
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2346


Abstract—In this article an evolutionary technique has been used

for the solution of nonlinear Riccati differential equations of
fractional order. In this method, genetic algorithm is used as a tool for
the competent global search method hybridized with active-set
algorithm for efficient local search. The proposed method has been
successfully applied to solve the different forms of Riccati
differential equations. The strength of proposed method has in its
equal applicability for the integer order case, as well as, fractional
order case. Comparison of the method has been made with standard
numerical techniques as well as the analytic solutions. It is found
that the designed method can provide the solution to the equation
with better accuracy than its counterpart deterministic approaches.
Another advantage of the given approach is to provide results on
entire finite continuous domain unlike other numerical methods
which provide solutions only on discrete grid of points.

Keywords—Riccati Equation, Non linear ODE, Fractional
differential equation, Genetic algorithm.

I. INTRODUCTION

OUNT Jacopo Francesco Riccati in the year 1720 introduced to
his friend Giovanni Rizzetti the following two equations. These
equations in modern symbols can be written as follow:

mty
dt
dy   2

(1)

22 tty
dt
dy   (2)

where t is the independent variable and  ,,m and  are the
constants. This is most likely the first document witnessing the early
days of the Riccaiti differential equation. The detail history and
importance of the equation can be seen in literature for the interested
reader [1], [2].
In this article, a new numerical technique has been presented for the
solution of Riccati differential equation of arbitrary order. Its general
form can be written as

Raja Muhammad Asif Zahoor is with the Electronics Engineering
Department, facility of Engineering and technology, Islamic International
University Islamabad, Pakistan. (phone: +923009893800; fax: 303-555-
5555; e-mail: asif.phdee10@iiu.edu.pk; rasifzahoor@yahoo.com).

Junaid Ali Khan is with the Electronics Engineering Department, Facility
of Engineering and Technology, Islamic International University Islamabad,
Pakistan. (e-mail: junaid.phdee17@iiu.edu.pk;).

 I. M. Qureshi is with the Electrical Engineering Department, Air
University Islamabad, Pakistan (e-mail: imq313@yahoo.com).

1
2 0),()()()()(tttytCytBtA

dt
tyd





(3)
with initial conditions given as

1,,2,1,0,)0( Nkcy
dt
d

kk

k



and boundary conditions at ,0tt  for ,0 10 tt  is written as

1,,2,1,0,)(0  Nkbty
dt
d

kk

k



where  is the order of the equations, 0 ,  ,

 N ,)(ty is the solution of the equation,)(),(tBtA and

)(tC are known functions 1t is the constant representing the inputs

span within the close interval],0[1t for some 01 t , kc and

kb are the constants giving the initial and boundary condition
respectively.
The different response expressions of equation (3) can be obtained by
varying the order  of the equation. In the case of ,1 the
expression (3) is known as classical first order Riccati differential
equation. This equation has a paramount importance, especially for
the developments of Calculus of Variations, [3] Optimal Filtering [4]
and Control [5].
In case the order  of expression (3) is non-integer, then it
transformed into a fractional Riccati differential equation. The value
of 2

1 has special popularity. This is due to many of the model

equations developed in classical fractional calculus by using this
particular order of the derivative [6]. However in recent applications
much more generic values of  appear in the equations [7].
Therefore researchers are interested to investigate the numerical and
analytical methods to solve the Riccati differential equation of the
arbitrary order. In this regard relative new analytical technique has
been developed using adomian decomposition method for solving the
fractional Riccati differential equations [8]. Recently some of the
deterministic method have been extended for the differential equation
of arbitrary order e. g. Adomian Decomposition method, [9]
Homotopy perturbation method, [10] and Fractional Adams-Moulton
method [11] etc. Stochastic methods have been developed for the
solutions of differential equations are confined to integer order only
[12], [13].
One should investigate different modification in the existing
stochastic techniques such that the solution to differential equations
of arbitrary order can be obtained. The aim of this article is to
propose such a methodology in which the strength of feed forward
neural network is utilized for modeling of the differential equations.

Evolutionary Computation Technique for
Solving Riccati Differential Equation of

Arbitrary Order
Raja Muhammad Asif Zahoor, Junaid Ali Khan, and I. M. Qureshi

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2347

The learning of the unknown parameters in neural network has been
achieved with hybrid intelligent algorithms mainly based on Genetic
Algorithm (GA). The design scheme of stochastic method should be
such that it is capable for finding the reliable solution of Riccati
differential equation of arbitrary order.
It is necessary to introduce some definition and relations which are
used in this article. In case of fractional calculus, Riemann-Liousville
definitions of fractional integral or derivative with lower terminal at
0 is taken. Then the definition of fractional integral [14], [15] of
function f of order  with respect to t can be given as

  



t

dfttfD
0

1)()(
)(

1)(


 (4)

for 0t and  is a real and > 0

where
dD
dt

 is the differential operator. So by replacing the

order  in expression (4) with  the fractional derivative is
defined.
The fractional derivative of the exponential function

tetf )((5)
can be written as

)()(1,1 tMttfD 



 (6)

where)(1,1 tM  be the classical Mittag-Leffler function of two

parameters 1 and  1 is defined as

)0,0(
)(

)(
0

, 


 







k

k

k
ttM (7)

II. MATHEMATICAL MODEL FOR SOLVING RICCATI
DIFFERENTIAL EQUATIONS

In this section we are providing the introductory material
for mathematical modeling of Riccati differential equations of
arbitrary order with feed forward artificial neural network.

Integer order case: Take the general form of Riccati
differential equation of integer order, i.e. n where n is
some positive integer then equation (3) can be written as

1
2 0,)()()(ttytcytbta

dt
yd
n

n

 (8)

It is well known that an arbitrary continuous function and
its derivatives on a compact set can be arbitrarily
approximated by multiple inputs, single output, single hidden
layer feed forward neural networks with a linear output layer
having no bias. Hence the solution y of the differential

equation along with its n order derivatives n

n

dt
yd

 can be

approximated by the following continuous mapping in neural
network methodology [16] [18]





m

i
iii btwfty

1
)()(

 (9)





m

i
iin

n

in

n

btwf
dt
d

dt
yd

1

)(


(10)

where i , iw and ib are bounded real-valued adaptive

parameters, m is the number of neurons, and f is the
activation function normally taken as log sigmoid function
given as

).1(1)(xexf  (11)
The mathematical model for the given equation (8) can be

formulated the linear combinations of the networks (9) and
(10). It means that the solution y is approximated with

y subject to some appropriate unknown weights.
Fractional order case: The networks given in (9) and (10)

could not apply directly to represent the fractional differential
equations, due to non availability of the fractional derivative
of the log-sigmoid activation function. The exponential
function is a candidate solution to be used as activation
function in the neural network modeling of fractional
differential equation, due to its universal function
approximation capability as well as its straightforward
implementable fractional derivative.

Now take the xexf )(be the activation function then the
network presented by (9) and (10) can be given as





m

i

btw
i

iiety
1

)(
(12)

)()(1,1
1

twMtetyD i

m

i

b
i

i


  





(13)

The linear combination of the networks (12) and (13) can
represent approximate mathematical model of the differential
equation of fractional order given in expression (3). It is
named as fractional differential equation neural network
(FDE-NN). The activation function for (12) is exponential
function, while in case of (13) it is integer and non-integer
derivative of exponential function respectively. It means that
the solution y of fractional Riccati differential equation also

be approximated with y subject to some appropriate unknown
weights.

The mathematical model for the Riccati differential
equation of arbitrary order with the help of neural networks
can be formulated.

III. EVOLUTIONARY COMPUTING

In this section the learning of the unknown weights of
networks representing the equation with the help of efficient
computational algorithm is narrated.

These learning algorithms are mainly based on genetic
algorithm (GA) and aided with rapid local methods like active
set algorithm. One of the prominent features of GAs is that
unlike other algorithms, they do not get stuck in local minima.
GA incorporate parallel procedure as well as structured
strategy for randomly searching high aptitude points. GA
consists of three fundamental operations: selection, crossover
and mutation. GA encodes the design parameters into finite bit
string to solve the required optimization problem. GA runs
iteratively using its operators randomly based upon fitness

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2348

function. Finally it finds and decodes the solution from the last
pool of mature strings obtained by ranking of strings,
exchanging the portions of strings and changing bits at some
location in the strings. The generic flow chart of the GA
algorithm is given in Figure 1. [17].

Fig. 1 Flow chart of Genetic Algorithm

Randomly generated initial population consists of finite set
of chromosome each with as many numbers of genes as the
unknown weights in differential equation neural network (DE-
NN). The objective function to be minimized is given as the
sum of errors

,2,121  jeee jj
j (14)

where je1 is given as

j

n

i
iiiii

i

ij tytCtytBtA
dt

tyd
n

e






 
1

22
1)]()()()()(

)(
[1



 
(15)

where n is the number of time steps, dtyd and y are

given by expression (9) and (10). Similarly then error je2 due

to initial condition, for example 1)0(y can be written as

j
j ye 22

2]1)}0([{  
(16)

The iterative process for optimization continues until user
define number of cycles is achieve or pre-defined level of
error je is obtained.

Algorithm is given in the following steps:
Step 1: Randomly generate bounded real value to form

initial population of P number of the individual or
chromosome. Each individual represents the

unknown weights of neural network. The initial
population is scatter enough for better search space
of the algorithm.

Step 2: Create a Q number of subpopulation each with

QP / individual.
Step 3: Initialize the algorithm and its parameter values

setting for execution.
Set the number of variable equivalent to element in
the individual, Set the number of generation, Set the
fitness limit, Set Elite count equal to 3 and
crossover fraction 75.0 for reproduction, Set
Migration in forward and backward direction both,
Start generation count, etc.

Step 4: Fitness calculation by using the fitness function
given in expressions (14 to 16).

Step 5: Ranking is carried out for each individual of the
populations on the basis of minimum fitness values.
Store the best fitted candidate solution.

Step 6: Check for Termination of the algorithm, which is set
as either predefine fitness value achieve i.e. MSE

810  for integer order case of the equations and
410  for non-integer order cases of the equation or

Number of cycles complete.
If yes go to step 9 else continues

Step 7: Reproduction of next generation on the basis of
Crossover: Call for scattered function
Mutation: Call for Adaptive Feasible function
Selection: Call for Stochastic Uniform function
Elitism

Step 8: Repeat the procedure from step 3 to step 6 with
newly generated population until total number of
cycle complete.

Step 9: Refinement of result using active-set algorithm (Call
FMINCON function of MATLAB) for local search
technique by taking the best fitted individual of step
5 as start point of the algorithm. Store in the
memory the refined value of fitness along with the
best individual for this run of the algorithm.

Step10: Repeat the step 1 to step 9 for sufficient large
number of the run to make the statistical analysis of
the algorithm. Store these result in a file for analysis
later.

IV. SIMULATION AND RESULTS

In this section the simulation and results are provided for
two different problems associated with Riccati differential
equation of arbitrary order to prove the applicability of our
algorithm. Comparative studies are also given.

A. Problem I
Consider the Riccati differential equation

10,1)()(2  ttytyD (17)

with initial condition as .0)0(y
First order case. Let take the value of order .1 Then

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2349

the exact solution of the equation is given as

.
1
1)(2

2




 t

t

e
ety (18)

The adomian decomposition method (ADM) can provide
the approximate solution of the equation (17) in the form of a
rapidly convergent series with easily computable terms [8].
The solution in a series form is given as

.0000969154.0000239129.0
000590027.000145583.0
00359213.000886324.0

0218695.00539683.0
133333.0333333.0)(

2119

1715

1311

97

53

tt
tt

tt
tt
tttty











(19)

To solve this with Differential equation neural network
(DE-NN) represented by (9) and (10) with number of neurons

8m are taken. Then the total number of 24 unknown
parameter (iw , i and ib) are to be adapted. These adaptive
weights are restricted to real numbers between -10 to 10. The
initial population consists of a set of 160 chromosome or
individuals divided into 8 subpopulations. Each chromosome
or individual consist of 24 genes equivalent to number of
weights. Input of the training set is taken form time)1,0(t
with a step size of 0.1. Its mean that 11n in the expression
(15). Therefore the fitness function is formulated as






3,2,1for

,)}0({]1)}({
)(

[
11
1 2

11

1

22







 



j

yty
dt

tyd
e

ji
i

i
j

20)

where j be the number of generation, ,y and
dt
yd

 are

networks provide in equation (9), and (10) respectively with
8m number of neurons. Our scheme runs iteratively in

order to find the minimum of fitness function je , with

stoppage criteria as 800 number of generations or fitness value
of -810||min je whichever comes earlier. In our case the

810|| je is achieved mostly before the number of cycles

ends. One of the unknown weights learned by DE-NN
algorithm with fitness value of -8108.6429||min je are

provided in Table 1. Using these weights in expression (9) one
can find the solution to this problem for any input time t
between 0 and 1.

The exact solution and approximate analytic solution
represented by equations (18) and (19) respectively as well as
DE-NN solution for the equation for input time

)2,0(t with a step size of 2.0 are obtained. Results are
shown in Figure 2 and given in Table 2.

Fig. 2 Graphical representation for the solution of ODE in

problem I for first order case 1 and 20  t .

It can be seen that solutions obtained by our algorithm are
closest fit to the exact solutions.

Fractional order case. To prove the validity of our
approach let us solve relative simple example of fractional
differential equation with known exact solution such that
comparison of results can be made. Then apply same approach
for solving equation (17) for which the exact solution is
extremely difficult to drive.

Consider the fractional differential equation

10,0)0(

),(
)3(

2)(22






 






y

tytttyD
 (22)

whose exact solution is given by
.)(2tty  (23)

We calculate the approximate solution by mean of
fractional differential equation neural networks (FDE-NN)
constructed with the networks represented in equations (12)
and (13). Same procedure is adapted as in case of DE-NN but
here 2000max j number of generation is taken. The
fitness function for this scheme can be provided on similar
pattern to equation (20) with ,y and yD 21 are networks
provide in equation (12), and (13) respectively using

8m number of neurons. The optimize weights obtain by
this stochastic scheme is provided in Table 3. Using these
weights we obtained the solution of equation (22) for some
inputs. The result are graphically compared in Figure 3 and
provided in Table 3. It can be seen that this method can
effectively approximate the solution of fractional differential
equations as well.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2350

Fig. 3 Graphical representation for the solution fractional

differential equation of of order 21 and
20  t .

Now the same methodology applied (FDE-NN) for solving
the fraction Riccati differential equation by taking the value of
order 2

1 in the expression (17). Comparison is carried out
with extended ADM method which can provide the
approximate analytic solution for such kind of the equation as
well [8]. The solution by ADM method can be given as

.6.436205.14068
65.456322.1491925.491

385.1649634.556157.19
24332.700901.32)(

2119

171513

1197

53

xx
xxx

xxx
xxxty









(21)

where for simplicity we let 21tx  in the above relation
(21).

The approximate analytic solution represented by
expression (21) and stochastic proposed solution for the
equation (17) are determined for input time)1,0(t with a
step size of .2.0 The genes of best fitted chromosome in term
of weights are given in Table 1 for order 21 . The
solution obtained along with fitness value at some inputs is
provided in Table 4. It can be inferred from the results that our
algorithm can also be provided approximate solutions of the
fractional Riccati differential equation.

B. Problem II
A relatively complex from of Riccati differential equation

of arbitrary order is taken to investigate the strength and
weaknesses of the proposed stochastic algorithm. Let us take
another example of Riccati equations as

10,1)()(2)(2  ttytytyD (24)
with intial condition as .0)0(y
The exact solution of the above equation for order 1 is
given as

).
12
12log(

2
1)2tanh(21)(




 tty (25)

The analytic solution of (24) by adomian decomposition
technique [8] for the case 21 is provided as

214

32

4206.802732.0
05121.20.212838.1)(

xx
xxxty






(26)

where 21tx  .
This problem is solved for first order case as well as

fractional order case on the same methodology adopted for
problem I, but here taking 6 number of neuron. DE-NN or
FDE-NN method used to determine 18 numbers of unknown
weights. The stoppage criterion is 610min je or

maximum number of generations is equal to 2000. The fitness
function je used in said problem for the fractional order case

21 is given as

11
1 2 2 2 2

1

1
[() { ()} 2 () 1] { (0)}

11

1, 2,3 (27)

j i i i
i j

e D y t y t y t y

j



    







    



Where ,y and yD 21 are networks provide in equation
(11), and (12) respectively using 6m number of neurons.
Adaptive weights ,iw i and ib are restricted to real numbers

between 10 and 10 for the approximation of result. The
unknown weights determined by our scheme are used in
expression (9) and (12) for finding the solution of the
equations for some inputs between 0 and 1are summarized in
Table 5, where the order 1 iand 21 is taken for the
equations.

V. CONCLUSIONS

On the basis of the simulation and result obtained in the last
section it can be concluded that nonlinear Riccati differential
equation of arbitrary order can be solved using evolutionary
computation based on genetic algorithm. Combination of
neural network aided with GA can provide stochastically the
solution fairly close to the exact solution. Our proposed
evolutionary computing approaches can also be applied on
complex nonlinear differential equation of arbitrary order as
well. In future biological inspire method are studied to solve
these problems.

REFERENCES

[1] S. Bittanti, “History and Prehistory of the Riccati Equation” Proceedings
of the 35th Conference on Decision and Control Kobe, Japan December
1996.

[2] Reid W. T, “Riccati DifferentialEquations”, Academic Press, 1972.
[3] Goldstine H. H, “A History of the Calculus of Variations from the 17th

through the 19th Century”, Springer-Verlag,, 1980.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2351

[4] Mtter S. K, “Filtering and Stochastic Control: a Historical Perspective”,
in IEEE Control n Systems, pp. 67-76, June 1996.

[5] B.D Anderson, J.B. Moore, “Optimal Control-Linear Quadratic
Methods”, Prentice-Hall, New Jersey, 1990.

[6] K. Diethelm, J. M. Ford, N. J. Ford, W. Weilbeer, “Pitfalls in fast
numerical solvers for fractional differential equations” J. Comput. Appl.
Math, 186 pp 482-503, 2006.

[7] F. Mainardi, G. Pagnini, and R. Gorenflo, “Some aspects of fractional
diffusion quations of single and distributed orders” Journal of Applied
Mathematics and Computation, 187 No 1, pp 295-305, 2007.

[8] S. Momani, N. Shawagfeh, “Decomposition method for solving
fractional Riccati differential equations”, Journal of Applied
Mathematics and Computation 182, pp 1083-1092, 2006.

[9] Duan Junsheng, An Jianye, and Xu Mingyu, “Solution of system of
fractional differential equations by Adomian decomposition Method”,
Appl. Math. J. Chinese Univ. Ser. B, 22(1) pp 7-12, 2007.

[10] Shaher Momani, and Zaid Odibat, “Comparision between the homotopy
perturbation method and the variational iteration method for linear
fractional partial differential equations”, Computer & Mathematics with
Applications, Vol 54, Issue 7-B pp 910-919. 2007

[11] L. Galeone, and R. Garrappa, “Fractional Adams-Moulton method”
Mathematics and Computers in Simulation, vol. 79 issue 4 pp 1358-
1367, 2008.

[12] G. Tsoulos and I. E. Lagaris, “Solving differential equations with
genetic programming”, Genetic programming and Evolvabe Machines,
Vol. 7 No. 1 pp 33-54, 2006.

[13] Paul E. MacNeil, “Genetic algorithms and solutions of an interesting
differential equation”, proceedings of the 10th annual conference on
Genetic and evolutionary computation, pp 1711-1712, 2008.

[14] Miller, K. S. and Ross, B., “An Introduction to the Fractional Calculus
and Fractional Differential Equations” John Wiley and Sons, Inc., New
York 1993.

[15] Oldham, K. B. and Spanier, J., “The Fractional Calculus” Academic
Press, New York 1974.

[16] Daniel R. Rarisi et al. “Solving differential equations with
unsupervised neural networks”, Chemical engineering and
processing, 42 pp 715-721 2003.

[17] Lucie P. Aarts and Peter Van Der Veer, “Neural Network Method for
solving the partial Differential Equations” Neural Processing Letters 14
pp 261-271, 2001.

[18] A. Junaid, M. A. Z. Raja, and I. M. Qureshi, “Evolutionary computing
approach for the solution of initial value problem in ordinary differential
equation” Proceeding of World academy of science engineering and
technology, vol. 55, pp 578-581 July 2009.

TABLE I
WEIGHTS OBTAINED FOR ODE IN PROBLEM I

Unknown Weights

iw i ib
Index

i
1 21 1 21 1 21

1 -1.1581 1.1585 0.0381 0.2443 2.3696 0.2119
2 1.6803 0.3749 1.8166 0.5420 -0.0616 0.6061
3 -2.5918 0.6269 0.0196 -0.7132 5.3030 0.9942
4 -2.3802 0.4679 -1.2224 0.0372 -2.3049 -0.2808
5 4.0543 0.9160 -0.3111 0.0247 1.1153 -0.9092
6 -0.8090 0.4100 3.0061 0.4812 -1.6223 0.9103
7 2.2916 0.5152 0.9911 0.0292 0.4843 -0.3812
8 -0.3401 -4.6597 -1.8075 -0.5627 2.7448 0.0154

TABLE II

COMPARISON OF RESULTS FOR THE SOLUTION OF ODE IN PROBLEM FOR FIRST ORDER CASE 1 .

ErrorTime
i

Exact
()y t

ADM
()t

DE-NN
()t () ()y t t () ()y t t

0 0 0 -0.0000 0 2.208e-08
0.2 0.1974 000.1974 0.1971 -2.559e-09 2.869e-04
0.4 0.3799 000.3799 0.3796 -1.7847e-08 3.078e-04
0.6 0.5370 000.5370 0.5367 -4.516e-08 2.997e-04
0.8 0.6640 000.6640 0.6637 -2.373e-07 2.913e-04
1 0.7616 000.7616 0.7615 -2.791e-05 01.171e-04
1.2 0.8337 000.8353 0.8338 -0.0016 -1.720e-04
1.4 0.8854 000.9356 0.8857 -0.0502 -3.663e-04
1.6 0.9217 001.8762 0.9220 -0.9545 -3.089e-04
1.8 0.9468 013.5716 0.9469 -12.624 -4.592e-05
2 0.9640 126.6693 0.9639 -125.705 1.178e-04

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2352

TABLE III
WEIGHTS OBTAINED ALONG WITH THE SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER.

Unknown WeightsIndex
i

iw i ib Time Exact FDE-NN Error

1 0.1960 0.0830 0.2050 0 0 -0.0004 3.726e-04
2 -1.3561 0.6221 0.4691 0.2 0.0400 0.0396 3.605e-04
3 -0.8717 -0.2375 0.9537 0.4 0.1600 0.1596 4.328 e-04
4 0.9907 0.3870 0.7539 0.6 0.3600 0.3573 2.741e-03
5 0.3077 -0.0155 -0.2624 0.8 0.6400 0.6352 4.777e-03
6 0.0228 -1.0413 0.2148 1.0 1.0000 1.0004 -3.519e-04

TABLE IV

THE SOLUTION OF FRACTIONAL RICCATI DE IN PROBLEM 1 HAVE ORDER 21

TABLE V
COMPARISON OF RESULTS FOR THE SOLUTION OF ODE IN PROBLEM II.

First order Case
1

Fractional Order Case
21

Time Exact
()y t

DE-NN
()t

Error
() ()y t t FDE-NN

Value of Objective Function

je
0 0 -0.0000 2.97e-09 0.0561 1.121e-07

0.1 0.1103 0.1103 -3.14e-05 0.5610 1.226e-02
0.2 0.2420 0.2420 -7.01e-06 0.9121 2.199e-03
0.3 0.3951 0.3950 5.58e-05 1.1594 1.876e-04
0.4 0.5678 0.5677 9.87e-05 1.3369 2.510e-03
0.5 0.7560 0.7559 6.96e-05 1.4671 2.247e-03
0.6 0.9536 0.9536 -3.07e-05 1.5652 1.045e-06
0.7 1.1529 1.1531 -1.40e-04 1.6414 02.398e-03
0.8 1.3464 1.3465 -1.80e-04 1.7024 3.333e-03
0.9 1.5269 1.5270 -1.20e-04 1.7528 1.863 e-03
1 1.6895 1.6896 -6.20e-05 1.7957 2.337 e-03

Time FDE-NN Value of Objective Function

je

0 0.0505 8.475e-07
0.2 0.4047 7.623e-07
0.4 0.5507 3.031e-02
0.6 0.6178 1.652e-07
0.8 0.6594 1.086e-02
1 0.6992 2.464e-02

