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Abstract—Evolutionary robotics is concerned with the desifn
intelligent systems with life-like properties by ams of simulated
evolution. Approaches in evolutionary robotics daa categorized
according to the control structures that repret@mbehavior and the
parameters of the controller that undergo adaptafitie basic idea
is to automatically synthesize behaviors that emahk robot to
perform useful tasks in complex environments. Thelwgionary
algorithm searches through the space of parametkeriontrollers
that map sensory perceptions to control actionss trealizing a
specific robotic behavior. Further, the evolutignaalgorithm
maintains and improves a population of candidateabiers by
means of selection, recombination and mutationitde$s function
evaluates the performance of the resulting behadoprding to the
robot’s task or mission. In this paper, the focasiri the use of
genetic algorithms to solve a multi-objective optation problem
representing robot behaviors; in particular, th€@mpander Law is
employed in selecting the weight of each objecttiging the
optimization process. Results using an adaptiness function show
that this approach can efficiently react to comptesks under
variable environments.
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l. INTRODUCTION
HILE several approaches have been suggested

designing nonlinear controllers, the problem become
more complex when plant uncertainties and noise ar

considered. An approach that has gained some sucekss
on a non-parametric philosophy whereby a fuzzylbisased
to handle uncertainties and imperfections while eural
network block addresses the underlying modehadhics.

The classical adaptive neural-network basexfyfu
inference system (ANFIS) approach [1] is such aechire
and generally provides good overall systemagerance
when the control gains are properly selected; hewethis
may not always be feasible, particularly when thaeability
or uncertainties are unknown.

One can employ a set of ANFIS blocks tanfoa
generalized ANFIS (GANFIS) that can approximate
nonlinear structure [2] (Figure 1). In the GANFI8sign, the
idea is to represent the desired control actionahtyansfer
function approximation as:
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where m is the order of the numerator and n iotider of the
denominator of the transfer function approximatitm a
nonlinear function of the output errde) , y is the desired
output and y is the actual output.

The control law is:
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where p; are the consequent parameters of the ANFIS blocks

In designing the GANFIS controller as well as otlersions
of an ANFIS-based architecture, the issue is pregézction
of the consequent and premise parameters.
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Fig. 1 The Generalized ANFIS Controller

a It is shown in [3] that evolutionary algorithms mhg used
in selecting the GANFIS parameters on-line, resgltin a
more stable structure. Thus, one must select tb&ugonary
parameters (the mutation and crossover probabjligad the
fitness function, all of which have an impact one th
evolutionary process.

In this paper, we focus on the fithess function and
particular, how multi-objective functions can bedegbsed in
the GANFIS architecture, which is the main conttibn of
this paper. Section |l provides a brief developmehtthe
fithess function using heuristics and predictionnasd| as the
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incorporation of simulated annealing. Then, in ®ectll, we For example, in [7] a heuristic fithess functiordsveloped

present the multi-objective function format andwhww this that is based upon past, current afdure knowledge

can be incorporated into the GANFIS. In particuldwe A- information using the form:

Compander Law may be used to tune the weights ol ea

objective function. Section IV presents a nonlinegstem f(n)=g(n) + h(n) +( 4)

example, subjected to noise and parameter variaResults

show the feasibility of employing the GANFIS conieo to  where g(n) is the classical fithess function bageah an error

nonlinear systems with noise or system variation. metric using current information, h(n) is the figsefunction
component based upon some historical informatiteted to

1. THE GENERALIZED ANFIS CONTROLLER STRUCTURE & predicted target and q(n) is a heuristic function basednupo

For completeness sake, a brief summary of the giined  €xpected future knowledge. We differentiate between
ANFIS (GANFIS) controller is provided. The GANFIS, prediction, based upon deterministic historicaladatd future
shown in Figure 1, requires the selection of battmpse and heuristics, based upon probabilistic information.
consequent parameters; here we use evolutionaryoaetin To improve performance, in [8] we integrated simeda
selecting these parameters as shown in Figure 2ndet annealing (SA) in the evolutionary process (EPmBated
evolutionary approaches, genetic searching is usbhith annealing is an optimization process in which acfiom of a
consists of a finite repetition of three stepsathegeneration: parameter (temperature) is used to decide upon il u
selection of the parent chromosomes for the nerEg#iON move. Here we integrate SA in the EP in the follogvivay:
(usually an elitist selection for a percentage bé next qyring the generation of a new population, typich#lf of the
generation), recombination using crossover and touta onylation is kept (elitism) while the bottom hafreplaced
operations [4], and a fitness function that deswilthe by a random set of new chromosomes. Here, insttasing a
goodness of individual members of each generation. In [5]Simple random generation, we mutate the bottom tiathe
Rajapakse and others employ evolutionary algorittonsine population (the neighborr,lood function in SA) anderth
fuzzy logic controllers, but then use an on-lieairal network . . .

erform SA in generating the new half of the popala

model of the process as a separate block. We hse EFuning is performed in selected the SA parameters

evolutionary learning apart of the adaptive neural network ‘ " q tactor) based ¢ hanch
fuzzy inference controller, rather than separatsh eperation (emper_a ure decay factor) base upon performahea
generation. In [8], we show that this modificationproves

(evolutionary tuning, fuzzy logic controller, neunaetwork
model of the plant) in the design process. Furthtbe el
parameters of the evolutionary learning operatjpopglation variation.
size, mutation operator, cross-over operator artdes  The issue, then, is how to add several objecticeshe
function) are adaptively changed based upon therative fitness function. In [9], fuzzy weights are usedr fa
system performance measure. Pedrycz [6] states theat multiplicative fitness function, made up of diffete
mutation rate and the crossover rate can be expatally objectives, and the focus was on performance offithess
adjusted from results from a series of observatiohgast function. Here we focus on additive objectives amidh to
simulation and provides a method using Fuzzy mefesr investigate the notion of using fuzzification inlesging the
The evolutionary module runs several generations @feights and then on how it is used in the controll@at is, in
candidate premise and consequence parameter cloomess this paper, we focus on how the fitness functiordenap of
and selects the best set, according to a fitnasstitun of the many Objectives can be incorporated into the GANFIS
form: structure.

nr
— 2
F= Z & ®) M. TUNING THE EVOLUTIONARY PARAMETERS
h h is th dzlff b he ddsi The mutation and crossover rates are two important
where the error Is the dilference between the edstmtput evolutionary parameters and are typically statjcafiet

and the actual putput. ) . ) through trial-and-error in classical evolutionarigaithms
In order to improve the fithess value, a fitnesaction [10]

based upon current, past and expected future valaeshe

used In [11], the effects of the crossover rataRd mutation rate

Pn to the maximum fitness and average fitness vahres
discussed. The larger the error is between thed#ivalues of
—_’Ijl‘i two individuals, the stronger is the degree ofrthéation rate
and crossover rate. In [12], the mutation and syeer rate
are tuned using different functions of the currditbess

Ve o plant v values. For example, one may select:

u

_Lfim-fm (5)
f(n)

Fig. 2 GANFIS with Evolutionary Tuner

system performance, even under noise and parameter

531



International Journal of Electrical, Electronic and Communication Sciences
ISSN: 2517-9438
Vol:6, No:6, 2012

_ [T - fi(m)] ®)
2% f(n)

where f(n) is the current fitness function associated wiité

chromosome that requires the crossover or mutaip@nation

m

and f(n) is the maximum fitness function for generation

Notice that (5)-(6) do not require amypriori knowledge in
selecting the probabilistic rates; rather the estirs simply
use current fithess values at each generation.

In [13], we use simulated annealing with an ada&ptining
factor to improve convergence. In this paper, t&u$ is on
how the fitness function can be altered to incaapomulti-
objectives based upon robot behavior using fuzifn of
the weights. Each objective function may be assediwith a
different robot goal such as tracking a desired patusing
the minimum energy or traversing a maze in minimtunre.
How these objective functions are incorporated itsingle
fitness function is now discussed.

V. THE MULTI-OBJECTIVE FITNESS FUNCTION
USING FUZZY BEHAVIOR

A drawback of the classical approach to multi-otijec
function optimization is the issue of how to seléxt weights
of each objective. The A-Law Compander function][tdn
alleviate these problems by using a compact fortimuaof
fuzzification.

The basic A-Law Compander equation in the compress

mode is given as:

For 0< (x| / xmax X 1/A:
c(x) = 1+ sgn(x)*A |x]| / In (A)
For /A< ([x}/xmax)< 1:
c(xX)= xmax*sgn(x)*(1+log (A |x|/xmax))/ (1+ IA))

(7a)
The A-Law Compander equation in the expander made
given as:

For x< (1 /1In (A)):
c(x) =x (1+In (A) /A
For x > (1/In (A)):
c(x) = exp (x (1+In (A)-1)/ A

(7b)

where xmax is the largest value of the input x,) décthe
fuzzified output, and In (.) is the natural log €tion. It is
assumed that the value of A is greater than umtyeach A-
Compander function describes a fuzzification openat

A-Law Companding
T T T

05 06
input w,

Fig. 3 A-Law Compander Functions

The approach here is to employ the A-Law Compander

function to fuzzify the weights of each objective a multi-
objective fitness function. Each weight is fuzaifigtarough an
A-Law Compander function that maps the weight veittunds
[min, max] to the range [0, 1] according to the dtion
definition. Hence the number of parameters thadneebe
selected for fuzzification reduces the number oénpise
parameters by a factor of two (the average anddatdn
deviation for a Gaussian membership function, feaneple)
just the number of membership functions desftsihg the

-Compander form of the membership function)

As the value of A approaches unity from the expaisifte

of Figure 3, the priority of the rule, which is npeal to its
membership function, increases. The priorities wks are
adaptively changed using different values of A,eoasipon
the current epoch and also their performance hie turrent
epoch as compared to their performance in tleeipus
epochs. The weights given to each objective ahénrange
0,1].
L Using this convention, the expander side of the afvL
Compander is chosen for the selection of the weigheach
objective in the multi-objective fitness functioA method
which can be used to update the value of A assigmezhch
rule at the end of each epoch needs to be founithidrpaper,
the strategy is to update the value of A at the eh@ach
epoch, when the present fithess value is compaid the
corresponding fitness value in the previous epdtie. fitness
is typically selected as the square-root of the safithe
squared errors between the desired output valued tle
current output values. A modification of the fitsdanction is
performed by incorporating multiple objectives withzzy
weights using this fuzzification approach is empldyhere,
which is the main contribution of the paper.

If the current fitness value f(n) is lower thanegjual to the
fitness value in the previous epoch, f(n-1), thies value of
A(n+1) for each rule is modified for the next epswsing the
equation:

A(n+1) = A(n) +d(n) *k 8
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where A is the compander curve value assignedpt@rtgcular
rule, and k is a scaling factor. In our case, thtue of A
corresponds to the weight associated with eachctboge An
increasing or decreasing weight is selected baped the size
of d and the epoch number; other scaling factorg beaused.
In this paper, the value d is selected as therdiffee between
the minimum and maximum value of the fitness fuorcti
normalized to the maximum value. Notice that as ¢her
between the fitness function values decrease cling factor
increases. But the net result goes to zero asahe wf the A-
Compander function converges [14]. To improve rignithe
classical fitness function is modified by this fifization
approach for each objective and is illustratedhi@ ¢xample
below.

That is, consider a fitness function:

f = Zlq=1 aifi

fo = Zum)? (12)
and then the multi-objective fithess function isliaear
combination of f and § with appropriate weights as in (9).
Here n is the index of the sampled time trajectory.

TABLE |
CASE STUDIES IN PARAMETER VARIATION
Case# Coefficient Time of Change
0.01 2 sec
2 100 2 sec
3 0.01 0.5 sec
4 100 0.5 sec

First, we look at the case when no fuzzified weigate
used. That is, each objective function is simplydeat

(9) together. The results for the four test cases areshawn,

including the error trajectories. Figures 4-7 pdavitypical

where each,frepresents a particular objective and q is theesults. Note that even without fuzzy tuning of theights of

number of objectives in the multi-objective fithefsmction.

each objective, there is reasonable performanceerund

The coefficienty represents the weight on each objective. Thearameter variation and noise.

problem then is to choose the coefficientg §uch that the
objectives are met while minimizes the effects afgmeter
variation and noise. In this paper, a fuzzy turépgproach is
employed using the A-Compander Law of (8).

V. EXAMPLE

Consider the nonlinear system [15]:

%1 (8) =x3 () +u(t)

X5 (t) = u(t)
y(t) = x4 (1) (10)
where y(t) is the output and u(t) is the contrgbun It is
desired that the output track the function:

oft) = sin 2t * e (12)

The control parameters for the tests were ssdeds
follows: the population size of 20, six membégvdianctions
in the ANFIS block, four bits for each chromosomithvwan
elitist selection. Consider the cases when the ficteit
associated with the nonlinearity go from unity tm#her value
(parameter variation); four cases have been studied
summarized in Table I.

The coefficient represents the new value of dbefficient
associated with the nonlinear state in the dynarfti63, i.e.,
from unity while the third column defines when thariation
occurred. The input noise is at 20 db. The muifective
function studied here is:

fi = Zlya(m —ym)71?

Then consider using the approach developed heresvhe
weights for each objective functions are selectsdgithe A-
Compander Law for fuzzification. Figures 8-11 shohe
results.

It is interesting to note that with the addition of
fuzzification of the weights for each objective ¢tion
through (7b) as the adaptive tuning, the errorettries are
either smaller or have better settling times. Thiy,
comparing performance during the evolution, thisapeeter
can be appropriately adjusted to improve perforraanc

VI. CONCLUSIONS

It is shown that performance can be improved
appropriately selecting the weights of each obyectin a
multi-objective optimization problem. In this pap&rning by
fuzzification using the A-Compander Law is suggdsta the
future, we plan to implement the approach on rgatesns
such as robotic colonies as well as investigatevemence
properties in a formal way.

by
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Fig. 7 Desired Output versus Actual Output for Casio Fuzzy
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Fig. 9 Desired Output verséstual Output for Case ®ith A-Law

Tuning
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Fig. 10 Desired Output Versus Actual Output for €3svith A-Law
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