
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1029

Evolution of Fuzzy Neural Networks Using an
Evolution Strategy with Fuzzy Genotype Values

Hidehiko Okada

Abstract—Evolution strategy (ES) is a well-known instance of
evolutionary algorithms, and there have been many studies on ES.
In this paper, the author proposes an extended ES for solving
fuzzy-valued optimization problems. In the proposed ES, genotype
values are not real numbers but fuzzy numbers. Evolutionary
processes in the ES are extended so that it can handle genotype
instances with fuzzy numbers. In this study, the proposed method
is experimentally applied to the evolution of neural networks with
fuzzy weights and biases. Results reveal that fuzzy neural networks
evolved using the proposed ES with fuzzy genotype values can
model hidden target fuzzy functions even though no training data
are explicitly provided. Next, the proposed method is evaluated in
terms of variations in specifying fuzzy numbers as genotype values.
One of the mostly adopted fuzzy numbers is a symmetric triangular
one that can be specified by its lower and upper bounds (LU) or its
center and width (CW). Experimental results revealed that the LU
model contributed better to the fuzzy ES than the CW model, which
indicates that the LU model should be adopted in future applications
of the proposed method.

Keywords—Evolutionary algorithm, evolution strategy, fuzzy
number, feedforward neural network, neuroevolution.

I. INTRODUCTION

Amulti-layered feedforward neural network (NN) with
fuzzy-valued weights and biases has been proposed in

the literature [1]. The fuzzy NN (FNN) approximately models
a fuzzy function Y = F(xxx), where Y is a fuzzy number and xxx
is a real vector, by learning the given data (xxx1,Y1),(xxx2,Y2), ....
The FNN can learn the data in which Y1,Y2, ... include both
real numbers and fuzzy numbers, because a real number can
be specified as a fuzzy number with zero width (i.e., with the
same value of the upper and lower bounds). As the learning
method for the FNNs, a supervised learning method has also
been proposed [1], which is an extension of the traditional
back propagation (BP) algorithm, but a method that does not
require training data has not been proposed as yet.

Besides, evolutionary algorithms have recently been applied
to the reinforcement training of NNs, known as neuroevolution
(NE) [2]-[5]. In NE, weights and biases are tuned by
evolutionary operations, not by the BP algorithm. Because
NE does not utilize BP, NE does not have errors between
NN output values and their target signals but requires each
NN to be ranked on the basis of its performance for a
given task. Thus, NE is applicable to problems in which the
error function is difficult or impossible to determine, such as
controlling autonomous robots. EAs have been applied to the
NE of traditional NNs with real-valued weights and biases,
where the genotypes (chromosomes) consist of real numbers

Hidehiko Okada is with Faculty of Computer Science and Engineering,
Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555,
Japan (e-mail: hidehiko@cc.kyoto-su.ac.jp).

or bit strings that encode real numbers. Ordinary EAs do not
employ fuzzy numbers as their genotype values because their
evolutionary operations are designed to handle genotypes with
crisp values, and thus, the operations cannot handle genotypes
with fuzzy values.

The author previously proposed an extension of the genetic
algorithm (GA) that can handle fuzzy-valued genotypes [6]. In
this paper, the author proposes a similar extension of another
EA, the evolution strategy (ES). ES [7][8] is a well-known
instance of the EAs, and there have been many studies on
ES [9]-[25]. For example, Hansen et al. proposed an ES
variant, CMA-ES, which adopts mutation based on normal
distributions [9][16]. The extended ES proposed in this paper
can be applied directly to fuzzy optimization problems by
employing fuzzy variables as genotype values. The author
experimentally applies the proposed method (fuzzy-valued ES:
FES) to the reinforcement training of FNNs and compares the
experimental result with the result of the previously proposed
fuzzy-valued GA [6].

II. NEURAL NETWORKS WITH FUZZY WEIGHTS AND
BIASES

The FNN employed in this research is the same as in the
literature [1], which is a three-layered feedforward NN with
fuzzy weights and biases. Fig. 1 shows its structure. An FNN
receives an input real vector xxx and calculates its output fuzzy
value O (for simplicity, the output layer includes a single unit)
as follows [1]:

Input layer:
oi = xi. (1)

Hidden layer:

Net j = ∑
i

Wj,ioi +Θ j, (2)

O j = f (Net j). (3)

Output layer:
Net = ∑

j
WjO j +Θ , (4)

O = f (Net). (5)

In (1)-(5), xi and oi denote real values, while Net j, Net, Wj,i,
Wj, Θ j, Θ , O j, and O represent fuzzy values. f (x) denotes the
unit activation function, which is typically the sigmoidal one:
f (x) = 1/(1+e−x). f (x) maps a fuzzy input number to a fuzzy
output number, as illustrated in Fig. 2.

The feedforward calculation of the FNN is based on the
extension principle [26] and the interval arithmetic [27] (for



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1030

Fig. 1: Neural network with fuzzy weights and biases [1].

Fig. 2: Input-output relation of each unit in the hidden and
output layers [1].

more details, see the literature [1]). Let us denote two closed
intervals as A and B, where A = [aL,aU ] and B = [bL,bU ]. In
this case,

A+B = [aL,aU ]+ [bL,bU ]

= [aL +bL,aU +bU ]. (6)

k ·A = k · [aL,aU ]

= [kaL,kaU ], if k ≥ 0,else [kaU ,kaL]. (7)

A ·B = [aL,aU ] · [bL,bU ]

= [min(aLbL,aLbU ,aU bL,aU bU ),

max(aLbL,aLbU ,aU bL,aU bU )]. (8)

III. PROPOSED METHOD: EVOLUTION STRATEGY WITH
FUZZY GENOTYPE VALUES

Suppose that the FNN shown in Fig. 1 includes n input units
and m hidden units. In this case, the FNN includes mn+m
weights (i.e., mn weights between the input and hidden layers,
and m weights between the hidden and output layers) and m+1
biases (i.e., m+ 1 is the total number of units in the hidden
and output layers). Thus, the FNN includes mn+2m+1 fuzzy
variables in total. The FES proposed in this paper handles these
fuzzy variables as a genotype XXX = (X1,X2, ...,XD), where Xi
denotes a fuzzy number and D = mn+ 2m+ 1. Suppose that
each Xi represents a symmetric triangular fuzzy number (Fig.

Fig. 3: Symmetric triangular fuzzy number and its real-valued
parameters [6].

3) as in [6]. In this case, Xi can be specified by its upper and
lower bounds or by its center and width (radius): Xi = [xL

i ,x
U
i ]

or Xi = (xc
i ,x

w
i ), where xL

i ,x
U
i ,x

c
i , and xw

i denote the upper,
lower, center, and width of Xi, respectively.

The FES includes the same processes as those in
the ordinary ES with real-valued genotypes. Processes of
the initialization of population, reproduction, and fitness
evaluation are extended so that these processes can handle
fuzzy-valued genotypes.

A. Initialization of Population

In the initialization process, XXX1,XXX2, ...,XXXP are randomly
initialized, where P denotes the population size. Because the
elements in XXXa (i.e., Xa,1,Xa,2, ...,Xa,D) are weights and biases
in an FNN in this research, smaller absolute values of Xa,i are
preferable as the initial values. Thus, the initial values for Xa,i
are randomly sampled from the normal distribution N(0,ε1) or
uniformly sampled from an interval [−ε1,ε1], where ε1 denotes
a small positive number. In the case of employing the [lower,
upper] model (the LU model), two values are sampled per
Xa,i = [xL

a,i,x
U
a,i]: the smaller (larger) one is set to xL

a,i (xU
a,i).

In the case of employing the (center, width) model (the CW
model), two values are sampled per Xa,i = (xc

a,i,x
w
a,i): one of

the two values is set to xc
a,i, and the absolute value of the other

is set to xw
a,i.

B. Reproduction

Let us denote a parent genotype instance as XXXa and an
offspring genotype instance as XXXz. XXXa can be sampled from
the population in the same manner as the ordinary ES.

In the case of employing the LU model,

XXXa = (Xa,1,Xa,2, ...,Xa,D), (9)

Xa,i = [xL
a,i,x

U
a,i], (10)

XXXz = (Xz,1,Xz,2, ...,Xz,D), (11)

Xz,i = [xL
z,i,x

U
z,i]. (12)

xL
z,i and xU

z,i are determined as follows:

xL
z,i = xL

a,i + rand, (13)

xU
z,i = xU

a,i + rand, (14)

where rand denotes a random number. The value for rand is
sampled from the normal distribution N(0,ε2) or uniformly



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1031

sampled from an interval [−ε2,ε2] every time when rand is
called. ε2 denotes another small positive number.

In the case of employing the CW model,

XXXa = (Xa,1,Xa,2, ...,Xa,D), (15)

Xa,i = (xc
a,i,x

w
a,i), (16)

XXXz = (Xz,1,Xz,2, ...,Xz,D), (17)

Xz,i = (xc
z,i,x

w
z,i). (18)

xc
z,i and xw

z,i are determined as follows:

xc
z,i = xc

a,i + rand, (19)

xw
z,i = xw

a,i + rand, (20)

where rand denotes the same random number as that for the
LU model.

Note that xL
z,i must not be larger than xU

z,i because xL
z,i and

xU
z,i denote the lower and upper bounds of the fuzzy number

Xz,i, respectively. Similarly, xw
z,i must not be negative because

xw
z,i denotes the width of Xz,i. If the value of xL

z,i becomes larger
than the value of xU

z,i obtained using (13) and (14), these values
must be repaired to meet the constraint. The repair method can
be described as follows:

• the value of xU
z,i is assigned to xL

z,i,
• the value of xL

z,i is assigned to xU
z,i,

• the mean value of xL
z,i and xU

z,i is calculated and assigned
to both of xL

z,i and xU
z,i, respectively, or

• the two values for xL
z,i and xU

z,i are interchanged.
Similarly, if the value of xw

z,i becomes negative by the use of
(20), the value must be repaired to meet the constraint. The
repair method can be described as follows:

• the value of xw
z,i is set to 0, or

• the absolute value of xw
z,i is assigned to xw

z,i.

C. Fitness Evaluation

To evaluate the fitness of an FNN as a phenotype instance of
the corresponding genotype instance XXX j = (Xj,1,Xj,2, ...,Xj,D),
where XXX j ∈ {XXX1,XXX2, ...,XXXP}, the FNN is supplied with several
samples of input real vectors and calculates output values. The
input values are sampled within the variable domain of the
application problem. The fitness of the genotype instance XXX j
is evaluated on the basis of the output values. The method for
scoring the fitness based on the output values depends on the
problem to which the FNN is applied. For example, in a case
where the FNN is applied to control an automated system,
one of the performance measures of the system can be used
as the fitness score of the genotype instance corresponding to
the FNN.

IV. APPLICATION TO EVOLVING FUZZY NEURAL
NETWORKS

The author experimentally evaluates the ability of the FES
by applying it to the evolution of FNNs in the same manner
as in [6]. The FNNs are challenged to model hidden fuzzy
functions. The author adopts the same three functions [6] as
the targets for FNNs to model so that the author can compare

the experimental result with that obtained using the fuzzy GA
(FGA) [6].

In Section IV.A, the modelling accuracy is evaluated by
using three target functions. In Section IV.B, the LU model
is compared with the CW model to investigate which model
better contributes to the FES in evolving FNNs. In Section
IV.C, the FES is compared with the FGA.

A. Accuracy of Modeling Fuzzy Functions

The author employs the same three fuzzy functions [6]
as the targets for FNNs to model. For simplicity, the input
x of the target functions is not a real vector but a real
scalar (therefore, the FNN includes only a single input unit)
and 0 ≤ x ≤ 1, as in literature [1]. The outputs of the
target functions are symmetric triangular fuzzy numbers. The
functions F1(x) = [F1(x)L,F1(x)U ], F2(x) = [F2(x)L,F2(x)U ],
and F3(x) = [F3(x)L,F3(x)U ] can be expressed as follows:

F1(x)L = 0.2sin(2πx)−0.1x2 +0.4, (21)

F1(x)U = 0.2sin(2πx)+0.1x2 +0.6. (22)

F2(x)L = 0.2sin(2πx)+0.2x2 +0.2, (23)

F2(x)U = 0.2sin(2πx)−0.2x2 +0.7. (24)

F3(x)L = 0.15sin(2πx)+0.3, (25)

F3(x)U = 0.1sin(3πx)−0.1x+0.7. (26)

Figs. 4-6 show these three functions, where:
• F0.0L and F0.0U denote F(x)L and F(x)U , i.e., the

lower and upper bounds of the support interval of F(x),
respectively;

• F0.5L and F0.5U denote the lower and upper bounds,
respectively, of the 0.5-level interval of F(x), i.e.,
F(x)|0.5; and

• F1.0 denotes the peak of F(x), i.e., F(x)|1.0.
The FNN is designed as follows [6]:
• Number of units: 1 input, 10 hidden, 1 output
• −10.0 ≤ xL

j,i,x
U
j,i,x

c
j,i ≤ 10.0

• 0.0 ≤ xw
j,i ≤ 10.0

Fig. 4: Target function F1(x) [6].



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1032

Fig. 5: Target function F2(x) [6].

Fig. 6: Target function F3(x) [6].

The FES is designed as follows:
• Total number of FNNs evolved in a single run: 1,000,000
• Population size and the total number of generations:

(10,100)-ES with 10,000 generations, or (50,500)-ES with
2,000 generations

• Initial values of xL
j,i, xU

j,i, and xc
j,i for the fuzzy weights and

biases: uniformly random within [−1.0,1.0], i.e., ε1 = 1.0.
• Initial values for xw

j,i: uniformly random within [0.0,1.0].
• Random values for the reproduction: N(0,0.1), i.e., ε2 =

0.1.
Genotype instances XXX1,XXX2, ...,XXXP are ranked by utilizing

the same error function as that in literature [1][6]. As the
values for the h-level intervals of fuzzy numbers, the author
employs h = 0.2,0.4, ...,1.0 in this experiment. A phenotype
instance FNN that corresponds to a genotype instance XXX j is
supplied with a real input value xr and calculates its output
fuzzy number Or. xr is sampled within the input domain
[0,1] as xr = 0.0,0.01,0.02, ...,1.0. Besides, each value of xr
is supplied to the target function F(x) and the output fuzzy
number F(xr) is obtained. Then, the cost er for the input xr
is calculated as follows:

er = ∑
h

h((oL
r,h − f L

r,h)
2 +(oU

r,h − fU
r,h)

2), (27)

where
• oL

r,h and oU
r,h denote the lower and upper bounds,

respectively, of the h-level interval of Or, i.e., Or|h =
[oL

r,h,o
U
r,h], and

• f L
r,h and f U

r,h represent the lower and upper bounds,
respectively, of the h-level interval of F(xr), i.e.,
F(xr)|h = [ f L

r,h, f U
r,h].

For each genotype instance XXX j, er is calculated 101
times (e0,e1, ...,e100) for the 101 input values xr =
0.0,0.01,0.02, ...,1.0, and the sum of the calculated er values
is used for ranking XXX j. An instance with a smaller sum
of er is ranked higher. Note that er scores are utilized not
for reproducing new FNNs (i.e., updating FNN weights and
biases) but for ranking FNNs in the current population.

Figs. 7-9 show the results of this experiment. Fig. 7 shows
the output fuzzy function of the best FNN among the total
20,000,000 FNNs (= [1,000,000 FNNs in each run] ∗ [five
runs] ∗ [two variations for population sizes] ∗ [two variations
for the interval model]) evolved by the FES for modeling
F1(x). Figs. 8 and 9 show those for modeling F2(x) and F3(x),
respectively, in the same manner as Fig. 7. In Figs. 7-9,

• F0.0L, F0.0U, F0.5L, F0.5U, and F1.0 are the same as
those in Figs. 4-6,

• NN0.0L and NN0.0U denote the lower and upper bounds,
respectively, of the support interval of the FNN output
fuzzy number,

• NN0.5L and NN0.5U denote the lower and upper bounds,
respectively, of the 0.5-level interval of the FNN output
fuzzy number, and

• NN1.0 denotes the peak of the FNN output fuzzy number.
Fig. 10 shows the membership functions of O and F1(x)

for the input values x = 0.2 and x = 0.8, where O denotes the
output fuzzy number of the best FNN. In this figure,

• NN(0.2) and NN(0.8) represent the membership functions
of the output fuzzy number of the best FNN for the input
values of 0.2 and 0.8, while

• F(0.2) and F(0.8) denote the membership functions of
F1(x) for the input values of 0.2 and 0.8.

Figs. 11 and 12 show those for F2(x) and F3(x) in the
same manner as Fig. 10. The shapes of the FNN output
fuzzy numbers (the solid curves in Figs. 10-12) are similar
to those of the target fuzzy numbers (the dotted lines in
the same figures) for larger values of the membership score.
These results are shown in Figs. 7-12 and reveal that the best

Fig. 7: Output fuzzy function of the best FNN evolved by
FES for modeling F1(x).



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1033

Fig. 8: Output fuzzy function of the best FNN evolved by
FES for modeling F2(x).

Fig. 9: Output fuzzy function of the best FNN evolved by
FES for modeling F3(x).

FNNs evolved by the FES approximate their target functions
(particularly for larger membership scores because the error
is weighted more for the larger membership scores, see (27)),
despite the fact that no training data are explicitly provided.

Fig. 10: Output fuzzy numbers of the best FNN evolved by
FES and target fuzzy numbers F1(x) for the inputs values of
0.2 and 0.8.

Fig. 11: Output fuzzy numbers of the best FNN evolved by
FES and target fuzzy numbers F2(x) for the inputs values of
0.2 and 0.8.

Fig. 12: Output fuzzy numbers of the best FNN evolved by
FES and target fuzzy numbers F3(x) for the inputs values of
0.2 and 0.8.

B. Comparison of Two Models for Fuzzy Genotype Values

As described in Section III.B, the constraints for the two
real parameters of a symmetric triangular fuzzy number (i.e.,
the lower and upper bounds or the center and the width) are
different: note that the width must not be negative, while
the other three parameters can be negative. Because of the
difference in the constraints, the search space for the FES with
the LU model is not the same as that with the CW model even
for the same task. The difference in the search spaces between
the two models may affect the performance of the FES in
searching for solutions: a smaller search space is usually more
advantageous for any evolutionary algorithm. In this section,
the author compares the two models to investigate which
model contributes better to the FES with respect to finding
better solutions, on the basis of the result of the numerical
experiments described in the previous section.

Fig. 13 shows the error value of the FNN that is the best
among each total number of FNNs evolved for F1(x) (e.g.,
500,000 FNNs are evolved in total at the 5,000th generation
by (10,100)-ES). In this figure, “LU (100)” denotes the result
obtained by using (10,100)-ES with the LU model. “LU
(500)”, “CW (100)”, and “CW (500)” denote results in the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1034

Fig. 13: Error value of the best FNN for each total number
of FNNs evolved for modeling F1(x).

Fig. 14: Error value of the best FNN for each total number
of FNNs evolved for modeling F2(x).

same manner as “LU (100).” The error values are the averaged
values of five runs. Figs. 14 and 15 show the error values for
F2(x) and F3(x), respectively, in the same manner as Fig. 13.

Figs. 13-15 reveal that for all three target functions, the
LU model contributed better than the CW model in the cases
of both (10,100)-ES and (50,500)-ES, i.e., after the evolution
of 1,000,000 FNNs, the solid curves for the LU model went
below the dotted curves for the CW model. This finding
suggests that the LU model is better for the FES to employ as
the model for specifying symmetric triangular fuzzy numbers

Fig. 15: Error value of the best FNN for each total number
of FNNs evolved for modeling F3(x).

TABLE I: Number of repairs for genotype fuzzy numbers
(averaged over 5 runs)

as genotype values.
The result that the LU model is better than the CW model

is surprising because the search space is larger for the FES
with the LU model than that for the FES with the CW
model: −10.0 ≤ xL

j,i,x
U
j,i ≤ 10.0 with the LU model, while

−10.0 ≤ xc
j,i ≤ 10.0 and 0.0 ≤ xw

j,i ≤ 10.0 with the CW model.
To investigate the reason why the FES could evolve better
FNNs with the LU model, the author counts the number of
repairs for the invalid genotype values. As described in Section
III.B, xU

z,i must not be smaller than xL
z,i in the LU model, while

xw
z,i must not be negative in the CW model. In the reproduction

process, if the new values of xL
z,i, xU

z,i, or xw
z,i violate the

constraints, then the new values are repaired. Such repairs
may interfere with the evolution of FNNs because the repairs
restrict the modifications of weights and biases by the FES.
Thus, fewer repairs will be better in the evolution of FNNs.
Table I shows the number of repairs; the values in the table
are the averaged values of five runs under each condition. For
example, (10,100)-ES with the LU model required 2.72E+6
(2.72× 106) repairs on average for F1(x), while (10,100)-ES
with the CW model required 3.05E+6 (3.05×106) repairs on
average for F1(x). Table I reveals that the LU model required
fewer repairs than the CW model, which is the reason that
the LU model could contribute for the FES to evolve better
FNNs.

C. Comparison with Fuzzy Genetic Algorithm

Fig. 16 shows the error values of the best FNN for F1(x)
in the same manner as Fig. 13, where “FES” shows the result
obtained by using the FES proposed in this paper, while “FGA”
shows the result obtained by using the FGA that the author
previously proposed [6]. Figs. 17 and 18 show the error values
for F2(x) and F3(x), respectively, in the same manner as Fig.
16.

These figures reveal that for all three target functions, the
FES could evolve better FNNs than the FGA in the very early
generations (i.e., before the total number of evolved FNNs
reached approximately 100,000), but the FGA could evolve
better after that. This result is attributed to the fact that the
traditional reproduction operation of ES (which is employed
in the proposed FES) contributes well to local exploitation but
not to global exploration. The FES was likely to prematurely
converge the population into a local minimum, while the FGA
could explore the search space well by using the crossover and
mutation operations. A promising idea for a more efficient
search will be a combined application of the abovementioned
approaches: the FES is applied in the former generations,



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1035

Fig. 16: Error value of the best FNN for each total number
of FNNs evolved for modeling F1(x).

Fig. 17: Error value of the best FNN for each total number
of FNNs evolved for modeling F2(x).

while the FGA is applied in the latter generations. Such a
combination of ES and GA was found to be useful in literature
[28].

V. CONCLUSION

In this paper, the author proposed a fuzzy-valued extension
of ES and applied it to the neuroevolution of neural networks
with fuzzy weights and biases. In the proposed FES, genotype
values are not real numbers but fuzzy numbers. To handle

Fig. 18: Error value of the best FNN for each total number
of FNNs evolved for modeling F3(x).

the fuzzy genotype values, the FES extends its processes of
initialization of population and reproduction.

The FES was challenged to evolve FNNs that modeled each
of the three hidden fuzzy functions. The experimental results
showed that the best FNNs evolved by the FES approximated
the target functions (particularly for larger membership scores)
despite the fact that no training data were explicitly provided.
In addition, the results revealed that the LU model contributed
better to the FES than the CW model although the search space
was larger for the FES with the LU model. This could be
attributed to the fact that the FES with the LU model required
fewer repairs for invalid genotype values than the FES with
the CW model.

In the future, the author will further evaluate the ability
of the FES by applying it to problems other than NE, e.g.,
evolving fuzzy if-then rules for fuzzy inference systems.

ACKNOWLEDGMENT

This research was supported by a Kyoto Sangyo University
Research grant E1207.

REFERENCES

[1] H. Ishibuchi, H. Tanaka, and H. Okada, Fuzzy neural networks with fuzzy
weights and fuzzy biases, Proc. of IEEE International Conferences on
Neural Networks, pp.1650-1655, 1993.

[2] D.B. Fogel, L.J. Fogel, and V.W. Porto, Evolving neural networks,
Biological Cybernetics, vol.63, issue 6, pp.487-493, 1990.

[3] X. Yao, Evolving artificial neural networks, Proc. of the IEEE, vol.87,
no.9, pp.1423-1447, 1999.

[4] K.O. Stanley and R. Miikkulainen, Evolving neural networks
through augmenting topologies, Evolutionary Computation, vol.10, no.2,
pp.99-127, 2002.

[5] D. Floreano, P. Durr, and C. Mattiussi, Neuroevolution: From
architectures to learning, Evolutionary Intelligence, vol.1, no.1, pp.47-62,
2008.

[6] H. Okada, Genetic algorithm with fuzzy genotype values and its
application to neuroevolution, International Journal of Computer,
Information Science and Engineering, vol.8, no.1, pp.1-7, 2014.

[7] H-P. Schwefel, Evolution and Optimum Seeking, Wiley, 1995.
[8] H-G. Beyer and H-P. Schwefel, Evolution strategies - A comprehensive

introduction, Natural Computing, vol.1, no.1, pp.3-52, 2002.
[9] N. Hansen and A. Ostermeier, Adapting arbitrary normal mutation

distributions in evolution strategies: The covariance matrix adaptation,
Proc. of the 1996 IEEE International Conference on Evolutionary
Computation, pp.312-317, 1996.

[10] M. Herdy, Evolution strategies with subjective selection, Proc. of the
4th International Conference on Parallel Problem Solving from Nature,
pp.22-31, 1996.

[11] J. Knowles and D. Corne, The pareto archived evolution strategy: A
new baseline algorithm for pareto multiobjective optimisation, Proc. of
the 1999 Congress on Evolutionary Computation, pp.98-105, 1999.

[12] N. Hansen and A. Ostermeier, Completely derandomized self-adaptation
in evolution strategies, Evolutionary Computation, vol.9, no.2,
pp.159-195, 2001.

[13] H.G. Beyer, The Theory of Evolution Strategies, Springer, 2001.
[14] A. Auger and N. Hansen, A restart CMA evolution strategy with

increasing population size, Proc. of the 2005 IEEE Congress on
Evolutionary Computation, pp.1769-1776, 2005.

[15] O.M. Shir and T. Back, Niching in evolution strategies, Proc. of the
2005 Conference on Genetic and Evolutionary Computation, pp.915-916,
2005.

[16] N. Hansen, The CMA evolution strategy: A comparing review, Towards
a New Evolutionary Computation, Springer, pp.1769-1776, 2006.

[17] D.V. Arnold, Weighted multirecombination evolution strategies,
Theoretical Computer Science - Foundations of Genetic Algorithms,
vol.361, no. 1, pp.18-37, 2006.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:4, 2015

1036

[18] X. Chen, X. Liu, and Y. Jia, Combining evolution strategy and gradient
descent method for discriminative learning of bayesian classifiers, Proc. of
the 11th Annual Conference on Genetic and Evolutionary Computation,
pp.507-514, 2009.

[19] D.V. Arnold and A.S. Castellarin, A novel approach to adaptive isolation
in evolution strategies, Proc. of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp.491-498, 2009.

[20] L. Graening, N. Aulig, and M. Olhofer, Towards directed open-ended
search by a novelty guided evolution strategy, Proc. of the 11th
International Conference on Parallel Problem Solving from Nature: Part
II, pp.71-80, 2010.

[21] A. Auger, D. Brockhoff, and N. Hansen, Analyzing the impact of
mirrored sampling and sequential selection in elitist evolution strategies,
Proc. of the 11th Workshop on Foundations of Genetic Algorithms,
pp.127-138, 2011.

[22] A. Auger, D. Brockhoff, and N. Hansen, Mirrored sampling in evolution
strategies with weighted recombination, Proc. of the 13th Annual
Conference on Genetic and Evolutionary Computation, pp.861-868, 2011.

[23] I. Loshchilov, M. Schoenauer, and M. Sebag, Self-adaptive
surrogate-assisted covariance matrix adaptation evolution strategy,
Proc. of the Fourteenth International Conference on Genetic and
Evolutionary Computation Conference, pp.321-328, 2012.

[24] J. Lu, B. Li, and Y. Jin, An evolution strategy assisted by an ensemble of
local gaussian process models. Proc. of the Fifteenth Annual Conference
on Genetic and Evolutionary Computation Conference, pp.447-454, 2013.

[25] R. Li, M.T.M. Emmerich, J. Eggermont, T. Back, M. Schutz, J. Dijkstra,
and J.H.C. Reiber, Mixed integer evolution strategies for parameter
optimization, Evolutionary Computation, vol.21, no.1 pp.29-64, 2013.

[26] L.A. Zadeh, The concept of a linguistic variable and its application
to approximate reasoning - I, II, and III, Information Sciences, vol.8,
pp.199-249, pp.301-357, and vol.9, pp.43-80, 1975.

[27] G. Alefeld and J. Herzberger, Introduction to Interval Computation,
Academic Press, 1983.

[28] H. Okada, J. Tokida, and Y. Fujii, Comparison of evolution strategy,
genetic algorithm and their hybrids on evolving autonomous game
controller agents, International Journal of Science and Engineering
Investigations, 10612-02, vol.1, no. 6, pp.11-16, 2012.

Hidehiko Okada is currently Professor with the Department of Computer
Science and Engineering, Kyoto Sangyo University, Kyoto, Japan. He
received his B.S. in Industrial Engineering and Ph.D. in Engineering from
Osaka Prefecture University in 1992 and 2003, respectively. He was a
researcher with NEC Corporation from 1992 to 2003, and since 2004,
he has been with Kyoto Sangyo University. His current research interests
include computational intelligence and human-computer interaction. He is a
member of Information Processing Society of Japan, Institute of Electronics,
Information and Communication Engineers, Society of Instrument and Control
Engineers, Japanese Society for Artificial Intelligence, Japan Society for
Fuzzy Theory and Intelligent Informatics, and Human Interface Society.

He received the annual Best Paper award by Journal of the Institute of
Industrial Applications Engineers in 2013.


