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Abstract—In this article an evolutionary technique has been used 

for the solution of nonlinear Riccati differential equations of 
fractional order. In this method, genetic algorithm is used as a tool for 
the competent global search method hybridized with active-set 
algorithm for efficient local search. The proposed method has been 
successfully applied to solve the different forms of Riccati 
differential equations. The strength of proposed method has in its 
equal applicability for the integer order case, as well as, fractional 
order case. Comparison of the method has been made with standard 
numerical techniques as well as the analytic solutions.  It is found 
that the designed method can provide the solution to the equation 
with better accuracy than its counterpart deterministic approaches. 
Another advantage of the given approach is to provide results on 
entire finite continuous domain unlike other numerical methods 
which provide solutions only on discrete grid of points.

Keywords—Riccati Equation, Non linear ODE, Fractional 
differential equation, Genetic algorithm. 

I. INTRODUCTION

OUNT Jacopo Francesco Riccati in the year 1720 introduced to 
his friend Giovanni Rizzetti the following two equations. These 
equations in modern symbols can be written as follow:

mty
dt
dy   2

(1)

22 tty
dt
dy   (2)

where t is the independent variable and  ,,m  and  are the 
constants. This is most likely the first document witnessing the early 
days of the Riccaiti differential equation. The detail history and 
importance of the equation can be seen in literature for the interested 
reader [1], [2]. 
In this article, a new numerical technique has been presented for the 
solution of Riccati differential equation of arbitrary order. Its general 
form can be written as
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with initial conditions given as
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and boundary conditions at ,0tt  for ,0 10 tt    is written as
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where  is the order of the equations,  0 ,   , 

 N , )(ty is the solution of the equation, )(),( tBtA and 

)(tC are known functions 1t is the constant representing the inputs 

span within the close interval ],0[ 1t  for some 01 t ,  kc  and 

kb are the constants giving the initial and boundary condition 
respectively.
The different response expressions of equation (3) can be obtained by 
varying the order  of the equation. In the case of ,1   the 
expression (3) is known as classical first order Riccati differential 
equation. This equation has a paramount importance, especially for 
the developments of Calculus of Variations, [3] Optimal Filtering [4] 
and Control [5]. 
In case the order  of expression (3) is non-integer, then it 
transformed into a fractional Riccati differential equation. The value
of 2

1 has special popularity. This is due to many of the model 

equations developed in classical fractional calculus by using this 
particular order of the derivative [6]. However in recent applications 
much more generic values of  appear in the equations [7]. 
Therefore researchers are interested to investigate the numerical and 
analytical methods to solve the Riccati differential equation of the 
arbitrary order. In this regard relative new analytical technique has 
been developed using adomian decomposition method for solving the 
fractional Riccati differential equations [8]. Recently some of the 
deterministic method have been extended for the differential equation 
of arbitrary order e. g. Adomian Decomposition method, [9] 
Homotopy perturbation method, [10] and Fractional Adams-Moulton 
method [11] etc. Stochastic methods have been developed for the 
solutions of differential equations are confined to integer order only 
[12], [13]. 
One should investigate different modification in the existing 
stochastic techniques such that the solution to differential equations 
of arbitrary order can be obtained. The aim of this article is to 
propose such a methodology in which the strength of feed forward 
neural network is utilized for modeling of the differential equations. 
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The learning of the unknown parameters in neural network has been 
achieved with hybrid intelligent algorithms mainly based on Genetic 
Algorithm (GA). The design scheme of stochastic method should be 
such that it is capable for finding the reliable solution of Riccati 
differential equation of arbitrary order.
It is necessary to introduce some definition and relations which are
used in this article. In case of fractional calculus, Riemann-Liousville 
definitions of fractional integral or derivative with lower terminal at 
0  is taken. Then the definition of fractional integral [14], [15] of 
function f of order  with respect to t  can be given as   

  



t

dfttfD
0

1 )()(
)(

1)( 


   (4)

for 0t and  is a real and > 0

where 
dD
dt

  is the differential operator. So by replacing the 

order  in expression (4) with  the fractional derivative is 
defined.
The fractional derivative of the exponential function

tetf )( (5)
can be written as
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where )(1,1 tM  be the classical Mittag-Leffler function of two 

parameters 1 and  1 is defined as
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II. MATHEMATICAL MODEL FOR SOLVING RICCATI 
DIFFERENTIAL EQUATIONS

In this section we are providing the introductory material 
for mathematical modeling of Riccati differential equations of 
arbitrary order with feed forward artificial neural network.   

Integer order case: Take the general form of Riccati 
differential equation of integer order, i.e. n where n is 
some positive integer then equation (3) can be written as

1
2 0,)()()( ttytcytbta

dt
yd
n

n

    (8)

It is well known that an arbitrary continuous function and 
its derivatives on a compact set can be arbitrarily 
approximated by multiple inputs, single output, single hidden 
layer feed forward neural networks with a linear output layer 
having no bias. Hence the solution y  of the differential 

equation along with its n  order derivatives n

n

dt
yd

  can be 

approximated by the following continuous mapping in neural 
network methodology [16] [18]
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where i , iw and ib are bounded real-valued adaptive 

parameters, m is the number of neurons, and f is the 
activation function normally taken as log sigmoid function 
given as 

).1(1)( xexf       (11)
The mathematical model for the given equation (8) can be 

formulated the linear combinations of the networks (9) and 
(10). It means that the solution y is approximated with 

y subject to some appropriate unknown weights.
Fractional order case: The networks given in (9) and (10) 

could not  apply directly to represent the fractional differential 
equations, due to non availability of the fractional derivative 
of the log-sigmoid activation function. The exponential 
function is a candidate solution to be used as activation 
function in the neural network modeling of fractional 
differential equation, due to its universal function 
approximation capability as well as its straightforward 
implementable fractional derivative. 

Now take the xexf )( be the activation function then the 
network presented by (9) and (10) can be given as
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The linear combination of the networks (12) and (13) can 
represent approximate mathematical model of the differential 
equation of fractional order given in expression (3). It is 
named as fractional differential equation neural network 
(FDE-NN). The activation function for (12) is exponential 
function, while in case of (13) it is integer and non-integer 
derivative of exponential function respectively. It means that 
the solution y of fractional Riccati differential equation also 

be approximated with y subject to some appropriate unknown 
weights.

The mathematical model for the Riccati differential 
equation of arbitrary order with the help of neural networks
can be formulated.

III. EVOLUTIONARY COMPUTING

In this section the learning of the unknown weights of 
networks representing the equation with the help of efficient 
computational algorithm is narrated. 

These learning algorithms are mainly based on genetic 
algorithm (GA) and aided with rapid local methods like active 
set algorithm. One of the prominent features of GAs is that 
unlike other algorithms, they do not get stuck in local minima. 
GA incorporate parallel procedure as well as structured 
strategy for randomly searching high aptitude points. GA 
consists of three fundamental operations: selection, crossover 
and mutation. GA encodes the design parameters into finite bit 
string to solve the required optimization problem. GA runs 
iteratively using its operators randomly based upon fitness 
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function. Finally it finds and decodes the solution from the last 
pool of mature strings obtained by ranking of strings, 
exchanging the portions of strings and changing bits at some 
location in the strings. The generic flow chart of the GA 
algorithm is given in Figure 1. [17]. 

Fig. 1 Flow chart of Genetic Algorithm

Randomly generated initial population consists of finite set 
of chromosome each with as many numbers of genes as the 
unknown weights in differential equation neural network (DE-
NN). The objective function to be minimized is given as the 
sum of errors

,2,121  jeee jj
j (14)

where je1 is given as
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where n is the number of time steps, dtyd and y are 

given by expression (9) and (10). Similarly then error je2 due 

to initial condition, for example 1)0( y  can be written as

j
j ye 22

2 ]1)}0([{  
(16)

The iterative process for optimization continues until user 
define number of cycles is achieve or pre-defined level of 
error je  is obtained. 

Algorithm is given in the following steps:
Step 1: Randomly generate bounded real value to form 

initial population of P  number of the individual or 
chromosome. Each individual represents the 

unknown weights of neural network. The initial 
population is scatter enough for better search space 
of the algorithm.

Step 2: Create a Q number of subpopulation each with 

QP /  individual.
Step 3: Initialize the algorithm and its parameter values 

setting for execution. 
Set the number of variable equivalent to element in 
the individual, Set the number of generation, Set the 
fitness limit, Set Elite count equal to 3  and 
crossover fraction 75.0 for reproduction, Set 
Migration in forward and backward direction both, 
Start generation count, etc.

Step 4: Fitness calculation by using the fitness function 
given in expressions (14 to 16).

Step 5: Ranking is carried out for each individual of the 
populations on the basis of minimum fitness values. 
Store the best fitted candidate solution.

Step 6: Check for Termination of the algorithm, which is set 
as either predefine fitness value achieve i.e. MSE 

810   for integer order case of the equations and 
410  for non-integer order cases of the equation or 

Number of cycles complete. 
If yes go to step 9 else continues 

Step 7: Reproduction of next generation on the basis of
Crossover:  Call for scattered function
Mutation: Call for Adaptive Feasible function
Selection: Call for Stochastic Uniform function
Elitism

Step 8: Repeat the procedure from step 3 to step 6 with 
newly generated population until total number of 
cycle complete.

Step 9: Refinement of result using active-set algorithm (Call 
FMINCON function of MATLAB) for local search 
technique by taking the best fitted individual of step 
5 as start point of the algorithm. Store in the 
memory the refined value of fitness along with the 
best individual for this run of the algorithm.

Step10: Repeat the step 1 to step 9 for sufficient large 
number of the run to make the statistical analysis of 
the algorithm. Store these result in a file for analysis 
later.

IV. SIMULATION AND RESULTS

In this section the simulation and results are provided for 
two different problems associated with Riccati differential 
equation of arbitrary order to prove the applicability of our 
algorithm. Comparative studies are also given.

A. Problem I
Consider the Riccati differential equation  

10,1)()( 2  ttytyD         (17)

with initial condition as .0)0( y
First order case. Let take the value of order .1 Then 
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the exact solution of the equation is given as

.
1
1)( 2
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 t
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e
ety      (18)

The adomian decomposition method (ADM) can provide 
the approximate solution of the equation (17) in the form of a 
rapidly convergent series with easily computable terms [8]. 
The solution in a series form is given as 

.0000969154.0000239129.0
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To solve this with Differential equation neural network 
(DE-NN) represented by (9) and (10) with number of neurons  

8m  are taken. Then the total number of 24 unknown 
parameter ( iw , i  and ib ) are to be adapted. These adaptive 
weights are restricted to real numbers between -10 to 10. The 
initial population consists of a set of 160 chromosome or 
individuals divided into 8  subpopulations.  Each chromosome 
or individual consist of 24 genes equivalent to number of 
weights. Input of the training set is taken form time )1,0(t
with a step size of 0.1. Its mean that 11n  in the expression 
(15). Therefore the fitness function is formulated as


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where j be the number of generation, ,y and 
dt
yd

 are 

networks provide in equation (9), and (10) respectively with 
8m number of neurons. Our scheme runs iteratively in 

order to find the minimum of fitness function je , with 

stoppage criteria as 800 number of generations or fitness value 
of -810||min je   whichever comes earlier. In our case the 

810|| je is achieved mostly before the number of cycles 

ends. One of the unknown weights learned by DE-NN 
algorithm with fitness value of -8108.6429||min je are 

provided in Table 1. Using these weights in expression (9) one 
can find the solution to this problem for any input time t
between 0  and 1.

The exact solution and approximate analytic solution 
represented by equations (18) and (19) respectively as well as 
DE-NN solution for the equation for input time 

)2,0(t with a step size of 2.0 are obtained. Results are 
shown in Figure 2 and given in Table 2.

Fig. 2 Graphical representation for the solution of ODE in 

problem I for first order case 1  and 20  t .

It can be seen that solutions obtained by our algorithm are 
closest fit to the exact solutions.  

Fractional order case. To prove the validity of our 
approach let us solve relative simple example of fractional 
differential equation with known exact solution such that 
comparison of results can be made. Then apply same approach 
for solving equation (17) for which the exact solution is 
extremely difficult to drive.

Consider the fractional differential equation

10,0)0(

),(
)3(

2)( 22






 






y

tytttyD
     (22)

whose exact solution is given by
.)( 2tty    (23)

We calculate the approximate solution by mean of 
fractional differential equation neural networks (FDE-NN) 
constructed with the networks represented in equations (12) 
and (13).  Same procedure is adapted as in case of DE-NN but 
here 2000max j   number of generation is taken. The 
fitness function for this scheme can be provided on similar 
pattern to equation (20) with ,y and yD 21  are networks 
provide in equation (12), and (13) respectively using 

8m number of neurons. The optimize weights obtain by 
this stochastic scheme is provided in Table 3. Using these 
weights we obtained the solution of equation (22) for some 
inputs. The result are graphically compared in Figure 3 and 
provided in Table 3. It can be seen that this method can 
effectively approximate the solution of fractional differential 
equations as well.
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Fig. 3 Graphical representation for the solution fractional 

differential equation of of order 21 and 
20  t .

Now the same methodology applied (FDE-NN) for solving 
the fraction Riccati differential equation by taking the value of 
order 2

1  in the expression (17). Comparison is carried out 
with extended ADM method which can provide the 
approximate analytic solution for such kind of the equation as 
well [8]. The  solution by ADM method can be given as 

.6.436205.14068
65.456322.1491925.491

385.1649634.556157.19
24332.700901.32)(
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where for simplicity we let 21tx   in the above relation 
(21).

The approximate analytic solution represented by 
expression (21) and stochastic proposed solution for the 
equation (17) are determined for input time )1,0(t with a 
step size of .2.0  The genes of best fitted chromosome in term 
of weights are given in Table 1 for order 21 . The 
solution obtained along with fitness value at some inputs is 
provided in Table 4. It can be inferred from the results that our 
algorithm can also be provided approximate solutions of the 
fractional Riccati differential equation.

B. Problem II
A relatively complex from of Riccati differential equation 

of arbitrary order is taken to investigate the strength and 
weaknesses of the proposed stochastic algorithm. Let us take 
another example of Riccati equations as

10,1)()(2)( 2  ttytytyD (24)
with intial condition as .0)0( y
The exact solution of the above equation for order 1  is 
given as

).
12
12log(

2
1)2tanh(21)(




 tty (25)

The analytic solution of (24) by adomian decomposition 
technique [8] for the case 21  is provided as

214
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4206.802732.0
05121.20.212838.1)(
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where 21tx  . 
This problem is solved for first order case as well as 

fractional order case on the same methodology adopted for 
problem I, but here taking 6 number of neuron. DE-NN or 
FDE-NN method used to determine 18 numbers of unknown 
weights. The stoppage criterion is 610min je or 

maximum number of generations is equal to 2000. The fitness 
function je used in said problem for the fractional order case 

21 is given as

11
1 2 2 2 2

1

1
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Where ,y and yD 21  are networks provide in equation 
(11), and (12) respectively using 6m number of neurons. 
Adaptive weights ,iw i and ib  are restricted to real numbers 

between 10  and 10 for the approximation of result. The
unknown weights determined by our scheme are used in 
expression (9) and (12) for finding the solution of the 
equations for some inputs between 0  and 1are summarized in 
Table 5, where the order 1 iand 21 is taken for the 
equations. 

V. CONCLUSIONS

On the basis of the simulation and result obtained in the last 
section it can be concluded that nonlinear Riccati differential 
equation of arbitrary order can be solved using evolutionary 
computation based on genetic algorithm. Combination of 
neural network aided with GA can provide stochastically the 
solution fairly close to the exact solution. Our proposed 
evolutionary computing approaches can also be applied on 
complex nonlinear differential equation of arbitrary order as 
well. In future biological inspire method are studied to solve 
these problems. 
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TABLE I
WEIGHTS OBTAINED FOR ODE IN PROBLEM I

Unknown Weights

iw i ib
Index

i
1 21 1 21 1 21

1 -1.1581 1.1585 0.0381 0.2443 2.3696 0.2119
2 1.6803 0.3749 1.8166 0.5420 -0.0616 0.6061
3 -2.5918 0.6269 0.0196 -0.7132 5.3030 0.9942
4 -2.3802 0.4679 -1.2224 0.0372 -2.3049 -0.2808
5 4.0543 0.9160 -0.3111 0.0247 1.1153 -0.9092
6 -0.8090 0.4100 3.0061 0.4812 -1.6223 0.9103
7 2.2916 0.5152 0.9911 0.0292 0.4843 -0.3812
8 -0.3401 -4.6597 -1.8075 -0.5627 2.7448 0.0154

TABLE II

COMPARISON OF RESULTS FOR THE SOLUTION OF ODE IN PROBLEM FOR FIRST ORDER CASE 1 .

ErrorTime
i

Exact
( )y t

ADM
( )t

DE-NN
( )t ( ) ( )y t t ( ) ( )y t t

0 0 0 -0.0000 0 2.208e-08
0.2 0.1974 000.1974 0.1971 -2.559e-09 2.869e-04
0.4 0.3799 000.3799 0.3796 -1.7847e-08 3.078e-04
0.6 0.5370 000.5370 0.5367 -4.516e-08 2.997e-04
0.8 0.6640 000.6640 0.6637 -2.373e-07 2.913e-04
1 0.7616 000.7616 0.7615 -2.791e-05 01.171e-04
1.2 0.8337 000.8353 0.8338 -0.0016 -1.720e-04
1.4 0.8854 000.9356 0.8857 -0.0502 -3.663e-04
1.6 0.9217 001.8762 0.9220 -0.9545 -3.089e-04
1.8 0.9468 013.5716 0.9469 -12.624 -4.592e-05
2 0.9640 126.6693 0.9639 -125.705 1.178e-04
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TABLE III
WEIGHTS OBTAINED ALONG WITH THE SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER.

Unknown WeightsIndex
i

iw i ib Time Exact FDE-NN Error

1 0.1960 0.0830 0.2050 0 0 -0.0004 3.726e-04
2 -1.3561 0.6221 0.4691 0.2 0.0400 0.0396 3.605e-04
3 -0.8717 -0.2375 0.9537 0.4 0.1600 0.1596 4.328 e-04
4 0.9907 0.3870 0.7539 0.6 0.3600 0.3573 2.741e-03
5 0.3077 -0.0155 -0.2624 0.8 0.6400 0.6352 4.777e-03
6 0.0228 -1.0413 0.2148 1.0 1.0000 1.0004 -3.519e-04

TABLE IV

THE SOLUTION OF FRACTIONAL RICCATI DE IN PROBLEM 1 HAVE ORDER 21

TABLE V
COMPARISON OF RESULTS FOR THE SOLUTION OF ODE IN PROBLEM II.

First order Case
1

Fractional Order Case 
21

Time Exact
( )y t

DE-NN
( )t

Error
( ) ( )y t t FDE-NN

Value of Objective Function

je
0 0 -0.0000 2.97e-09 0.0561 1.121e-07

0.1 0.1103 0.1103 -3.14e-05 0.5610 1.226e-02
0.2 0.2420 0.2420 -7.01e-06 0.9121 2.199e-03
0.3 0.3951 0.3950 5.58e-05 1.1594 1.876e-04
0.4 0.5678 0.5677 9.87e-05 1.3369 2.510e-03
0.5 0.7560 0.7559 6.96e-05 1.4671 2.247e-03
0.6 0.9536 0.9536 -3.07e-05 1.5652 1.045e-06
0.7 1.1529 1.1531 -1.40e-04 1.6414 02.398e-03
0.8 1.3464 1.3465 -1.80e-04 1.7024 3.333e-03
0.9 1.5269 1.5270 -1.20e-04 1.7528 1.863 e-03
1 1.6895 1.6896 -6.20e-05 1.7957 2.337 e-03

Time FDE-NN Value of Objective Function

je

0 0.0505 8.475e-07
0.2 0.4047 7.623e-07
0.4 0.5507 3.031e-02
0.6 0.6178 1.652e-07
0.8 0.6594 1.086e-02
1 0.6992 2.464e-02


