
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1485

Abstract—An evolutionary computing technique for solving

initial value problems in Ordinary Differential Equations is proposed
in this paper. Neural network is used as a universal approximator
while the adaptive parameters of neural networks are optimized by
genetic algorithm. The solution is achieved on the continuous grid of
time instead of discrete as in other numerical techniques. The
comparison is carried out with classical numerical techniques and the

solution is found with a uniform accuracy of 910−≈MSE .

Keywords—Neural networks, Unsupervised learning,

Evolutionary computing, Numerical methods, Fitness evaluation
function.

I. INTRODUCTION
N this paper, the problem of first-order ordinary differential
equations is considered whose general form can be written

as
12,),(ataBfytfy ≤≤== α (1)

where y is the solution of the problem in the interval

)2,1(aa , t is the time and B is the operator defining initial
condition. The ordinary differential equations (ODEs)
problems are encountered in many practical applications such
as physics, engineering design, fluid dynamics and other
scientific applications. The exact solutions of ODEs are
practically difficult due to its dynamical nature, so the need to
approximate the solution arises. In this regard we have
numerical algorithms like Euler, Improved Euler, Runge-
kutta, Adams Bashforth, Finite Difference, Differential
Transform Methods etc [1], [2], [3], [4]. Some of the
shortcomings in these traditional methods are reported in [5].
Artificial neural networks (ANN) have been exploited to solve
the problems defined by ODEs to overcome the limitations of
traditional numerical methods [6], [7]. The solution of ODEs

A. Junaid is with Department of Electronics Engineering, Faculty of

Engineering and Technology International Islamic University Islamabad,
Pakistan (phone: +92-300-5359557;fax: +92-51-9258025; e-mail:
junaid.phdee17@ iiu.edu.pk).

M. A. Z. Raja is with Department of Electronics Engineering, Faculty of
Engineering and Technology International Islamic University Islamabad,
Pakistan (e-mail: asif.phdee10@iiu.edu.pk).

I. M. Qureshi is associated with the Department of Electrical Engineering,
Air University Islamabad, Pakistan as a professor (e-mail:
imq313@au.edu.pk).

obtained by trained ANNs offer some advantages, such as,
computational complexity does not increase with the increase
of the number of sampling points and provides rapid
calculation for the solution at any given input points [8]. A
number of differential equation (DE) problems have been
solved using ANNs but only two of them are given for
reference. Van Millingen et.al [9] has successfully applied
unsupervised feed forward ANN for finding the general
solution of magnetohydrodynamic plasma equilibrium
problem represented by ODE. Radial basis functions neural
network were exploited to design a moving mass attitude
control system [10] to control a vehicle with three axis
stabilization in intra-atmospheric space.

 In this paper the initial value differential equation problems
has been solved by evolutionary computing technique. First
the ODEs have been modeled by ANNs and then the unknown
parameters of ANN are optimized by genetic algorithms
(GAs). The results are compared by proposed method with
some traditional numerical methods. The proposed method
can be efficiently applied as an alternate approach to various
fields such as Electromagnetic, Fluid Dynamics and Control
problems.

The remainder of this paper is organized as follows. Section
II describes the brief introduction to genetic algorithms;
section III presents the proposed method. Numerical results
and discussions are presented in section IV. Finally section V
provides some concluding remarks on the results.

II. BRIEF INTRODUCTION OF GENETIC ALGORITHMS
GA is global optimization tool based on natural selection

and genetic mechanisms. GAs incorporates parallel procedure
[11] as well as structured strategy for randomly searching high
aptitude points. Generally the GA consists of three
fundamental operators: selection, crossover and mutation. GA
runs iteratively using its operators randomly based upon some
fitness function. Finally it finds and decodes the solution from
the last pool of mature strings obtained by ranking of strings,
exchanging the portions of strings and changing some bit of
the strings. GA works on the survival of fittest strategy. The
following basic terms are used in GAs.

Chromosome or Individual: It is a set of genes.
Chromosome or individual contains the solution represented
in the form of genes.

Evolutionary Computing Approach for the
Solution of Initial value Problems in Ordinary

Differential Equations
A. Junaid, M. A. Z. Raja, and I. M. Qureshi

I

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1486

Gene: It is a part of chromosome and contains only a part of
solution

Population: No of individuals present with same length of
chromosome.

Fitness: Fitness is the rank value assigned to an individual.
It is based on how far or close an individual is from the
solution. Greater the fitness value better the solution it
contains.

Fitness function: Fitness function is a function which
assigns fitness value to the individual. It is problem specific.

Crossover: The process by which the chromosomes from
the parents exchange systematically using probabilistic
decision. It means change occurs during reproduction.
Therefore, the offspring exhibit some traits of the father and
some traits of the mother.

Mutation: The process of changing a random gene in an
individual. How often to do mutation, how many genes to
change, and how big a change to make are adjustable
parameters. Suitable mutation avoids the early maturation.

Selection: Selecting individuals for creating the next
generation. The aim in selection is to give the fitter individuals
a better chance to survive in the next generation. It is against
the nature to kill all unfit genes as they may mutate to
something handy. Therefore, in selection there is always a
tradeoff for better individual and diversity.

The evolutionary algorithms like GAs search the solution
using the survival of the fittest strategy. More information
about evolutionary algorithm can be found in [12],
[13].Traditional flow diagram of GA set up for the
optimization of weights in neural network is given in Fig. 1. A
standard flow chart of genetic algorithm is given below:

III. PROPOSED METHOD
A mathematical model for the accurate approximation of

the solution of ODE is revealed here. This model consists of
two parts, in the first part neural network modeling is carried
out that depends upon some unknowns. These unknowns are
optimized using evolutionary algorithm in the second part.

As a feed forward neural network is a universal function
approximator [14], [15]. Any network suitably trained to
approximate a mapping satisfying some non-linear ODE will
have an output function that will also approximate the DE
[16]. For this following continuous mapping is employed:

0
() ()

N

i i i
i

z x w x bα φ
=

= +∑
 (2)

0
() ()

N

i i i i
i

z x w w x bα φ
=

= +∑
 (3)

for z and z respectively, where φ being activation

function normally taken as log sigmoid function, given below
and its characteristics curve is given in Fig. 2.

Fig. 1 Flow chart of GA

Fig. 2 Log sigmoid activation function

1()
1 e ttφ −=

+ (4)
We have to find such real values of weights ,, ii wα and

ib for N number of neurons in the hidden layer that
approximate the above mapping arbitrary well. These
unknown variables are highly correlated to each other due to
which the training becomes difficult. These unknowns are
randomly generated in a definite range to exploit the solution
space. The possible candidate solutions are randomly
generated as real values in the specified lower and upper
bound. The population m is divided into the P sub

populations, each with P
m chromosomes in order to

increase the diversity in the solution space. The fitness
evaluation function is defined in (5) that is the objective
function i.e we have minimized this error function for the
approximated solution.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1487

))),(,()),((,()(2*2* ztztBfztztfxe += (5)
As 0)(→xe with optimization, *f will approach f i.e

the solution of the ODE has converged. During the
optimization the genetic operator selection takes half of the
chromosomes from each subpopulation by taking

)22(−P
m top ranked individuals and 2 from the worst

ranked individuals. While the crossover of two parents

pX and qX generates two new off-springs, aX and bX ,

with the following elements

⎩
⎨
⎧

>
≤

=

⎩
⎨
⎧

≤
>

=

ikx
ikx

x

ikx
ikx

x

pk

qk
bk

pk

qk
ak

 (6)
where i is a random integer in the range 1 to 1−n and

n is the length of the chromosome. Few new mutated
chromosomes are included by small random constant value
addition in some elements of chromosomes selected at
random.

// Initialization
For each chromosome i
 Randomly initialize ix for chromosome i
End for
// Optimization
Do
 For each chromosome i
 Call calculate_fitness_value
 If (current_fitness_value > previous_fitness_value)
 Then

Fit_value=current_fitness_value
 End if
 End for

 For each chromosome i
 Call selection_procedure
 Call crossover_procedure using eq. (6)
 Call mutation_procedure
 Call formulation_new_population
 End for
While Max_iterations or min_value is not attained

Fig. 3 Pseudocode of GA

IV. RESULTS AND DISCUSSION
For the validity of the given method a number of examples

has been tested. There are a few examples presented in this
paper.

A. Example 1:
Given an initial value problem in ODEs of the form defined

in (1)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

−∈−=

1)0(

]10[2

y

t
y
tyy

 (7)

1)0(== yα , 1)0(=y , the number of neurons consist

of 8=N so the number of adaptive variables optimized are
24. We have restricted the values of these parameters in the
interval [-5, 5] and noticed this thing that it gives the better
results in this range. An initial population of 240 individuals
has been taken which is divided over 10 subpopulations each
with 24 individuals. The input of the training set is chosen
from)1,0(∈t with a step of 0.1. The fitness function is

evaluated using the criteria i.e 1010)(−≤xe or program is run
for 400 generations which ever comes earlier. The analytical
solution of this problem is evaluated for the same inputs. The
numerical solution for this problem for the same input times is
obtained by Euler, improved Euler, Rk and our proposed
method. The results are summarized in the table 1 from which
it is quite clear that our approach is better than the Euler and
improved Euler while it is comparable with RK method.

TABLE 1

 COMPARISON OF SOME NUMERICAL METHODS AND EVOLUTIONARY
COMPUTING METHOD

t
Exact

)(ty Euler Improved
Euler

Runge
Kutta

Evolutionary
Computing

)(ˆ ty
0.0 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0954 1.1000 1.0959 1.0954 1.0955
0.2 1.1832 1.1918 1.1841 1.1832 1.1831
0.3 1.2649 1.2774 1.2662 1.2649 1.2650
0.4 1.3416 1.3582 1.3434 1.3417 1.34181
0.5 1.4142 1.4325 1.4164 1.4142 1.4143
0.6 1.4832 1.5090 1.4860 1.4833 1.4833
0.7 1.5492 1.5803 1.5525 1.5492 1.54930
0.8 1.6125 1.6498 1.6165 1.6124 1.6127
0.9 1.6733 1.7178 1.6782 1.6733 1.6734
1.0 1.7321 1.7848 1.7379 1.7320 1.7321

B. Example 2:
Large Given another initial value problem in ODEs

⎭
⎬
⎫

⎩
⎨
⎧

=
∈+−=

5.0)0(
]2,0[12

y
ttyy

 (8)

5.0)0(== yα , 1)0(=y , the number of neurons

consist of 8=N so the number of adaptive variables
optimized are 24. We have restricted the values of these
parameters again in the same interval of [-5, 5] and noticed
that it gives better results in this range. An initial population
of 200 individuals has been taken which is divided over 10

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:3, No:7, 2009

1488

subpopulations, each with 20 individuals. The input of the
training set is chosen from)1.0(∈t with a step of 0.2. The
fitness function is evaluated using the criteria i.e

1010)(−≤xe or program is run for 500 generations in this
time which ever comes earlier. The analytical solution of this
problem is evaluated for the same inputs. The numerical
solution for this problem for the same input times is obtained
by Euler, improved Euler, RK and our proposed method. The
results are summarized in the table 2 from which it is quite
clear that our approach is better than the Euler and improved
Euler while it is comparable with RK method.

TABLE II

 COMPARISION OF SOME NUMERICAL METHODS AND EVOLUTIONARY
COMPUTING METHOD

t
Exact

)(ty Euler Improved
Euler

Runge
Kutta

Evolutionary
Computing

)(ˆ ty
0.0 0.5000 0.5000 0.5000 0.5000 0.5000
0.2 0.8292 0.8273 0.8260 0.8293 0.8294
0.4 1.2141 1.2099 1.2069 1.2141 1.2142
0.6 1.6489 1.6421 1.6372 1.6489 1.64877
0.8 2.1272 2.1176 2.1102 2.1272 2.1271
1.0 2.6408 2.6280 2.6177 2.6408 2.6406
1.2 3.1799 3.1635 3.1499 3.1799 3.1798
1.4 3.7324 3.7120 3.6973 3.7323 3.7326
1.6 4.2835 4.2588 4.2351 4.2834 4.2833
1.8 4.8152 4.7858 4.7556 4.8151 4.8150
2.0 5.3055 5.2713 5.2330 5.3053 5.3055

V. CONCLUSION
As is evident from the table, the results of proposed method

are more precise as compared to Euler and Improved Euler.
However, compared to Runge-Kutta method with order four
the results of calculation are less precise. But the presented
approach provides an alternate method to solve ODEs.
Another advantage is that it gives the approximate solution on
the continuous finite time domain whereas other numerical
techniques provide the solution on discrete time only. Once
learning and optimization is performed by given technique,
then we can find the solution of ODEs readily at some given
input time t within the finite domain using these unknown
weights without repeating the procedure. This will reduce the
time and space complexity of this problem. The method
provides the alternate method for finding the solutions of
ODEs associated with complex real life problems.

VI. REFERENCES
[1]. D. Kahaner, C. Moler, S. Nash, “Numerical Methods and Software,”

Prentice-Hall, New Jersey, 1989.
[2]. K. Kunz, R. Luebbers, “Finite difference time domain method for

electromagnetic,” Boca Raton, CRC Press. 1993.
[3]. J.R Dormand, P.J Prince, “A family of embedded Runge-Kutta

formulae,” Comp. Appl. Math. J., vol. 6, pp. 19, 1980.

[4]. MJ. Jang, CL. Chen, YC. Liu, “On solving the initial-value problems
using the differential transform method,” J. Comp. Appl. Math. J., vol.
115, pp. 145-160, 2000.

[5]. L.F. Shampine, M. W. Reichelt, “The MATLAB ode suite,” SIAM
Scientific Computing J., vol.18, pp. 1-22, 1997.

[6]. M.H Li, G.J Wang, “Solving differential equation with constant
coefficient by using radial basis function,” Shen Yang Institute of
Chemical Technology J., vol.20, pp. 68-72, 2006.

 [7]. A.J Meada, A.A Fernandez, “The numerical solution of linear ordinary
differential equation by feedforward neural network,” Math Compute
Modeling J., vol.19, pp. 1-25, 1994.

[8]. C. Monterola, C. Saloma, “Characterizing the dynamics of constrained
physical systems with unsupervised neural network,” Phys Rev E 57,
pp.1247R–1250R, 1998.

[9]. B.Ph van Milligen, V.Tribaldos, J.A.Jimenez, “Neural network
differential equation and plasma equilibrium solver,” Physical Review
Letters 75, pp. 3594-3597, 1995.

[10]. L.Qin, M.Yang, moving mass attitude law based on neural network, in
proc. 6th Int. Conf. machine learning and cybernetics, ICMLC, 5, art.
No. 4370622, 2007, pp.2791-2795.

[11]. J.H. Holland, “Adaptation in natural and artificial systems,” Ann arbor,
MI, University of Michigan press, 1975.

[12]. C.R. Houck, J.A. Joines, M.G. Kay, “A genetic algorithm for function
optimization,” A matlab implementation, Technical Report NCSU-IE
TR 95-09, North Carolina State University, Raleigh NC,1995.

[13]. Zbigniew Michalewicz, “Genetic algorithms + data structure=
Evolution programs,” 2nd ed, New York: Springer-verlag, Berlin, 1994.

[14]. R. Hetch-Nielsen, “Kolmogorov’s mapping neural network existence
theorem,” 1st 1987 IEEE Int. Conf. Neural networks, San Diego CA, 3,
pp. 11.

[15]. K.I. Funahashi, “On the approximate realization of continuous
mappings by neural networks,” Neural Networks J., vol. 2.issue 3,
pp.183-192, 1989.

[16]. C. Chen, “Degree of approximation by superposition of sigmoidal
function,” Analysis in theory & appl J., vol. 9, no 3, pp. 17-28, 1993.

