromosomes from each subpopulation by taking 

)22( −P
m top ranked individuals and 2 from the worst 

ranked individuals. While the crossover of two parents 

pX and qX generates two new off-springs, aX and bX  , 

with the following elements 
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  (6) 
where i  is a random integer in the range 1 to 1−n  and 

n is the length of the chromosome. Few new mutated 
chromosomes are included by small random constant value 
addition in some elements of chromosomes selected at 
random. 

 
// Initialization 
For each chromosome i  
               Randomly initialize ix for chromosome i  
End for 
// Optimization 
Do 
               For each chromosome i  
                        Call calculate_fitness_value 
          If (current_fitness_value > previous_fitness_value) 
          Then                                                              

Fit_value=current_fitness_value 
            End if 
    End for 
          
        For each chromosome i  
                     Call selection_procedure  
                     Call crossover_procedure using eq. (6) 
                     Call mutation_procedure  
                     Call formulation_new_population 
                End for 
While Max_iterations or min_value is not attained 

 
Fig. 3 Pseudocode of GA 

IV. RESULTS AND DISCUSSION 
For the validity of the given method a number of examples 

has been tested. There are a few examples presented in this 
paper. 

A. Example 1: 
Given an initial value problem in ODEs of the form defined 

in (1) 
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 (7)    

1)0( == yα , 1)0( =y , the number of neurons consist 

of  8=N  so the number of adaptive variables optimized are 
24. We have restricted the values of these parameters in the 
interval       [-5, 5] and noticed this thing that it gives the better 
results in this range. An initial population of 240 individuals 
has been taken which is divided over 10 subpopulations each 
with 24 individuals. The input of the training set is chosen 
from )1,0(∈t  with a step of 0.1. The fitness function is 

evaluated using the criteria i.e 1010)( −≤xe or program is run 
for 400 generations which ever comes earlier. The analytical 
solution of this problem is evaluated for the same inputs. The 
numerical solution for this problem for the same input times is 
obtained by Euler, improved Euler, Rk and our proposed 
method. The results are summarized in the table 1 from which 
it is quite clear that our approach is better than the Euler and 
improved Euler while it is comparable with RK method.   

 
TABLE 1 

 COMPARISON OF SOME NUMERICAL METHODS AND EVOLUTIONARY 
COMPUTING METHOD 

 

t  
Exact 

)(ty  Euler Improved 
Euler 

Runge 
Kutta 

Evolutionary 
Computing 

)(ˆ ty  
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 1.0954 1.1000 1.0959 1.0954 1.0955 
0.2 1.1832 1.1918 1.1841 1.1832 1.1831 
0.3 1.2649 1.2774 1.2662 1.2649 1.2650 
0.4 1.3416 1.3582 1.3434 1.3417 1.34181 
0.5 1.4142 1.4325 1.4164 1.4142 1.4143 
0.6 1.4832 1.5090 1.4860 1.4833 1.4833 
0.7 1.5492 1.5803 1.5525 1.5492 1.54930 
0.8 1.6125 1.6498 1.6165 1.6124 1.6127 
0.9 1.6733 1.7178 1.6782 1.6733 1.6734 
1.0 1.7321 1.7848 1.7379 1.7320 1.7321 

 

B. Example 2:  
Large Given another initial value problem in ODEs 
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5.0)0( == yα , 1)0( =y , the number of neurons 

consist of  8=N  so the number of adaptive variables 
optimized are 24. We have restricted the values of these 
parameters again in the same interval of   [-5, 5] and noticed 
that it gives better results in this range. An initial population 
of 200 individuals has been taken which is divided over 10 
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subpopulations, each with 20 individuals. The input of the 
training set is chosen from )1.0(∈t with a step of 0.2. The 
fitness function is evaluated using the criteria i.e 

1010)( −≤xe or program is run for 500 generations in this 
time which ever comes earlier. The analytical solution of this 
problem is evaluated for the same inputs. The numerical 
solution for this problem for the same input times is obtained 
by Euler, improved Euler, RK and our proposed method. The 
results are summarized in the table 2 from which it is quite 
clear that our approach is better than the Euler and improved 
Euler while it is comparable with RK method. 

 
TABLE  II 

 COMPARISION OF SOME NUMERICAL METHODS AND EVOLUTIONARY 
COMPUTING METHOD 

 

t  
Exact 

)(ty  Euler Improved 
Euler 

Runge 
Kutta 

Evolutionary 
Computing 

)(ˆ ty  
0.0 0.5000 0.5000 0.5000 0.5000 0.5000 
0.2 0.8292 0.8273 0.8260 0.8293 0.8294 
0.4 1.2141 1.2099 1.2069 1.2141 1.2142 
0.6 1.6489 1.6421 1.6372 1.6489 1.64877 
0.8 2.1272 2.1176 2.1102 2.1272 2.1271 
1.0 2.6408 2.6280 2.6177 2.6408 2.6406 
1.2 3.1799 3.1635 3.1499 3.1799 3.1798 
1.4 3.7324 3.7120 3.6973 3.7323 3.7326 
1.6 4.2835 4.2588 4.2351 4.2834 4.2833 
1.8 4.8152 4.7858 4.7556 4.8151 4.8150 
2.0 5.3055 5.2713 5.2330 5.3053 5.3055 

V. CONCLUSION 
As is evident from the table, the results of proposed method 

are more precise as compared to Euler and Improved Euler. 
However, compared to Runge-Kutta method with order four 
the results of calculation are less precise. But the presented 
approach provides an alternate method to solve ODEs. 
Another advantage is that it gives the approximate solution on 
the continuous finite time domain whereas other numerical 
techniques provide the solution on discrete time only. Once 
learning and optimization is performed by given technique, 
then we can find the solution of ODEs readily at some given 
input time t  within the finite domain using these unknown 
weights without repeating the procedure. This will reduce the 
time and space complexity of this problem. The method 
provides the alternate method for finding the solutions of 
ODEs associated with complex real life problems. 
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